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Computing Graph Isomorphism 
 definition: 

Two graphs G1=(V1,E1) and G2=(V2,E2) are isomorphic if there is a 
bijection f : V1 → V2 such that 

∀ x, y ∈ V1    :    { f (x), f (y) } ∈ E2    ⇔    { x, y } ∈ E1  

The mapping f  is said to be an isomorphism between G1 and G2. 

 example: 

ƒ ( a ) = 1  
f ( b ) = 6 
f ( c ) = 8 
f ( d ) = 3 
f ( g ) = 5 
f ( h ) = 2 
f ( i ) = 4 
f ( j ) = 7 

G1 : G2 : f : 

//upload.wikimedia.org/wikipedia/commons/9/9a/Graph_isomorphism_a.svg
//upload.wikimedia.org/wikipedia/commons/8/84/Graph_isomorphism_b.svg
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Computing Graph Isomorphism 

 definition of invariant: 

Let ℱ be a family of graphs. An invariant on ℱ is a function Φ with 

domain ℱ such that 

∀ G1, G2 ∈ ℱ   :    Φ(G1) = Φ(G2)   ⇐   G1 is isomorphic to G2 

 

 example: 
 |V| for graph G=(V, E) is an invariant. 

 The following degree sequence [deg(v1), deg(v2), deg(v3), … , deg(vn)] 

is not an invariant. 

 However, if the degree sequence is sorted in non-decreasing order, 

then it is an invariant. 
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Computing Graph Isomorphism 

 definition : 

Let ℱ be a family of graphs on vertex set V and let D be a function 

with domain ( ℱ ×  V ). Then the partition induced by D is 

B = [ |B[0]|, |B[1]|, … , |B[n – 1]| ] 

where 

B[i] = { vV   :   D (G,v) = i } 

If the function 

Φ𝐷(G) = [ |B[0]|, |B[1]|, … , |B[n – 1]| ] 

is an invariant, then we say that D is an invariant inducing function.  



Advanced algorithms 
5 / 23 

Computing Graph Isomorphism - Example 

Let  

 D1(G,x)=degG(x) 

 D2(G,x)=[dj(x) : j = 1,2, … , dn-1]  

 where dj(x)=|{y : y is adjacent to x and degG(y) = j }| 

Suppose the following graphs G1 and G2: 
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Computing Graph Isomorphism - Example 
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Computing Graph Isomorphism - Example 
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Computing Graph Isomorphism - Example 

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑗

 

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑖
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Computing Graph Isomorphism 

 

1) Function FINDISOMORPHISM (set of invariant inducing function𝑠 𝐼; graph 𝐺1, 𝐺2) :  
set of

isomorphisms
 

2) try   { 

3)       ( N, X, Y ) = GETPARTITIONS (I, 𝐺1, 𝐺2) ; 

4) } 

5) catch   (“𝐺1 and 𝐺2 are not isomorphic! “)   {   return   ∅ ;  } 

6) for   i = 0   to   N – 1    do   { 

7)       for   each   x  X [i]   do   { 

8)             W [x] = i ; 

9)       } 

10) } 

11) return  COLLECTISOMORPHISMS(𝐺1, 𝐺2, 0, Y, W, f )  
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Computing Graph Isomorphism 
 

1) Function GETPARTITIONS  

set of invariant inducing functions 𝐼;
 graph 𝐺1;
graph 𝐺2

 : 

number of partitions,
parititions of 𝐺1,
parititions of 𝐺2

 

2) X [0] = vertices of  𝐺1;   Y [0] = vertices of  𝐺2;   N = 1 ; 

3) for   each   D  I   do   { 

4)       P = N ; 

5)       for   i = 0   to   P – 1   do   { 

6)              Partition X [i] into sets X1 [i], X2 [i], X3 [i], … , Xm [i] where x,yXj [i] ⇔ D
 
(𝐺1,x)=D(𝐺1,y) ; 

7)              Partition Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] where x,yYj [i] ⇔ D(𝐺2,x)=D(𝐺2,y) ; 

8)              if   n ≠ m   then   throw exception  “𝐺1 and 𝐺2 are not isomorphic!“ ; 

9)              Order Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] so that  

10)                    ∀x  X [i], ∀y  Y [i] : D
 
(𝐺1,x) = D(𝐺2,y) ⇔ x  Xj [i] and y  Yj [i] ; 

