
OPPA European Social Fund
Prague & EU: We invest in your future.

?/

p

x--y

2<1

x+y Hi!

Robert Sedgewick : Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching,

Third Edition, Addison Wesley 1998, chapter 15.

To read

See PAL webpage for references

 Search trees, binary trie, patricia trie

Marko Berezovský

Radek Mařík

PAL 2012

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

0 1

0 1

0

0

1

1

0

0

1

0 1 A 00001 C 00011

R 10010 S 10011

E 00101

H 01000

1st routing bit

2nd routing bit

3rd routing bit

4th routing bit

5th routing bit

Tree height <= no of routing bits = length of bit representation of keys

Keys are represented as a sequence of bits.

Keys are stored in roots only, inner nodes serve as routers only.

Inner node in depth d defines path to the leaf with key K according to the d-th bit

of K .

Key must not be prefix of another key in terms of bit representation.

This can be achieved by representations having all same length in bits.

 Binary trie Description 1

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

0 1

0 1

0

0

1

1

0

0

1

0 1 A 00001 C 00011

R 10010 S 10011

E 00101

H 01000

0 1

0 1

0

0

1

1

0

0

1

0 1 A 00001 C 00011

R 10010 S 10011

E 00101

I 01001 H 01000

0

0

1 0

Inserting single key may result in creating more internal nodes. Insert I [01001] .

I 01001

 Binary trie Description 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

In further examples we omit 0/1 edge labels as the labeling scheme is obvious.

A 00001 A 00001 S 10011

A 00001

S 10011

E 00101

A 00001 E 00101

R 10010 S 10011

A SEARCHING EXAMPLE (in shrtcmm):

A SERCHING XMPL

Example of trie building.

 Binary trie Example 3

Insert A [00001]

Insert S [10011]

Insert E [00101]

Insert R [10010]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

A 00001

R 10010 S 10011

C 00011

E 00101

A 00001

R 10010 S 10011

C 00011

E 00101

H 01000

 Binary trie Example 4

Insert C [00011]

Insert H [01000]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Insert N [01110]

Insert I [01001]

N 01110

A 00001

R 10010 S 10011

C 00011

E 00101

I 01001 H 01000

A 00001

R 10010 S 10011

C 00011

E 00101

I 01001 H 01000

 Binary trie Example 5

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Insert G [00111]

N 01110

A 00001

R 10010 S 10011

C 00011

I 01001 H 01000

G 00111 E 00101

 Binary trie Example 6

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

A 00001 E 00101

R 10010 S 10011

Null pointers in internal nodes are called null links. When trie has no null link it is a

complete perfectly balanced binary tree containing 2d+11 nodes and 2d leaves.

 Binary trie Null links 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

The function searchR uses the bits of the key to control the branching on the way

down the trie.

There are three possible outcomes: if the search reaches a leaf (with both links

null), then that is the unique node in the trie that could contain the record with

key v, so we test whether that node indeed contains v (search hit) or some key

whose leading bits match v (search miss). If the search reaches a null link, then

the parent's other link must not be null, so there is some other key in the trie that

differs from the search key in the corresponding bit, and we have a search miss.

The following code assumes that the keys are distinct, and (if the keys may be of

different lengths) that no key is a prefix of another. The item member is not used

in non-leaf nodes.

 Binary trie Search Description 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

 private:

 Item searchR(link h, Key v, int d)

 { if (h == 0) return nullItem;

 if (h->l == 0 && h->r == 0)

 { Key w = h->item.key();

 return (v == w) ? h->item : nullItem; }

 if (digit(v, d) == 0)

 return searchR(h->l, v, d+1);

 else return searchR(h->r, v, d+1);

 }

 public:

 Item search(Key v)

 { return searchR(head, v, 0); }

 Binary trie Search Code 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

To insert a new node into a trie, we search as usual, then distinguish the two

cases that can occur for a search miss.

If the miss was not on a leaf, then we replace the null link that caused us to

detect the miss with a link to a new node, as usual.

If the miss was on a leaf, then we use a function split to make one new internal

node for each bit position where the search key and the key found agree,

finishing with one internal node for the leftmost bit position where the keys differ.

The switch statement in split converts the two bits that it is testing into a number

to handle the four possible cases.

If the bits are the same (case 002 = 0 or 112 = 3), then we continue splitting; if the

bits are different (case 012 = 1 or 102 = 2), then we stop splitting.

 Binary trie Insert Description 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

 private:

 link split(link p, link q, int d)

 { link t = new node(nullItem); t->N = 2;

 Key v = p->item.key(); Key w = q->item.key();

 switch (digit(v, d)*2 + digit(w, d))

 { case 0: t->l = split(p, q, d+1); break;

 case 1: t->l = p; t->r = q; break;

 case 2: t->r = p; t->l = q; break;

 case 3: t->r = split(p, q, d+1); break;

 }

 return t;

 }

 void insertR(link& h, Item x, int d)

 { if (h == 0) { h = new node(x); return; }

 if (h->l == 0 && h->r == 0)

 { h = split (new node(x), h, d); return; }

 if (digit(x.key(), d) == 0)

 insertR(h->l, x, d+1);

 else insertR(h->r, x, d+1);

 }

 Binary trie Insert Code 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

 public:

 ST(int maxN)

 { head = 0; }

 void insert(Item item)

 { insertR(head, item, 0); }

 Binary trie Insert Code 12

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

This trie, schematically presented here, built by inserting about 200 random keys,

is well-balanced, but has 44 percent more nodes than might otherwise be

necessary, because of one-way branching.

 Binary trie shape Realistic example 13

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

The structure of a trie is independent of the key insertion order: There is a unique

trie for any given set of distinct keys.

