Colors in images

Color spaces, perception, mixing, printing, manipulating . . .

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

> svoboda@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~svoboda

Warning

- rather an overview lecture
- pictorial, math kept on minimum
- knowing keywords you may dig deeper

Thanks Wikipedia for many images.

Color Spectrum

Color is a human interpretation of a mixture of light with different wavelength λ (projected into a retina or camera photoreceptors).

Isaac Newton's experiment (1666).

Perception of Light

- Human eye contains three types color receptor cells, or cones.
- Their sensitivity is a function of wavelength.
- Three peaks may be approximately identified in BLUE, GREEN, RED.
- Combination of the responses give us our color perception. tristimulus model of color vision.

Marking according to wavelengths

- S - short
- M - medium
- L — long

RGB color model

- A color point is represented by three numbers $[R, G, B]$
- $[R, G, B]$ have typically range 0 . . 255 for most common 8 -bit images

RGB color model

- A color point is represented by three numbers $[R, G, B]$
- $[R, G, B]$ have typically range $0 \ldots 255$ for most common 8 -bit images

RGB color model

- A color point is represented by three numbers $[R, G, B]$
- $[R, G, B]$ have typically range $0 \ldots 255$ for most common 8-bit images

RGB color model

- A color point is represented by three numbers $[R, G, B]$
- $[R, G, B]$ have typically range $0 \ldots 255$ for most common 8 -bit images

RGB color model

- A color point is represented by three numbers $[R, G, B]$
- $[R, G, B]$ have typically range $0 \ldots 255$ for most common 8-bit images

RG only, B zero

RB only, G zero

GB only, R zero

Additive mixing

- computer screens, TV, projectors
- Primary colors: ones used to define other colors, $[R, G, B]$
- Secondary colors: pairwise combination of primaries, [C,M,Y] (Cyan, Magenta, Yellow)

Additive mixing

- computer screens, TV, projectors
- Primary colors: ones used to define other colors, $[R, G, B]$
- Secondary colors: pairwise combination of primaries, [C,M,Y] (Cyan, Magenta, Yellow)

Additive mixing

- computer screens, TV, projectors
- Primary colors: ones used to define other colors, $[R, G, B]$
- Secondary colors: pairwise combination of primaries, [C,M,Y] (Cyan, Magenta, Yellow)

Additive mixing

- computer screens, TV, projectors
- Primary colors: ones used to define other colors, $[R, G, B]$
- Secondary colors: pairwise combination of primaries, [C,M,Y] (Cyan, Magenta, Yellow)

Additive mixing

- computer screens, TV, projectors
- Primary colors: ones used to define other colors, $[R, G, B]$
- Secondary colors: pairwise combination of primaries, [C,M,Y] (Cyan, Magenta, Yellow)

RG only, B zero

RB only, G zero

GB only, R zero

blue

Subtractive mixing

- it works through light absorption
- the colors that are seen are from the part of light that is not absorbed
- paintings, printing, . . .
- Primary colors: ones used to define other colors $[\mathrm{C}, \mathrm{M}, \mathrm{Y}]$
- Secondary colors: pairwise combination of primaries [R,G,B]

CMYK model

- color primaries $[\mathrm{C} . \mathrm{M}, \mathrm{Y}]$ should result black when all mixed together
- in practice, such black is not dense enough
- $\mathrm{K}=$ key (black) is added to the model

CMYK model

- color primaries [C.M, Y] should result black when all mixed together
- in practice, such black is not dense enough
- $\mathrm{K}=$ key (black) is added to the model

Capturing RGB values

- We know how to display, print color . . .
- How to capture?

CCD generates output proportionally to amount of energy

Capturing RGB values

- We know how to display, print color . . .
- How to capture?
- CCD generates output proportionally to amount of energy

3CCD camera with separating dichroic beam splitter

3CCD chip camera

dichroic prism

Capturing RGB values

- We know how to display, print color . . .
- How to capture?
- CCD generates output proportionally to amount of energy

3CCD camera with separating dichroic beam splitter

3CCD chip camera

dichroic prism

Good: Color quality, Problem: price . . .

1CCD camera with Bayer filter

- use one chip
- place a selective filter in front of it
- $2: 1: 1,2$ to green, human eye is most sensitive to it
- combine values to make RGB image Demosaicking
- cheap but the image quality suffers
- this is, among other things, what makes difference between digital photo cameras

Demosaicking in images

Wikipedia

Demosaicking in images

Demosaicking result

Many demosaicking method exist. 1CCD with a filter is still prevailing solution. Few expensive DV cameras in consumer level. A company Foveon found yet another way . . .