11)              if   ordering is not possible   then   throw exception  “𝐺1 and 𝐺2 are not isomorphic! “ ; 

12)              N = N + m – 1; 

13)       } 

14)       Reorder the partitions so that: |X [i]|=|Y [i]|  ≤  |X [i+1]|=|Y [i+1]|   for 0 ≤ i < N – 1 ; 

15) } 

16) return   (N, X, Y) 
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Computing Graph Isomorphism 
 

1)
Function                       
COLLECTISOMORPHISMS

 

graph 𝐺1, 𝐺2 ;

starting vertex of  𝐺1  v ;

parititions of 𝐺2  𝑌 ;

partition mapping 𝑊 as

 𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1  𝐨𝐟

 indices of partitions of 𝐺1

 ;  

current isomorphism 𝑓 as

𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1  𝐨𝐟

vertices of 𝐺2

   : set of
isomorphisms

 

2) if   v = number of vertices of  𝐺1   then   return  { f  } ; 

3) R = ∅ ; 

4) p = W [v] ; 

5) for   each   y  Y [p]   do   { 

6)       OK = true ; 

7)       for   u = 0   to   v – 1   do   { 

8)              if   
( { u ,v } ∈ edges of  𝐺1   and    { f [u], y  } ∉ edges of  𝐺2 )

or
( { u ,v } ∉ edges of  𝐺1   and    { f [u], y } ∈ edges of  𝐺2 )

   then   OK = false ; 

9)       } 

10)       if   OK   then  {   

11)              f [v] = y ;    

12)              R = R ∪ COLLECTISOMORPHISMS(𝐺1, 𝐺2, v+1, Y, W, f ) ;   

13)       }  

14) } 

15) return  R 



Advanced algorithms 
12 / 23 

Certificate 
 A certificate 𝐶𝑒𝑟𝑡 for family  ℱ of graphs is a function such 

that 

 

∀ G1, G2 ∈ ℱ   :    𝐶𝑒𝑟𝑡(𝐺1) = 𝐶𝑒𝑟𝑡(𝐺2)   ⇔   G1 is isomorphic to G2 

 

 

 Currently, the fastest general graph isomorphism algorithms 
use methods based on computing of certificates. 

 Computing of certificates works not only for general graphs 
but it can be also applied on some classes of graphs like 
trees. 
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Computing Tree Certificate 

1) Label all the vertices of 𝐺 with the string 01. 

2) While there are more than two vertices of 𝐺 do: 

For each non-leaf 𝑥 of 𝐺: 

a) Let 𝑌 be the set of labels of the leaves adjacent to 𝑥 and the 

label of 𝑥, with the initial 0 and trailing 1 deleted from 𝑥; 

b) Replace the label of 𝑥 with concatenation of the labels in 

𝑌 sorted in increasing lexicographic order, with 0 prepended 

and a 1 appended; 

c) Remove all leaves adjacent to 𝑥. 

3) If there is only one vertex left, report the label of 𝑥 as certificate. 

4) If there are two vertices 𝑥 and 𝑦 left, then report the labels of 
𝑥 and 𝑦, concatenated in increasing lexicographic order, as the 

certificate. 
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Computing Tree Certificate - Example 

number of vertices: 12 

 
non−leaves vertices: 

 
0 ∶  𝑌 =  
1 ∶  𝑌 = 01  
2 ∶  𝑌 = 01,01  
5 ∶  𝑌 = 01  
7 ∶  𝑌 = 01  
8 ∶  𝑌 = 01  

 

 

6 ∶  01 

1 ∶  01 

2 ∶  01 
3 ∶  01 

4 ∶  01 

5 ∶  01 

7 ∶  01 

8 ∶  01 

9 ∶  01 

0 ∶  01 

10 ∶  01 

11 ∶  01 
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0 ∶ 01 

2 ∶  001011 

Computing Tree Certificate - Example 

number of vertices: 6 

 
non−leaves vertices: 

 

0 ∶  𝑌 =
001011,
0011,
0011

 

 

5 ∶  𝑌 =
0011,
01

 

 

1 ∶ 0011 

5 ∶ 0011 

7 ∶  0011 

8 ∶  0011 
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Computing Tree Certificate - Example 

number of vertices: 2 

 

