
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY

R
E
S
E
A
R
C
H

R
E
P
O

R
T

IS
S
N

12
13

-2
36

5

NIFTi Lidar-Camera Calibration
Vladimı́r Kubelka and Tomáš Svoboda

kubelvla@fel.cvut.cz, svoboda@cmp.felk.cvut.cz

CTU–CMP–2011–15

December 13, 2011

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Kubelka-TR-2011-15.pdf

This work was supported by EC project FP7-ICT-247870 NIFTi.
Any opinions expressed in this paper do not necessarily reflect the
views of the European Community. The Community is not liable

for any use that may be made of the information contained herein.

Research Reports of CMP, Czech Technical University in Prague, No. 15, 2011

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

NIFTi Lidar-Camera Calibration

Vladimı́r Kubelka and Tomáš Svoboda

December 13, 2011

Abstract

The NIFTi robot is equipped – among others – with a rotating
laser scanner and an omnidirectional camera. This paper describes
a practical approach for mutual calibration of the sensors. We make
use of few publicly available packages and add few utilities for data
conversion. A planar checker board pattern is shown at several 3D
positions to the laser sensor and the camera simultaneously. Necessary
correspondences between Lidar 3D points and images are assigned
manually. The procedure yields a complete geometric calibration of
the camera and transformation between the camera and the Lidar
coordinate system.

1 Introduction

NIFTi project robot is – among others – equipped with a lidar and an om-
nicamera. The omnicamera is composed of 6 wide-angle cameras aligned to
cover space around the robot, see Fig. 1. The output of each camera is an im-
age composed of pixels xp = [u, v]T , which correspond to 3D points observed
by a single camera. Let XC = [xC , yC , zC]T be such a point in a coordi-
nate frame originating in the camera viewpoint and XC

′ = 1
‖XC‖

[xC , yC , zC]T

a unit vector pointing from the origin to XC . A relation between XC
′ and

the corresponding pixel can be described by a function F :

xp = F (XC
′) (1)

XC
′ = F−1(xp) (2)

The function F depends on the camera and it encapsulates a transformation
process precisely described in [1], in the section Description of the calibration
parameters and summarized in [3], pages 9 and 10. The lidar (also in Fig. 1)
provides 3D scans of the robot surroundings in a form of a pointcloud, i.e.

1

Figure 1: An omnicamera and a lidar attached to the NIFTi robot.

a set of 3D points XL = [xL, yL, zL] expressed in the robot coordinate frame
defined by the robot manufacturer. The two coordinate frames (of the camera
and of the robot) do not coincide; thus, for a single point observed both by
the lidar and by the camera applies

XL 6= XC (3)

However, there is a rigid transformation between these two frames, which
consists of rotation R and translation t and corresponds to the physical
attachment of the camera relatively to the origin of the robot coordinate
frame. Each point can be transformed simply as follows

XC = RXL + t (4)

XL = R−1(XC − t) (5)

Basic transformation is provided by the Robot Operating System; is is prob-
ably based on the known physical dimensions of the robot. Thus, it can’t
grasp alignment imperfections of the omnicamera or lidar during robot as-
sembly nor future manipulation (e.g. part replacement). For a more precise

2

3D computation, we need a better calibration procedure. We proposed use of
the Laser-Camera Calibration Toolbox for MATLAB [3]; which is available
online and also provided with this software. The toolbox cooperates with
the Camera Calibration Toolbox [1], which provides data necessary for the
calibration process.

The main idea of the calibration is a simultaneous observation of a checker-
board by the lidar and by a single camera. Under condition of taking several
scans (15 advised) of the checkerboard at various orientations and distances –
resulting into a set of 3D scans and camera images – the Camera Calibration
Toolbox can determine the checkerboard plane normal and distance from the
camera coordinate frame origin. The checkerboard plane be described by a
plane equation

θT
CXC − αC = 0 (6)

where θC is the normal of the plane and αC is the distance from the camera
frame origin. The Laser-Camera Calibration toolbox consequently lets user
manually select 3D scan points lying in the checkerboard plane and deter-
mines the checkerboard plane normal and distance from the robot coordinate
frame origin:

θT
LxL − αL = 0 (7)

Finally, the calibration process evaluates translation t minimizing a difference
between αC and αL for each plane using the least squares method. Rotation
R is computed similarly minimizing a difference between θC and θL for each
plane as well. The rotation R and translation t are subsequently refined
minimizing an objective function of distance from the user selected 3D scan
points to corresponding planes. Theoretically, a sufficient number of scan
pairs would be 3; however, [3] advices taking at least 15 scan pairs which
cover as many calibration plane orientations as possible in various distances.

