
OPPA European Social Fund
Prague & EU: We invest in your future.

SINGLE WORD SPEECH RECOGNITION
USING HIDDEN MARKOV MODELS

by

Petr Zadražil

Libor Grafnetr

Course project for Graphical Markov Models

(AE4M33GMM) lectured by

Doc. Dr. Boris Flach,

Ing. Radim Tyleček

1

Contents
Introduction ... 2

Model description ... 2

Observations ... 2

MFCC ... 2

States ... 3

Probability Models .. 4

Learning ... 4

Recognition .. 5

Results ... 6

Conclusion ... 7

2

Introduction
Our goal was to perform recognition of single words from a small dataset using Hidden Markov Models

(HMM). This task consisted of preprocessing the input data, transforming the data into representation

viable for usage in HMM, specifying properties of the HMMs, learning these HMMs and afterwards

extracting the learnt knowledge during recognition.

The input data were several series of read numbers from 0 to 30 taken from ShATR Corpus1. First, we

semi-automatically split the series into single words. The isolated instances were then transformed into

sets of Mel Frequency Cepstral Coefficients (MFCC).

From these sets of coefficients we extracted limited number of hidden states using Expectation

Maximization of Gaussian Mixture Models (EM GMM). After creating HMM using these hidden states,

we performed the training of the probabilities.

Finally, we had trained HMMs that could be used for recognizing unclassified instances. Each of the

HMMs is representing one number. The unclassified instance is considered to represent the same

number as the model which would generate the instance with the highest probability.

Model description
The approach we chose was to create a separate HMM for each target word class. That is, to recognize

numbers from 0 to 30, we created 32 HMMs (0 has two different representations, “zero” and “null”).

Observations of the model are cepstrum coefficients representing frames extracted from the input

words. Hidden states are generalized representations of the observations (

 This generalization is realized as Gaussian Mixture Model. This allows for reduction of

the number of hidden states to a viable number while minimizing loss of information.

Observations
The input data are samples at a constant sampling rate (in our case 16 kHz). If no transformation would

be applied, the model accepting them be would immensely large and sensitive to noise and natural

variations, such as voice pitch. Therefore, popular transformation from time domain into frequency

domain and consequently into Mel Frequency Cepstrum (MFC) was applied, which facilitates both

dimension reduction and partial increase in robustness with regard to noise and natural variations of

voice.

Each word was first separated into frames of samples with equal length (25 ms) and 50% overlap (12

ms) using Hamming windowing function (this gives us 384 samples per frame). For each frame a MFC

was then calculated.

MFCC

The Mel Frequency Cepstrum Coefficients were calculated by using best practices described in European

Telecommunications Standards Institute standard2.

3

First, frequency power coefficients were calculated by applying Fast Fourier Transform to the samples

from the frame. The first half of the power coefficients was then normalized and used later on.

Since human voice mostly occupies only certain part of the frequency spectrum and it desirable to

increase resolution in this part of spectrum, transformation from linear frequency scale into Mel Scale is

applied. The relation of the scales is given by

 , where is the hertz frequency

FIGURE 1: RELATION OF HERTZ FRE QUENCY SCALE AND MEL SCALE.

Next step is to reduce the dimension of the power coefficients vector. This is done by summing them

into much smaller number of bins (we used 24) using triangular window function with 50% overlap.

The two previous steps can in fact be merged into one by calculating transformation matrix that applies

both the Mel scale and windowed summation.

At last, the reduced number of binned power coefficients is transformed into log-scale and a Discrete

Cosine Transform (DCT) is applied. The properties of DCT allow to further reduce the number of

coefficients by half (i.e. to 12 in our experiment).

States
As hidden states for each HMM we used components of a Gaussian Mixture Model trained on cepstrums

created from instances of all the dataset. Basically it means that all the models have the same states and

only the initial and transition probabilities are different. Number of components of the mixture is subject

to parameter optimization described later on. To find locally optimal parameters of the Gaussian Mixture

we use our implementation of Expectation Maximization for GMM. Each hidden state is then

represented by mean, covariance matrix and weight of a Gaussian distribution in the mixture. The

covariance matrix is only diagonal because the number and character of samples does not allow

computing meaningful covariances.

4

The very initial idea was to train Gaussian Mixture Models separately for each number and position. It

was supposed to ensure easier transition computation and validation. We were worried about some

little noise causing the sample to be matched as a sample of different number. This would lead to zero

transition probability in the HMM of the correct number and cause wrong classification. But our dataset

was too small to allow this. Furthermore we would get in a serious trouble in case of time-shifted word.

Later we decided to create unique Gaussian Mixture Models for each number. The idea was tested on a

simple homogeneous model. Even thought we used whole dataset for both the testing and training the

results were below expectation. The best recognition rate achieved was below 0.8 despite the fact we

tried as much as 48 states per word. It was mostly caused by the number 1 with very simple model

matching some other numbers. Actually the problem was expected and we hope to solve it by some

additional multiplication of the result by the accuracy of the Gaussian match. Sadly no good way how to

measure accuracy of sample matching Gaussian was discovered.

We also tried to pad the audio signals with zeros to the same length. It would allow us to easily

distinguish between short and long numbers but this option was also declined. Our EM algorithm

computing Gaussians seems to have trouble with that and most of all it feels like a cowardliness to make

the problem easier.

Probability Models
We are using Homogeneous Markov Chain as a model of each number. The model has initial

probabilities, transition probabilities and states represented as Gaussians. The model can be one of two

variants the “normal” variant and the “strict” one. The difference lays in evaluation. The “normal”

version allows one sample to belong to more states concurrently creating distribution between states

whereas the “strict” one choose always the state with highest probability for each sample. The second

approach is similar to clustering.

