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LECTURE PLAN

� Penalties and probabilities which do not suffice for Bayesian task.

� Task formulation of prototype non-Bayesian tasks.

� Unified formalism leading to a solution—the pair of dual tasks of linear programming.

� Solution to non-Bayesian tasks.
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DEFINITION OF THE BAYESIAN TASK

Bayesian task of statistical decision making seeks

for sets X, K and D, function pXK : X ×K → R and function W : K ×D → R

a strategy Q : X → D which minimizes the Bayesian risk

R(Q) =
∑
x∈X

∑
k∈K

pXK(x, k) W (k, Q(x)) .

The solution to the Bayesian task is the Bayesian strategy Q minimizing the risk.

Despite the generality of Bayesian approach there are many tasks which cannot be expressed
within Bayesian framework. Why?

Penalty function does not assume values from the totally ordered set.

A priori probabilities pK(k), k ∈ K, are not known or cannot be known because k is not a
random event.
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PROBLEMS DUE TO PENALTY FUNCTION

‘Minimisation of the mathematical expectation of the penalty’ requires that

the penalty assumes the value in the totally ordered set (by relation < or ≥)

and multiplication by a real number and addition are defined.

An example—Russian fairy tales hero

When he turns to the left, he loses his horse, when he turns to the right,
he loses his sword, and if he turns back, he loses his beloved girl.

Is the sum of p1 horses and p2 swords is less or more than p3 beloved
girls?

� Often various losses cannot be measured by the same unit even in one

application.

� Penalty for false positive (false alarm) and false negative (overlooked

danger) might be incomparable.
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A PRIORI PROBABILITY OF SITUATIONS

It can be difficult to find probabilities pK(k), k ∈ K,

which are needed for Bayesian solution.

Reasons:

1. Hidden state is random but pK(k), k ∈ K, are unknown. An object has

not been analysed sufficiently. Two options:

(a) Formulate the task not in the Bayesian framework but in another

one that does not require statistical properties of the object which

are unknown.

(b) She or he will start analysing the object thoroughly and gets a
priori probabilities which are inevitable for the Bayesian solution.

2. Hidden state is not random and that is why the a priori probabilities

pK(k), k ∈ K, do not exist and thus it is impossible to discover them by

an arbitrary detailed exploration of the object. Non-Bayesian methods

must be used.
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AN EXAMPLE—ENEMY OF ALLIED
AIRPLANE?

Observation x describes the observed airplane.

Hidden state

{
k = 1 allied airplane

k = 2 enemy airplane

� The conditional probability pX|K(x|k) can depend on the observation x

in a complicated manner but it exists and describes dependence of the

observation x on the situation k correctly.

� A priori probabilities pK(k) are not known and even cannot be known

in principle because it is impossible to say about any number α,

0 ≤ α ≤ 1, that α is the probability of occurrence of an enemy plane.

� Consequently pK(k) do not exist since the frequency of experiment

result does not converge to any number which we are allowed to call

probability. k is not a random event.

http://cmp.felk.cvut.cz


6/27
BEWARE OF A PSEUDOSOLUTION

Refers to the airplane example.

� If a priori probabilities are unknown the situation is avoided by

supposing that a priori probabilities are the same for all possible

situations, e.g., the occurrence of an enemy plane has the same

probability as the occurrence of an allied one.

� It is clear that it does not correspond to the reality even if we assume

that an occurrence of a plane is a random event.

� Missing logical arguments are quickly substituted by a pseudo-argument

by referencing, e.g., to C. Shannon thanks to the generally known

property that an uniform probability distribution has the highest entropy.

� It happens even if this result does not concern the studied problem in

any way.
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CONDITIONAL PROBABILITIES OF
OBSERVATIONS

Motivating example—recognizing characters written by 3 persons

X - a set of pictures of written characters.

k - letter name (label), k ∈ K.

z - z ∈ Z = {1, 2, 3} identifies the writer (this info is not known =

unobservable intervention).

Task: Which letter is written in the picture x?

We can talk about the penalty function W (k, d) and a priori probabilities

pK(k) of the individual letters.

We cannot talk about conditional probabilities pX|K(x | k) because the

appearance of a letter x depends not only on the letter label but also on a

non-random intervention (i.e., who wrote it).
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EXAMPLE—recognizing characters written by 3 persons (2)

� We can speak only about conditional probabilities pX|K,Z(x | k, z),
i.e., how a character looks like if it was written by a certain person.

� If the intervention z would be random and pZ(z) would be known for

each z then it would be possible to speak also about probabilities

pX|K(x | k) =
3∑

z=1

pZ(z)pX|K,Z(x | k, z) .

� However, we do not know how often it will be necessary to recognise

pictures written by this or that person.