We extended the procedure by a set of utilities for data processing as well
as by a validation utility. In the current version of [3], a verification function
is not implemented yet. Our validation utility transforms laser points to the
camera frame and computes distance of each point from the corresponding
plane. A histogram of all distances is plotted for each lidar-camera pair.

This report is composed of the following sections: The second section
describes ways of installing necessary toolboxes and gives a reference to their
documentation. It also mentions a modification to the [3], which allows
usage of our validation utility. The third section is meant to be a step-by-
step instruction set describing the calibration process. The fourth section
describes all utilities provided in our software and finally, the fifth section
introduces our validation utility.

3

2 Camera and Laser-Camera

Calibration MATLAB Toolboxes

The Camera Calibration Toolbox provides the calibration plane normals and
distances from coordinate frame origin, which are necessary for the Laser-
Camera Calibration Toolbox. We use a version from July 27, 2010, which can
be downloaded from its author web page [1]. To install the toolbox, follow
instructions on the web page. It is a standard procedure; move a directory
with the toolbox to your toolbox directory present in the Matlab main folder.
Then add its path to the Matlab path list. The GUI is started by typing
calib or calib gui. A thorough camera calibration tutorial is available on the
web page and it is strongly recommended to read it through and test it using
a set of calibration images available on the web page as well.

The Laser-Camera Calibration toolbox installation is very similar to the
previous one. It is described in [4]. If it is desired to verify results, the
toolbox offers a point cloud colourisation based on the corresponding im-
age. It may serve as a basic result verification. However, to statistically
capture the calibration accuracy, we provide a simple validation utility. For
it to work properly, there is one minor modification of the Laser-Camera
Toolbox to be done after toolbox installation. It concerns rewriting m-file se-
lect from range fig.m with our version (located in folder laser lidar toolbox mod),
which adds several code lines making the toolbox save selected laser points
to .mat files. It is the only way to extract this information, the toolbox im-
mediately computes plane coordinates and doesn’t store the sets of selected
points. A step-by-step tutorial concerning the Laser-Camera Calibration is
described in [4].

3 Calibration Procedure

The calibration procedure can be divided into three main steps:

1. Data acquisition concerns series of checkerboard scans using CTU Data
Logger Node for data collection and data conversion into appropriate
formats. Capturing of a laser-camera scan is shown in Fig. 2 and dis-
cussed in detail in subsection 3.1.

2. Camera Calibration is done using The Camera Calibration Toolbox
and results in Calib Results.mat file, which is needed for the next step.
A part of the process is show in Fig. 2 and discussed in subsection 3.2.

4

X

Y
O

The red crosses should be close to the image corners

100 200 300 400 500 600

100

200

300

400

500

600

700

800

Figure 2: A single scan pair acquisition(left), checkerboard corners extraction
(right)

3. Laser-Camera Calibration requires selection of sets of laser points lying
in the checkerboard plane (Fig. 3), which is followed by the transfor-
mation matrix evaluation. This part is discussed in subsection 3.3.

3.1 Data acquisition

To perform a laser-camera scan acquisition, it is necessary to print a checker-
board pattern (the bigger the better, our was 500 x 650 mm) and fix it to
a planar surface. There are two possible approaches, the first is to fix the
pattern to a solid pad and change its proximity and orientation to the robot
while taking scans; and the second one is to fix the pattern to the wall and
move the robot around while taking scans from various positions. We have
tested the first method because the actual version of the pointcloud produc-
ing ROS node took in account odometry, so the pointcloud was transformed
relative to the origin of the odometry frame. The current version of the
node has the ability to create pointclouds fixed to the robot frame; thus, the
second approach is also possible.