We also find a couple of more advanced models widely used in speech recognition as Kalman Filter or

the model where each state is represented by a mixture of Gaussians but they seem complicated and

hard to implement. And they would also take away the joy of creating custom model which actually

does something.

Learning
The learning is separated into two steps. The first step is to create Gaussians. EM algorithm is really a

simple one but there are few complications related to implementation.

The biggest issue was numerical stability. While computing next iterations we have to compute with

large amount of numbers covering huge range of values. Thus some computations may lead to corrupted

covariance matrices. We tried to correct these values modifying Σ matrix (the middle one) from Singular

Value Decomposition but the result was often diagonal matrix. Currently we take from the covariance

matrix the upper triangular part and the flipped version use as the lower triangular part. After finishing

the EM algorithm the covariance parts are stripped out leaving nonzero values only on the main

5

diagonal. The covariance parts were always nearly zeros, thus not significant, and stripping them makes

further computation easier.

Another issue was caused by tiny isolated groups of samples leading into Gaussians with small variances.

As our intention was to have Gaussians representing similar amount of samples we modify variances to

average values of other Gaussians. For reasonable input data (which our samples are) it solves our

problem.

Second part is mostly about computing probabilities. We process all the words of one class together. At

first we compute how much each sample matches each state and store it as a matrix. In case of strict

model the distribution is updated to contain only zeros and ones.

Then probabilities belonging to initial samples are summed together and normalized to have sum of one.

This vector is considered to be our initial probability distribution.

After the transition matrix is computed. It is a square matrix where each value represents transition

probability from previous state (row) to the current state (column). The matrix is computed similar way

as the initial probabilities. We sum all the transition probabilities between samples and then normalize

each row to give the sum one. The only exceptions are “pure ending states” where no transition

probabilities can be computed. We leave zeros here letting the recognition algorithm to coop with the

situation.

Recognition
As mentioned before we have one model per word class. The model which with highest probability

generates such a sequence of samples is considered to classify the given word.

The probabilities for individual models are computed by usual dynamic computing approach. We take

initial probabilities and samples as input. In each step we take vector representing probabilities of

current state which is element wise multiplied by probability vector obtained from sample. The result

represents probability that sequence till current sample was generated by this model. Later the result

probability is multiplied by transition matrix and new probabilities of current state are obtained.

We run on to similar issues as with the EM algorithm. The precision problem was solved by normalizing

the current state probability distribution to give sum of one. The sum before normalization is

remembered for each state. At the end we could simply multiply all the sums and obtain the result. This

was not possible in most cases because of computing precision so we were forced to use trick with

logarithm. We compute a vector containing logarithm of each value and then compute the mean value.

We can use the mean because we have the same number of iterations while computing all the models.

Each sample can have noise which can lead to transition with zero probability. Because of multiplication

this one zero transition causes zero matching probability of whole Markov Model. This behavior can be

the cause of wrong classification. We introduce parameter “e” which is the minimal probability of each

validation algorithm iteration.

6

Results
We perform series of test in order to optimize parameters. Mostly we tried to find a good pair of the “e”

parameter and number of Gaussians. Because the EM part was time consuming we tried every fourth

value in interval <4, 52>. In contrary the validation itself was fast so we decided to try 50 different “e”

values. We also tried to find out which version performs better, whether the “normal” or the “strict”

one. We run 5 fold stratified cross validation on whole dataset.

FIGURE 2: QUALITY OF RECOGNITION: HORIZONTAL AXIS REPRESENTS THE NUMBER OF GAUSSIANS WHILE VERTICAL AXIS IS

REPRESENTING THE “E” VALUE IN (2^-Y) SCALE. THE COLOR IS RATE OF WRONG CLASSIFICATIONS. THE LEFT IMAGE IS “NORMAL” MODE

WHEREAS THE RIGHT IS “STRICT” MODE.

It can be seen, that with increasing number of

Gaussians the probability of recognition is rising.

Maybe there is a number which makes the

models so precise, that recognition of unknown

sample would be hard. We didn’t reach such a

number because learning these models is time

consuming.

The best value was measured for “normal”

model with “e” = 2^-13 and 52 Gaussians. The

accuracy was 0.958 which was better than

expected. “e” smaller than 2^-22 perform slightly

worse because there is huge penalization for per

wrong transition.

FIGURE 3: LEARNING (BLUE) AND VALIDATION(RED) TIME IN SECONDS

We also tried our number recognition on sound recorded by us, but we are ashamed of the results. The

only number recognized correctly was zero. It was most probably caused by different speaker, bad

recording device and conditions. Our algorithm considers most of number to be 23, 11 or 0.

7

Conclusion
We have successfully implemented, trained and tested single word speech recognition in Matlab. We

also sorted out all the troubles with numerical stability and once again experienced the difference

between theory and implementation.

 Our results were better than we expected, however we believe there is still a lot to improve. It is clear

that further enhancement requires more samples from different speakers and/or different kind of

preprocessing.

1

 The ShATR Multiple Simultaneous Speaker Corpus -
http://www.dcs.shef.ac.uk/spandh/projects/shatrweb/index.html
2
 European Telecommunications Standards Institute, ETSI ES 201 108 standard, Front-end feature extraction

algorithm
3
 Rabiner, L., R. A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition

OPPA European Social Fund
Prague & EU: We invest in your future.