� Under such uncertain statistical conditions an algorithm ought to be

created that will secure the required recognition quality of pictures

independently on the fact who wrote the letter. The concept of a priori
probabilities pZ(z) of the variable z cannot be used because z is not

random and a probability is not defined for it.
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FORMULATIONS OF NON-BAYESIAN TASKS
INTRODUCTION

� Let us introduce several known non-Bayesian tasks (and

several new modifications to them).

� The whole class of non-Bayesian tasks has common

features.

� There is one formalism for expressing tasks and their

solution (dual tasks of linear programming).

� Similarly as for Bayesian tasks—strategy divides the space

of probabilities into convex cones.
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NEYMAN–PEARSON TASK (1)

� Observation x ∈ X, two states: k = 1 (normal), k = 2
(dangerous).

� The probability distribution of the observation x depends

on the state k to which the object belongs. pX|K(x | k),
x ∈ X, k ∈ K are known.

� Given observation x, the task is to decide if the object is in

the normal or dangerous state.

� The set X is to be divided into two such subsets X1

(normal states) and X2 (dangerous states), X = X1 ∪X2.

http://cmp.felk.cvut.cz
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NEYMAN–PEARSON TASK (2)

The observation x can belong to both states

⇒ there is no faultless strategy.

The strategy is characterised by two numbers:

� Probability of the false positive (false alarm)

=
∑

x∈X2

pX|K(x | 1).

� Probability of the false negative (overlooked danger)

=
∑

x∈X1

pX|K(x | 2).

http://cmp.felk.cvut.cz
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NEYMAN–PEARSON TASK (3)

A strategy is sought in the Neyman–Pearson task, i.e.,

a decomposition of X into X1 ⊂ X and X2 ⊂ X, X1 ∩X2 = ∅, that:

1. The conditional probability of the false negative is not larger than a

predefined value ε. ∑
x∈X1

pX|K(x | 2) ≤ ε .

2. A strategy has to have minimal conditional probability of the false

positive. ∑
x∈X2

pX|K(x | 1)

under the conditions∑
x∈X1

pX|K(x | 2) ≤ ε , X1 ∩X2 = ∅, X1 ∪X2 = X .

http://cmp.felk.cvut.cz
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NEYMAN–PEARSON TASK (4)

The fundamental result of Neyman–Pearson (1928, 1933) says:

For optimally separated X1 and X2 holds that a threshold value θ exist that

each observation x ∈ X for which the likelihood ratio

pX|K(x | 1)
pX|K(x | 2)

< θ

belongs to the set X2 and otherwise x ∈ X1.

Let us put the case of equality aside for pragmatic reasons.
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GENERALISED NEYMAN-PEARSON TASK
FOR TWO DANGEROUS STATES

k = 1 corresponds to the set X1;

k = 2 or k = 3 correspond to the set X23.

Seeking a strategy with the conditional probability of the false positives

(overlooked dangerous states) both k = 2 and k = 3 is not larger than the

beforehand given value.

Simultaneously, the strategy minimises the false negatives (false alarms),∑
x∈X23

pX|K(x | 1) under conditions

∑
x∈X1

pX|K(x | 2) ≤ ε ,
∑

x∈X1

pX|K(x | 3) ≤ ε , X1 ∩X23 = ∅ , X1 ∪X23 = X .

The formulated optimisation task solved later in a single constructive
framework.
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MINIMAX TASK

Observations X are decomposed into subsets X(k), k ∈ K,

such that they minimise the number maxk∈K ω(k).

Consider the following situation. Customer demands in advance that the PR

algorithm will be evaluated by two tests:

Preliminary test (performed by the customer himself) checks the

probability of a wrong decision ω(k) was for all states k.

The customer selects the worst state k∗ = argmaxk∈K ω(k).

Final test checks only those objects are checked that are in the worst state.

The result of the final test will be written in the protocol and the final

evaluation depends on the protocol content. The algorithm designer

aims to achieve the best result of the final test.

The problem has not been widely known for the more general case, i.e., for

the arbitrary number of object states.

http://cmp.felk.cvut.cz
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WALD TASK (motivation)

� A tiny part of Wald sequential analysis (1947).

� Neyman task lacks symmetry with respect to states of the recognized

object. The conditional probability of the false negative (overlooked

danger) must be small, which is the principal requirement.

� The conditional probability of the false positive (false alarm) is a

subsidiary requirement. It can be only demanded to be as small as

possible even if this minimum can be even big.

� It would be excellent if such a strategy were found for which both

probabilities would not exceed a predefined value ε.