While taking the scans, it is advised to stow the robot flippers the way
lidar cannot see them (not the way showed in Fig. 2, where the flippers are not
stowed enough and the lidar scans them instead of interesting surroundings)
. The relative position of the checkerboard to the robot should cover various
planes in various distances, including steep angles assuring accurate rotation
matrix estimation; however, it must be possible for the Camera Calibration
Toolbox to recognize the checkerboard pattern. It is shown in Fig. 4; the
camera calibration was not able to detect pattern correctly in the scan on
the right. The condition of various calibration plane orientations should be
especially considered with the checkerboard fixed and robot moving - utilize

5

Figure 3: A checkerboard plane selection

the flippers to achieve more viewing angles.
In the Laser-Camera Calibration toolbox documentation, it is advised to

take approximately 15 scans. For the initial calibration, we took 50 scans
expecting some of them to be excluded. Finally, the calibration was done
using 32 scans (it is for a further examination to determine optimal number
of scans, because to acquire and process this amount of scans is considerably
time-consuming). The entire checkerboard pattern must be visible in the
camera image, this has shown to be tricky in the case of camera 4 because
of the robot caterpillar tracks and rotating lidar. The tracks must be taken
in account while positioning the board and the image has to be taken in the
moment when the lidar reaches its extreme position so it doesn’t block the
view. Because of the viewing angle of the cameras, it is advised to choose
positions of the checkerboard close to the robot, the size of the checkerboard
in the camera image gets smaller very quickly with the increasing distance.
In Fig. 5, there are all 32 planes used for calibration plotted in the camera
coordinate frame.

3.1.1 CTU Data Logger Utilization

The procedure is straightforward:

1. Turn the robot on and let it boot up

6

Figure 4: Two checkerboard scans, one used for the final calibration (left),
second excluded for an angle too steep for pattern extraction (right)

2. Open a new terminal (directly on the robot or via ssh)

3. Launch the CTU Data Logger node, type: roslaunch ctu data logger
ctu data logger.launch, wait several seconds until the launch file has
launched all the nodes

4. Enable rotation of the 3D scanner using the remote controller: hold
button 2 and set the rotation speed of the scanner using left and right
cross-buttons. The rotation rate should be 180◦ per 10 seconds, the
lower the rate is, the greater number of scanned points is saved making
the calibration more reliable.

5. Launch the Laser Assembler node, type: roslaunch nifti laser assembler
nifti laser assembler fixed frame.launch. Note that this is a modified
version of the original launch file disabling an odometry transformation
of the 3D scan. It is provided as a part of our software.

6. Press the button #3 on the remote to save a single scan-pair.

7. Copy the new files from the robot to your local folder. The files location
is specified in the Logger launch file: ctu data logger.launch

7

−500

0

500
0

500

1000

−200

0

200

400

600

800

1112

14

43
42

46

10

3435

15

36

41

29

9

2

2737

40

47

Extrinsic parameters (camera−centered)

4

33

24

5
18

38

48

32

23

20

X
c

49

Z
c

22

30

Y
c

O
c

Figure 5: Example of plane positions during calibration, showed in the cam-
era coordinate frame, axes unit is one millimetre, numbers correspond to
scan filenames

3.1.2 Data Formatting

After completing the checkerboard scanning procedure, the user should copy
files he acquired to a dedicated folder; possibly backup the files somewhere
else as well; and do following:

• File Indexing should be modified the way the first number is 1. MAT-
LAB utilities we provide will start searching for files with numbers from
1 to the maximal entered filenumber. This is to preserve MATLAB in-
dexing conventions. If the user’s dataset starts with 0, just rename the
two files (pointcloud and image) to the highest number plus one.

• CTU Data Logger PointCloud Format needs to be converted into easily
accessible .asc format. To do this, we provide prcs point cloud file.exe
utility. In the Windows environment, just select all 3D scan files to
be converted (they have no suffix) and drag them over the .exe file.
The utility will ask the user to choose to keep all points or to crop
points lying on the robot hull, the second choice is advised. Then, the

8

application will create two new files for each 3D scan, .asc format is to
be kept and .pcd may be deleted as it is intended for future work with
PCL library.

• Camera Images must be saved in a format recognised by the Camera
Calibration Toolbox. For the complete list, refer to the toolbox manual
provided. There is a possibility in the ROS environment to compactly
save all 6 images of the omnicamera to a single file (as in Fig. 14).
Provided MATLAB utility split omni pic.m will split these files into
single camera images and save them as cam# #.bmp. The first num-
ber denotes the camera, the second one denotes the scan index. To
use the utility, browse into the calibration folder under the MATLAB
environment and type split omni pic.

• 3D scan .asc files: the Laser-Camera Calibration toolbox was designed
for a slightly different type of a lidar, a 3D scan produced by the NIFTi
robot lidar surrounds coordinate frame origin instead of seeing forward
only. This complicates the depth-view visualization necessary for man-
ual plane selection. Thus, we provide a simple MATLAB script, that
crops 3D scan to the viewing angle of the appropriate camera. As for all
our MATLAB utilities, browse into the calibration folder in the MAT-
LAB environment, type import and crop and follow the instructions.
The script will create .xyz files corresponding to the original ones.