 

 

5 ∶ 00011011 

Certificate=000101100110011100011011 

 

 

 

 

 

0 ∶ 0001011001100111 
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Computing Tree Certificate 

 properties of certificate: 

 

 the length is 2 ∙ |𝑉| 

 the number of 1s and 0s is the same  

 furthermore, the number is of 1s and 0s is the 

same for every partial subsequence that arise 

from any label of vertex (during the whole run 

of the algorithm) 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓 0 = 0 

𝑓 𝑥 + 1 =  
 𝑓 𝑥 + 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 0

 𝑓(𝑥) − 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 1
 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate 

 
1) Function  CE R T IF IC A T E TO TR E E  certificate as string 𝐶  ∶  tree as 𝐺 = (𝑉, 𝐸)  

2) 𝑛 =
𝐶

2
;   𝑣 = 0;  𝑉, 𝐸 = empty graph of order 𝑛;    𝑉 = 0,… , 𝑛 − 1 ; 

3) 𝑘 = FINDSUBMOUNTA IN S 1, 𝐶 ;   

4) if   k = 1   then   { 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ;   𝑣 = 𝑣 + 1;   }   

5)      else  {  𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ;   𝑣 = 𝑣 + 1; 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 1 ;   𝑣 = 𝑣 + 1;   𝐸 = 𝐸 ∪ 0,1 ;   }  

6) for   𝑖 =  0   to   𝑛 − 1   do   { 

7) if    𝐿𝑎𝑏𝑒𝑙[𝑖] > 2   then  {   

8)              𝑘 = FINDSUBMOUNTA IN S 2, 𝐿𝑎𝑏𝑒𝑙[𝑖] ;   𝐿𝑎𝑏𝑒𝑙[𝑖] = "01";   

9)              for   𝑗 =  0   to   𝑘 − 1   do   {  𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 𝑗 ;   𝐸 = 𝐸 ∪ 𝑖, 𝑣 ;   𝑣 = 𝑣 + 1;  } 

10) }  

11) return  𝐺 = 𝑉, 𝐸 ;  

 
1) Function  FINDSUBMOUNTA IN S integer 𝑙, certificate as string 𝐶 ∶ number of submountines in 𝐶  

2) 𝑘 = 0;   𝑀 0 = the empty string;   𝑓 = 0; 

3) for   𝑥 = 𝑙 − 1   to   𝐶 − 𝑙   do   { 

4)             if    𝐶 𝑥 = 0   then  {  𝑓 = 𝑓 + 1;  }  else {  𝑓 = 𝑓 − 1;  } 

5)             𝑀 𝑘 = 𝑀 𝑘 ∙ 𝐶 𝑥 ; 

6)             if    𝑓 = 0   then  {  𝑘 = 𝑘 + 1;    𝑀 𝑘 = the empty string;    𝑓 = 0;  } 

7) }  

8) return  𝑘;  

𝜪( 𝑪 𝟐) 
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Reconstruction of Tree from Certificate  
1) Function  FA S T CE R T IF IC A T E TO TR E E  certificate as string 𝐶  ∶  tree as 𝐺 = (𝑉, 𝐸)  

2) 𝑉, 𝐸 = empty digraph of order 
𝐶

2
;    𝑉 = 0, … ,

𝐶

2
; 

3) 𝑛 = 0; 

4) 𝑝 = 𝑛; 

5) for   𝑥 = 1   to   𝐶 − 2   do   { 

6)             if    𝐶 𝑥 = 0   then  {  

7)                    𝑛 = 𝑛 + 1; 

8)                𝐸 = 𝐸 ∪ (𝑝, 𝑛) ; 

9)                    𝑝 = 𝑛;  

10)             }  else {  

11)                    if   𝑝𝑎𝑟𝑒𝑛𝑡 𝑝  does not exist  then { 

12)                              𝑛 = 𝑛 + 1; 

13)                          𝐸 = 𝐸 ∪ (𝑝, 𝑛) ;  

14)                        𝑝 = 𝑛; 

15)                    } else { 

16)                              𝑝 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝 ; 

17)                    } 

18)             } 

19) }  

20) return  𝐺 = 𝑉, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐸) ;   𝜪( 𝑪 ) 
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