Insertion or search for a random key in a trie built from N random (distinct)

bitstrings requires about lg N bit comparisons on the average. The worst-case

number of bit comparisons is bounded only by the number of bits in the search

key.

A trie built from N random w-bit keys has about N/ ln  2 1.44N nodes on the

average.

Operation Delete is complementary to Insert operation.

Its algorithm/implementation is left to the reader.

 Binary trie properties Summary 14

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

P

r

a

c

t

i

c

a

l

A

l

g

o

r

i

t

h

m

T

o

R

e

t

r

i

e

v

e

I

n

f

o

r

m

a

t

i

o

n

C

o

d

e

d

I

n

A

l

p

h

a

n

u

m

e

r

i

c

 Patricia trie 15

Donal R. Morrison: PATRICIA—Practical Algorithm To Retrieve Information Coded in
Alphanumeric, Journal of the ACM, Volume 15 Issue 4, Oct. 1968, pp 514-534.

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Trie built by inserting about 200 random keys

Patricia trie built by inserting about 200 random keys

Compare how well are both trees balanced

 Patricia trie vs. trie Example comparison 16

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Starting with the standard trie data structure, we avoid one-way branching via a

simple device: we put into each node the index of the bit to be tested to decide

which path to take out of that node.

Thus, we jump directly to the bit where a significant decision is to be made,

bypassing the bit comparisons at nodes where all the keys in the subtree have

the same bit value.

Moreover, we avoid external nodes via another simple device: we store data in

internal nodes and replace links to external nodes with links that point back

upwards to the correct internal node in the trie.

These two changes allow us to represent tries with binary trees comprising

nodes with a key and two links (and an additional field for the index), which we

call patricia tries. With patricia tries, we store keys in nodes as with tries, and we

traverse the tree according to the bits of the search key, but we do not use the

keys in the nodes on the way down the tree to control the search; we merely

store them there for possible later reference, when the bottom of the tree is

reached.

 Patricia trie Structure 17

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

 private:

 void showR(link h, ostream& os, int d)

 {

 if (h->bit <= d) { h->item.show(os); return; }

 showR(h->l, os, h->bit);

 showR(h->r, os, h->bit);

 }

 public:

 void show(ostream& os)

 { showR(head->l, os, -1); }

 Patricia trie Sort Traversal 18

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

This recursive procedure shows the records in a patricia trie in order of their keys.

We imagine the items to be in (virtual) external nodes, which we can identify by

testing when the bit index on the current node is not larger than the bit index on its

parent. Otherwise, this program is a standard inorder traversal.

A 00001

C 00011

S 10011

E 00101

H 01000

In a successful search for R = 10010 in this sample patricia trie (top), we move right

(since bit 0 is 1), then left (since bit 4 is 0), which brings us to R (the only key in the

tree that begins with 1***0). On the way down the tree, we check only the key bits

indicated in the numbers over the nodes (and ignore the keys in the nodes). When

we first reach a link that points up the tree, we compare the search key against the

key in the node pointed to by the up link, since that is the only key in the tree that

could be equal to the search key.

In an unsuccessful search for I = 01001, we move left at the root (since bit 0 of the

key is 0), then take the right (up) link (since bit 1 is 1) and find that H (the only key

in the trie that begins with 01) is not equal to I.

R 10010

 Patricia trie Search Example 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

0

1

2

3

4

4

The Search method differs from trie search in three ways: there are no explicit

null links, we test the indicated bit in the key instead of the next bit, and we end

with a search key comparison at the point where we follow a link up the tree. It is

easy to test whether a link points up, because the bit indices in the nodes (by

definition) increase as we travel down the tree. To search, we start at the root

and proceed down the tree, using the bit index in each node to tell us which bit to

examine in the search key—we go right if that bit is 1, left if it is 0. The keys in

the nodes are not examined at all on the way down the tree. Eventually, an

upward link is encountered: each upward link points to the unique key in the tree

that has the bits that would cause a search to take that link. Thus, if the key at

the node pointed to by the first upward link encountered is equal to the search

key, then the search is successful; otherwise, it is unsuccessful.

 Patricia trie Search Description 20

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

 private:

 Item searchR(link h, Key v, int d) {

 if (h->bit <= d) return h->item;

 if (digit(v, h->bit) == 0)

 return searchR(h->l, v, h->bit);

 else return searchR(h->r, v, h->bit);

 }

 public:

 Item search(Key v)

 { Item t = searchR(head, v, -1);

 return (v == t.key()) ? t : nullItem;

 }

 Patricia trie Search Code 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

The recursive function searchR returns the unique node that could contain the

record with key v. It travels down the trie, using the bits of the tree to control the

search, but tests only 1 bit per node encountered—the one indicated in the bit

field. It terminates the search when it encounters an external link, one which

points up the tree. The search function search calls searchR, then tests the key in

that node to determine whether the search is a hit or a miss.

A 00001

C 00011

S 10011

E 00101

R 10010

I 01001

H 01000

To insert I into the sample patricia trie in , we add a new node to check bit 4, since

H = 01000 and I = 01001 differ in only that bit (top). On a subsequent search in the

trie that comes to the new node, we want to check H (left link) if bit 4 of the search

key is 0; if the bit is 1 (right link), the key to check is I.

 Patricia trie Insert Example I 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

4

4

3

2

1

0

4

A 00001

C 00011

S 10011

E 00101

R 10010

I 01001

H 01000

To insert N = 01110, we add a new node in between H and I to check bit 2, since

that bit distinguishes N from H and I.

N 01110

 Patricia trie Insert Example II 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

4

4

3

2

1

0

4

2

OPPA European Social Fund
Prague & EU: We invest in your future.