In the end of this calibration phase, the user should possess a set of 3D
scan files in the .xyz format indexed from 1 as well as a set of images from
the calibrated camera index correspondingly to the 3D scan file set. It is nec-
essary that all files are named as something#.xyz and somethingElse#.bmp
or another allowed image suffix.

3.1.3 Data Formatting Process Demonstration

This section demonstrates the data processing step-by-step. The dataset
was reduced to 8 scan pairs to decrease time demands of this demonstration,
the dataset is provided in the directory named demonstration and covers
calibration of the camera #4:

We created a new directory in our MATLAB workspace and copied files
provided by the CTU Data Logger into the folder. The second step was to
convert 3D scan files into the .asc format. We did that by dragging the files
over the prcs point cloud file.exe and choosing to crop the points near origin
by typing a and pressing enter (see Fig. 6 and 7). Asc. and .pcd files were
created, the .pcd could be deleted and the original files were moved to a new

9

directory named bck (as Backup). After these steps, there should have been
only .png image files and the new .asc files (see Fig. 8).

Figure 6: Dragging CTU Data Logger 3D scan files over the executable

The rest of the calibration process involved MATLAB, we navigated to
the directory containing the calibration files as shown in Fig. 9. The first
step in the MATLAB was to extract camera 4 images from the .png files.
We did that by using the split omni pic.m script:

>> split_omni_pic

Enter omnicamera picture file basename (without number): image

Basename: image

Enter omnicamera filename suffix (without .): png

Suffix: png

Enter the highest filename number to process: 48

File image1.png not found, skipping.

File image2.png not found, skipping.

File image3.png not found, skipping.

File image4.png not found, skipping.

Warning: Image is too big to fit on screen; displaying at 67%

> In imuitools\private\initSize at 73

In imshow at 262

In splitOmniPic at 66

Saving cam0_5.bmp...

The script split the images into several parts, we chose only cam4 files
and deleted the rest since we were seeking for transformation between the
camera 4 and the lidar frames. After this step, the directory looked like

10

Figure 7: Converting the 3D scan files

Fig. 10. The next step was to crop 3D scans into the view angle of the forth
camera by typing

>> import_and_crop

Enter the camera number (0, 1, 2, 3 or 4): 4

Enter basename of the lidar file (without number or suffix): pcl

Basename: pcl

Enter lidar file suffix (without .): asc

Suffix: asc

Enter the highest file number: 48

File pcl1.asc not found, skipping.

File pcl2.asc not found, skipping...

and deleting the .asc files leaving the new .xyz cropped 3D scan files; see
Fig. 11. After these steps, we moved to a next phase involving the calibration
toolboxes.

11

Figure 8: Original files backed up, .pcd files deleted and .asc files ready for
the next step

3.2 Camera Calibration

With the Camera Calibration Toolbox installed, the camera calibration should
follow the provided tutorial. The process consists of an initial manual checker-
board corners extraction and subsequent parameters tuning and launching
calibration process. In the corner extraction process, the user is asked if
satisfied with the initial distortion guess. For the ladybug camera, a value of
k = −0.2 was found satisfactory for the most of images. The calibration can
be finished when the user founds corners reprojection error satisfactory. This
can be achieved by changing parameters available or suppressing problematic
images. It is not mandatory that all scan images are used, the Laser-Camera
Calibration Toolbox takes this possibility in account.

The calibration is completed by saving results into Calib results.mat file.
A Calib results.m file is also created; yet, it is not necessary for further steps.

3.3 Laser-Camera Calibration

After installation of the Laser-Camera Calibration Toolbox, make sure that
the file select from range fig.m (in laser lidar toolbox mod folder) has been

12

Figure 9: MATLAB environment and the current folder with calibration files

13

Figure 10: Images split and all but cam4 deleted.

replaced by our version. This makes further calibration validation possible.

The toolbox is launched by typing lasercamcalib. It is also GUI based and
the whole procedure is described in [4]. The user needs only the Calib results.mat
file and all the .xyz files that were just created. The actual version launched
in MATLAB R2009a throws an error after clicking the Select planes but-
ton in the main menu. It can be ignored. The toolbox creates new se-
lected plane of something#.xyz files during plane selection as a result of our
modification. Be patient, this may cause the GUI be a little slower after
selecting plane.