Color from "depths"

First came film.
COLOR FILM contains three layers of emulsion which directly record red, green, and blue light.

Then came digital.
TYPICAL DIGITAL SENSORS have just one layer of pixels and capture only part of the color.

Now there's Foveon X3.
FOVEON X3 direct image sensors have three layers of pixels which directly capture all of the color.

Capturing color - revisited

- Many demosaicking method exist.
- 1CCD with a filter is still prevailing solution.
- Few expensive DV cameras in consumer level.
- A company called Foveon found yet another way . . .

HSV color space

- Problem in RGB space: How would you create a color according to your design?
- RGB values do not correspond to human thinking about colors
- We are saying: pure red, deep purple, sky blue . . .

HSV color space

- Problem in RGB space: How would you create a color according to your design?
- RGB values do not correspond to human thinking about colors
- We are saying: pure red, deep purple, sky blue . . .

HSV Hue, Saturation, Value color space

- Hue is the color type (red, yellow, . . .)
- Saturation refers to color purity or vibrancy
- Value is the brightness of the color

HSV cone
$\underbrace{m p}_{23 / 31}$

Playing with saturation

original image

what a nice autumn!

Playing with saturation

original image

what a sad gray autumn!

Additive mixing - revisited

Can we, assuming properly chosen $[\mathrm{R}, \mathrm{G}, \mathrm{B}]$, mix any color?

Additive mixing - revisited

- Can we, assuming properly chosen [R,G,B], mix any color?
- Well, almost any.

What is wrong?

Additive mixing - revisited

- Can we, assuming properly chosen [R,G,B], mix any color?
- Well, almost any.

What is wrong?

- Blue and Green makes Cyan.
- But how to make monochromatic Cyan?
- blue + green $-($ little red $)=$ monochromatic cyan
- but how to make negative values on screens?

What do you need to match any color?

Color spectrum $\mathrm{S}(\lambda)$

- Table of $S(\lambda)$ in predefined λ
- $S(\lambda)=P_{1} \int f_{1}(\lambda) S(\lambda) d \lambda+P_{2} \int f_{2}(\lambda) S(\lambda) d \lambda+P_{3} \int f_{3}(\lambda) S(\lambda) d \lambda$ which gives us $\left[P_{1}, P_{2}, P_{3}\right]$ representation.

[^0]
What $R G B$ do you need to match any color?

Problem: How to realize devices with negative matching functions?

A way out - new primary "colors" CIE XYZ

$$
S(\lambda)=X \int x(\lambda) S(\lambda) d \lambda+Y \int y(\lambda) S(\lambda) d \lambda+Z \int z(\lambda) S(\lambda) d \lambda
$$

CIE chromaticity diagram

$$
[x, y]=\left[\frac{X}{X+Y+Z}, \frac{Y}{X+Y+Z}\right]
$$

Do we see all colors on the screen?

Do we see all colors on the screen?

No!

Typical gamut of a CRT monitor

red
blue
rgb
red
red
blue
blue

blue
rgb

blue
rgb

blue
rgb

blue
rgb

blue
rgb

blue
rgb

blue
rb
blue

牙

CCD

Wikipedia

Wiki

$$
\begin{aligned}
& \text { ㅁㅁ } \\
& \text { ■ ■ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㅁ■■■■■ロロ } \\
& \text { ■■■■■■ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㅁ } \\
& \text { ■■■■■■■■■■■ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㅁ■■■ }
\end{aligned}
$$

> ㅁㅁ
> $\square \square \square$
> ㅁㅁ
> $\square \square \square$
> ■■ ■
> - - -
> ㅁㅁㅁ
> ㅁ■
> ■ -
> ㅁㅁ
> ㅁㅁ
> ■■■
> ■ ■ ■
> ㅍㅁ
> - \quad ■
> (- ■ - ■ -
> ㅁ믐
> -
> _

Fisi came fimm.
COLOR FILM contains three layers of emulsion which directly record red, green, and blue light.

Then came digital.
TYPICAL DIGITAL SENSORS have just one layer of pixels and capture only part of the color.

Now there's Foveon X3.
FOVEON X3 direct image sensors have three layers of pixels which directly capture all of the color.

Color spectrum $\mathrm{S}(\lambda)$

color matching functions for the RGB primaries

color matching functions for the CIE XYZ primaries

[^0]: ${ }^{1}$ Data tables can downloaded from http://www.cvrl.org