� These demands can be antagonistic and that is why the task could not

be accomplished by using such a formulation.

http://cmp.felk.cvut.cz
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WALD TASK (2)

classification in three subsets X0, X1 and X2 with the following

meaning:

� if x ∈ X1, then k = 1 is chosen;

� if x ∈ X2, then k = 2 is chosen; and finally

� if x ∈ X0 it is decided that the observation x does not

provide enough information for a safe decision about the

state k.

http://cmp.felk.cvut.cz
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WALD TASK (3)

A strategy of this kind will be characterised by four numbers:

ω(1) is a conditional probability of a wrong decision about the

state k = 1,

ω(1) =
∑
x∈X2

pX|K(x | 1) ;

ω(2) is a conditional probability of a wrong decision about the

state k = 2,

ω(2) =
∑
x∈X1

pX|K(x | 2) ;

http://cmp.felk.cvut.cz
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WALD TASK (4)

χ(1) is a conditional probability of a indecisive situation under

the condition that the object is in the state k = 1,

χ(1) =
∑
x∈X0

pX|K(x | 1) ;

χ(2) is a conditional probability of the indecisive situation

under the condition that the object is in the state k = 2,

χ(2) =
∑
x∈X0

pX|K(x | 2) .

http://cmp.felk.cvut.cz
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WALD TASK (5)

� For such strategies, the requirements

ω(1) ≤ ε and ω(2) ≤ ε

are not contradictory for an arbitrary non-negative value ε

because the strategy X0 = X, X1 = ∅, X2 = ∅ belongs to

the class of allowed strategies too.

� Each strategy fulfilling ω(1) ≤ ε and ω(2) ≤ ε is

characterised by how often the strategy is reluctant to

decide, i.e., by the number max
(
χ(1), χ(2)

)
.

� Strategy which minimizes max
(
χ(1), χ(2)

)
is sought.

http://cmp.felk.cvut.cz
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WALD TASK (6)

Solution (without proof) of this task for two states only is based

on the calculation of the likelihood ratio

γ(x) =
pX|K(x | 1)
pX|K(x | 2)

.

Based on comparison to 2 thresholds θ1, θ2, θ1 ≤ θ2 it is decided

for class 1, class 2 or the solution is undecided.

In the SH10 book, there the generalziation for > 2 states is

given.
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LINNIK TASKS = DECISIONS WITH
NON-RANDOM INTERVENTIONS

� In previous non-Bayesian tasks, either the penalty function

or a priori probabilities of the states don’t make sense.

� In Linnik tasks, even the conditional probabilities

pX|K(x | k) do not exist.

� Due to Russian mathematician J.V. Linnik from 1966.

� Random observation x depends on the object state and on

an additional unobservable parameter z. The user is not

interested in z and thus it need not be estimated. However,

the parameter z must be taken into account because

conditional probabilities pX|K(x | k) are not defined.

� Conditional probabilities pX|K,Z(x | k, z) do exist.

http://cmp.felk.cvut.cz
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LINNIK TASKS (2)

� Other names used for Linnik tasks:

• Statistical decisions with non-random interventions.

• Evaluations of complex hypotheses.

� Let us mention two examples from many possibilities:

• Testing of complex hypotheses with random state and

with non-random intervention

• Testing of complex hypotheses with non-random state

and with non-random interventions.

http://cmp.felk.cvut.cz
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LINNIK TASK WITH RANDOM STATE AND
NON-RANDOM INTERVENTIONS (1)

� X, K, Z are finite sets of possible observation x, state k

and intervention z.

� pK(k) be the a priori probability of the state k.

pX|K,Z(x | k, z) be the conditional probability of the

observation x under the condition of the state k and

intervention z.

� X(k), k ∈ K decomposes X according to some strategy

determining states k.

The probability of the incorrect decision (quality) depends

on z

ω(z) =
∑
k∈K

pK(k)
∑

x/∈X(k)

pX|K,Z(x | k, z) .
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LINNIK TASK WITH RANDOM STATE AND
NON-RANDOM INTERVENTIONS (2)

� The quality ω∗ of a strategy (X(k), k ∈ K) is defined as

the probability of the incorrect decision obtained in the

case of the worst intervention z for this strategy, that is

ω∗ = max
z∈Z

ω(z) .

� ω∗ is minimised, i.e.,(
X∗(k), k ∈ K

)
= argmin

(X(k),k∈K)
max
z∈Z

∑
k∈K

pK(k)
∑

x/∈X(k)

pX|K,Z(x | k, z).

http://cmp.felk.cvut.cz
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LINNIK TASK WITH NON-RANDOM STATE
AND NON-RANDOM INTERVENTIONS (1)

� Neither the state k nor intervention z can be considered as

a random variable and consequently a priori probabilities

pK(k) are not defined.

� Quality ω depends not only on the intervention z but also

on the state k

ω(k, z) =
∑

x/∈X(k)

pX|K,Z(x | k, z) .
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LINNIK TASK WITH NON-RANDOM STATE
AND NON-RANDOM INTERVENTIONS (2)

� The quality ω∗

ω∗ = max
k∈K

max
z∈Z

ω(k, z) ,

� The task is formulated as a search for the best strategy in

this sense, i.e., as a search for decomposition(
X∗(k), k ∈ K

)
= argmin

(X(k),k∈K)
max
k∈K

max
z∈Z

∑
x/∈X(k)

pX|K,Z(x | k, z).

http://cmp.felk.cvut.cz