The plane selection tool offers possibility to visualize depth range between
two distance values set by sliders. Default values are 1 and 10 meters. They
should be set so only the checkerboard is visible (as well as everything in the
same range from the origin). This makes the selection easier. The difference
is shown in Fig. 12 and Fig. 13.

After selecting checkerboard planes, the calibration is finished by clicking
on the Calibration button and saving the result into two .m files. The result
can be preliminarily validated by colourisation of a 3D scan. This function
of the Laser-Camera Calibration Toolbox becomes available after finishing
the calibration. Resulting .wrl file (VRML version 1.0) can be observed in

14

Figure 11: The directory ready for the Camera Calibration Toolbox

Cortona 3D viewer. Because of the format version, it may be necessary to
translate it to VRML 2.0, which is required by certain 3D viewers (e.g. [2]).

In this moment, the calibration is finished and the resulting rotation a
translation is saved in the two .m files created by the toolbox. Several addi-
tional selected plane of something#.xyz files have been created, store them
for further calibration verification.

15

Figure 12: Example of a plane selection tool. NEAR and FAR sliders are set
to their default values of 1 and 10 meters. In this case, different values are
obviously more appropriate.

16

Figure 13: Example of a plane selection tool after modifying FAR and NEAR
values according to the distance of the checkerboard.

17

4 Data Utilities

To make calibration easier, we have programmed several utilities to process
captured data. Except one, all of them are MATLAB scripts. To be able to
launch them from any directory in the MATLAB environment, copy direc-
tories camUtils, laserUtils and validation to a directory of your choice and
add a path to this directory to your MATLAB path list. A more detailed
description of data processing utilities follows:

prcs point cloud file is an console application converting files created by
CTU Data Logger Node (Appendix A) containing 3D scans into a sim-
ple ASCII .asc and .pcd format, cropping useful parts of the 3D scans
and saving them to the folder with the input files. The application ex-
pects filenames of the input files as launch parameters. After starting
the application, the user is asked to enter n in the case he wants to
preserve all points of the cloud. Any other input will cause the appli-
cation to crop out all points closer to the coordinate frame origin than
a set threshold. This was found useful, partly because the scan of the
robot itself is useless, partly because the incriminated area concerns
significant amount of the laser points and thus increasing the 3D scan
file size. A source code for a Linux and Win32 environment is available.
The procedure concerning CTU Data Logger Node and scan acquisition
will be described in Appendix A. The .pcd format is for future work
with the PCL library (http://pointclouds.org).

In the Win32 environment, it is possible to simply select files to be
processed and drag them to the executable. The system automati-
cally provides filenames as parameters, so the user has to only choose
whether he wants to crop robot surrounding or not. The process con-
tinues automatically. If the user prefers command line or works in a
Linux environment, the filenames have to be passed as input param-
eters manually (if the 3D scan files are located in the same directory
as the executable, only filename is to be passed, otherwise, a whole
path to the file has to be passed as a launch parameter). The following
command line printout demonstrates the usage:

C:\Users\Vlada\Documents\Nifti\ProcessCloud>dir

Volume in drive C has no label.

Volume Serial Number is 34F8-22E1

Directory of C:\Users\Vlada\Documents\Nifti\ProcessCloud

18

28.09.2011 17:05 <DIR> .

28.09.2011 17:05 <DIR> ..

30.08.2011 15:34 15 668 093 pcl10

30.08.2011 15:35 15 707 138 pcl11

07.09.2011 13:18 33 280 prcs_point_cloud_file.exe

3 File(s) 31 408 511 bytes

2 Dir(s) 33 121 452 032 bytes free

C:\Users\Vlada\Documents\Nifti\ProcessCloud>prcs_point_cloud_file pcl10 pcl11

To keep pointclouds as they are, press ’n’ and Enter.

To leave out points inside sphere of x^2+y^2+z^2=0.2 [m];

press anything else and Enter

:a

CTU Logger PointCloud File: pcl10

Identificator of the files to be created: pcl10

File pcl10 opened, creating "pcl10.asc and pcl10.pcd

TimeStamp1 =1314711284

TimeStamp2 =888448257

Point cloud contains 249876 to be extrated,

robot points within sqrt(0.2) radius

will be cropped

Progress of .asc file %:

0 10 20 30 40 50 60 70 80 90 100 Copying data to .pcd file...

Done.

CTU Logger PointCloud File: pcl11

Identificator of the files to be created: pcl11

File pcl11 opened, creating "pcl11.asc and pcl11.pcd

TimeStamp1 =1314711357

TimeStamp2 =544467254

Point cloud contains 250506 to be extrated,

robot points within sqrt(0.2) radius

will be cropped

Progress of .asc file %:

0 10 20 30 40 50 60 70 80 90 100 Copying data to .pcd file...

Done.

import and crop.m is a Matlab script converting .asc files into .xyz files
ready for the Laser-Camera Calibration Toolbox. This script crops

19

points visible by a single camera (visibility determined approximately
by dividing 2π range around the robot to five parts corresponding to
the camera alignment) to allow the toolbox to visualize the pointcloud
properly. After running the script in the directory containing the input
files, the user is asked the number of the camera, the basename of the
.asc files (a part of its name without number or suffix), then its suffix
and the highest file number present. Then it proceeds through all .asc
files that fulfil the conditions as shown below:

>> import_and_crop

Enter the camera number (0, 1, 2, 3 or 4): 4

Enter basename of the lidar file (without number or suffix): pcl

Basename: pcl

Enter lidar file suffix (without .): asc

Suffix: asc

Enter the highest file number: 48

File pcl1.asc not found, skipping.

File pcl2.asc not found, skipping...

>>

ply to asc and pcd.m converts .ply pointcloud file format to .asc and .pcd
file formats. It was found useful since the application we used for
pointcloud manipulation (registering, transformations) – MeshLab [2]
– doesn’t export pointclouds to .asc format and there are problems
exporting to .wrl format. Therefore, we save the pointcloud in a .ply
format and convert it back to .asc with this script. In MATLAB, the
script is launched typing

>> ply_to_asc_and_pcd

and then choosing the .ply file in a GUI menu that appears. The output
files are created in the actual MATLAB directory.

split omni pic.m is a tool for splitting .png images composed of all 6 cam-
era views, which are one possibility of saving omnicamera output. The
script output format is a windows bitmap .bmp. An example is shown
in Fig. 14 and usage below:

>> split_omni_pic

Enter omnicamera picture file basename (without number): image

Basename: image

20

Enter omnicamera filename suffix (without .): png

Suffix: png

Enter the highest filename number to process: 5

Warning: Image is too big to fit on screen; displaying at 67%

> In imuitools\private\initSize at 73

In imshow at 262

In splitOmniPic at 66

Saving cam0_1.bmp

...

...

...

Saving cam4_4.bmp

Warning: Image is too big to fit on screen; displaying at 67%

> In imuitools\private\initSize at 73

In imshow at 262

In splitOmniPic at 66

Saving cam5_4.bmp

File image5.png not found, skipping.

Finished

5 Calibration Verification

Although the Laser-Camera Calibration Toolbox gui contains a Plot Error
button, that function has not been implemented yet. For a more rigorous
calibration error estimation than a 3D scan colourisation, we provide a verifi-
cation MATLAB utility which provides this functionality accessible through
gui (Fig. 15):

• CamError plots checkerboard corners reprojection error. It is the same
tool [1] provides. In the figure, clicking the left mouse button on a
reprojection error indicating cross makes the utility print originating
image and error details to the MATLAB command window. Clicking
the right mouse button terminates this picking mode. To use this
function, the user is asked the original Calib results.mat file exported
by the Camera Calibration Toolbox.

• CamPlanes presents extrinstic parameters of all used calibration planes
as a 3D plot. To run this function, the user has to provide the origi-
nal Calib results.mat file exported by the Camera Calibration Toolbox.
This function originates from [1] as well.

21

Figure 14: A single omnicamera scan saved as one image and a cropped view
(camera 4)

• RfError is the main verification tool. It transforms laser points ly-
ing in the calibration plane to the coordinate frame of a camera and
computes distance of each point from a corresponding calibration plane
obtained during camera calibration. Results are plotted as histograms
for each laser-camera pair (Fig. 16) and summarized in the last his-
togram plotted (Fig. 17). To use this function, the user is gradually
asked for three .mat files; one containing selected laser points, one de-
scribing the calibration planes and finally one containing the rotation
matrix and translation vector being verified. These files can be created
by provided MATLAB utilities:

– process laser points.m has to be launched in the folder containing
selected plane ofxyz files created during laser-camera calibra-
tion. After entering asked information, the utility creates the .mat
file.

22

Figure 15: Calibration error estimation tool gui providing the functionality.

– process cam calibration.m asks the user to enter the Calib results.mat
file created during camera calibration and outputs the RfError de-
manded .mat file.

– There is no utility to create a .mat file containing the rotation
matrix and translation vector since it is much faster to simply save
these two variables to a .mat file in the MATLAB environment
by selecting them both, right clicking on them and choosing Save
as..

23

−20 −10 0 10 20 30
0

20

40

60

80

100
#49: MEAN= 2.855 mm; DEV= 5.505 mm

Distance from calib. plane [mm]

N
u

m
b

e
r

o
f

p
o

in
ts

 [
/]

Figure 16: Histogram containing a single camera-laser pair distances between
a laser point and the corresponding calibration plane. DEV stands for a
standard deviation.

−200 0 200 400 600 800
0

5000

10000

15000
All: MEAN= −1.639 mm; Dev= 15.443 mm

Distance from calib. plane [mm]

N
u

m
b

e
r

o
f

p
o

in
ts

 [
/]

Figure 17: Histogram containing all distances between a laser point and the
corresponding calibration planes. DEV stands for a standard deviation.

24

Figure 18: Colourised 3D scan.

A 3D Scan Colourisation

The Laser-Camera Toolbox offers a possibility to colourise a 3D scan based
on the calibration results. This function can be ran immediately after finish-
ing the calibration or subsequently by loading the calibration results. The
procedure is described in [4]. If done properly, it should look like Fig. 18.

25

B Contents of the SVN Folder

This section describes a file structure of the calibration project SVN folder:

• calibration results contains results of a calibration process performed
on our NIFTi robot

– Calib Results.m is a MATLAB script file created by the camera
calibration toolbox. It describes camera #4 intrinsic parameters.

– Calib Results.mat is a MATLAB .mat file created by the cam-
era calibration toolbox. It contains a whole camera calibration
toolbox workspace after finishing the camera calibration.

– laser to cam4 transformation.m is a result of the laser-camera cal-
ibration toolbox procedure. It stores the rotation matrix and the
translation vector.

• camUtils contains a single file:

– split omni pic.m is the utility described in the section 4.

• demonstration contains example of files saved by the CTU Data Logger.
These files are utilized in section 3.1.3.

• documentation contains this document.

• laser lidar toolbox mod contains a single file:

– select from range fig.m replaces an original file in the laser-camera
calibration toolbox and enables further calibration verification.

• laserUtils contains MATLAB utilities working with 3D scans:

– import and crop.m loads a 3D scan in a .asc format and crops it
to view-range of a specified camera.

– ply to asc and pcd.m converts 3D scan formats according to its
name.

• prcs point cloud file win32 unix contains C++ source of the 3D scan
converting utility described in the section 4.

– CMakeLists.txt is a file necessary for application CMake in Linux
environment.

– prcs point cloud file.cpp is the source file. It is common for a
Win32 compilation as well as for a Linux compilation.

26

– readme.txt describes the compilation process for both systems
(Win32 and Linux).

• validation contains files of the MATLAB calibration verification utility
described in the section 5.

– LaserPoints contains a MATLAB utility converting a set of .xyz
files into one .mat file.

– PlaneCoordinates contains a MATLAB utility extracting plane
normals from a Calib Results.m file and saving them to a new
.mat file.

– tz2011 contains verification utility internal files.

– rfcamcal.m launches the MATLAB verification utility GUI.

– validate.m is another internal file.

27

References

[1] Jean-Yves Bouguet. Camera calibration toolbox for matlab. http:

//www.vision.caltech.edu/bouguetj/calib_doc/index.html, July
2010. Version: (27-July-2010).

[2] Guido Cignoni, Paolo; Ranzuglia. Meshlab. http://meshlab.

sourceforge.net/, February 2011.

[3] Ranjith Unnikrishnan. The laser-camera calibration toolbox. http:

//www.cs.cmu.edu/~ranjith/lcct.html, July 2011. Version 1.1
(11/10/2006).

[4] Ranjith Unnikrishnan and Martial Hebert. Fast extrinsic calibration of
a laser rangefinder to a camera. http://www.ri.cmu.edu/pub_files/

pub4/unnikrishnan_ranjith_2005_3/unnikr%ishnan_ranjith_2005_

3.pdf, July 2005.

28

