CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY IN PRAGUE

|_
0%
o
q
L]
%
—
<C
=
=
T
O
LL]
|_

Configuration space of the NIFTi
Robot

Toméas Nouza

nouzatol@fel.cvut.cz

September 30, 2013

Supervisor: Ing. Michal Reinstein, Ph.D.

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
Technicka 2, 166 27 Prague 6, Czech Republic
fax +420 22435 7385, phone +420 22435 7637, www: http://cmp.felk.cvut.cz

Configuration space of the NIFTi Robot

Tomas Nouza

September 30, 2013

Abstract

This document is a report from the summer internship at CMP at
CTU FEL from 24 June to 19 July 2013 (4 weeks). It describes the us-
age of the ROS (Robot Opearating System) [1] package arm_navigation
[2] for the detection of the free configuration space of the NIFTi [3]

robot.

Natural Humon-Robot
Cooperation in Dunamic
Eenvironments

::: ROS.org

Contents
1 Introduction

2 Arm navigation stack
2.1 Configuration
2.2 Environmental servero
2.3 Moving with the virtual robot

3 Flipper collision detection
3.1 Algorithm used

4 FEvaluation

1 Introduction

The NIFTi robot (on the Fig. 1) moves using two main belts and four smaller
belts which are used for easier obstacle traverse. These smaller belts (called
flippers) are mounted on the each end of the main belt and can be turned up
and down but they do not have enough power to raise the robot to stay only
on them. Currently the angle of the each flipper is set manually by the robot
operator. Automation of setting the flippers angle according to the terrain
is desirable because it reduces the robot operator work load during driving
of the robot and he can concentrate more on the scene around the robot.

Figure 1: The NIFTi robot

Before the robot is allowed to autonomously set any flipper to the desired
position, there must be confidence that this movement will not harm the
robot. There are two cases which must be prevented:

1. overload of the flipper motor which happens e.g. when the main track
is not in the contact with the floor

2. loss of the stability which leads to the robot turn over

This work aims to help with the implementation of the so called Adaptive
traversability in the meaning of predicting the impact of the robot body
movements. Firstly there was a research of the currently available working
ROS implementations which can be used, secondly there was implemented
simple ROS node for detecting the free manipulation space of the robot
flippers.

2 Arm navigation stack

The ROS stack arm navigation [2]| contains packages that permit collision-
free arm navigation can and since flipper is 1IDOF arm, it can be used.
Unfortunately it is deprecated and in the ROS Groovy version is replaced
with MoveIt! which is newly a core part of the ROS.

2.1 Configuration

To use the arm_navigation stack, there is some configuration to be done. To
make the configuration process easier, there is a wizard which needs only an
URDF file describing the robot. These wizard can be launched using:

roslaunch planning environment planning description_configura
tion_wizard.launch urdf _package:=<Your urdf package name> urdf_
path:=<relative path to the urdf file in your urdf package>

As an output from that wizard there will be created a new package con-
taining all the configuration files needed. More informations about the wizard
can be found in [4]. The important generated file later used in this work is
<robot_name> planning description.yaml. More informations about this
file and all others generated files can be found in [5].

2.2 Environmental server

All the movement planning is done using the environmental server. It is a
part of the planning environment and can be launched using:

roslaunch planning environment environment_server.launch

In this work, environment server is used to detect collision of the robot
with the collision map. The collision map is build from the poincloud2 mes-
sages using package octomap_server [6]. Usage of the octomap_server is
more documented on the https://cw.felk.cvut.cz/wiki/misc/projects/
nifti/sw/adaptive_traversability#occupancy_map

All the communication with the environment server is done using the ser-
vice /environment_server/set_planning scene_diff which can be called
like in the next example:

#define SERVICE = "/environment server/set_planning scene diff";
arm navigation msgs::GetPlanningScene: :Request req;
arm navigation msgs::GetPlanningScene: :Response res;

https://cw.felk.cvut.cz/wiki/misc/projects/nifti/sw/adaptive_traversability#occupancy_map
https://cw.felk.cvut.cz/wiki/misc/projects/nifti/sw/adaptive_traversability#occupancy_map

if (!ros::service::call(SERVICE, req, res)) {
ROS_WARN("Can’t get planning scene");
return -1;

Once the service is called, the environment server can be used to detect
the current state and collisions. For example this code will get the current
state of the robot saving the rotation of each joint as a std: :map

static planning models::KinematicState* state;
static planning environment::CollisionModels* collision models;
state = collision models->setPlanningScene(res.planning scene);

std: :map<std::string, double> state_vals;
state->getKinematicStateValues(state_vals);

Once the state is known, it can be easily modified. For example this code
will virtually turn the front right flipper 90° up:

state_vals["front right flipper_j"] -= 0.785;
state->setKinematicState(state_vals);

To detect the collisions there is a function:

std::vector<arm navigation msgs::ContactInformation> contacts;
collision models->getAllCollisionsForState(*state, contacts, 1);

The message for the arm navigation msgs: :ContactInformation is de-
fined as follows:

uint32 ROBOT_LINK=0
uint32 0BJECT=1
uint32 ATTACHED_BODY=2
std_msgsHeader header
uint32 seq

time stamp

string frame_id
geometry msgsPoint position
float64 x

float64 y

float64 z

geometry msgsVector3 normal
float64 x

float64 y

float64 z

float64 depth

string contact_body_1
string attached_body_1
uint32 body_type_1
string contact_body_2
string attached_body_2
uint32 body_type_2

Beside the information about the collision position there is also informa-
tion which part of the robot is in the collision and if it is a contact with the
environment or with another part of the robot (self-collision).

At the end, the cleaning can be done using the function:

collision models->revertPlanningScene(state);

2.3 Moving with the virtual robot

For moving with the mobile robot there is a virtual joint which connect the
robot body with the global coordination frame!. Turning the wheel of the
robot will not move it but only turn the wheel. Virtual joints names are in
the table 1. The rotation is defined by the quaternion notation.

Table 1: Names of the virtual joints

translation rotation

floating trans_x | floating rot_x
floating trans_y | floating rot_y
floating trans_z | floating rot_z
floating rot_w

The virtual NIFTi robot can also move with the following joints even not
all of them has motor and can be controlled in the real situation:

http://answers.ros.org/question/11534/arm-navigation-with-a-virtual-robot/
shows another approach but during testing it in this work the collision detection was not
properly working

http://answers.ros.org/question/11534/arm-navigation-with-a-virtual-robot/

laser_j

left_track_j
front_left flipper_j
rear_left flipper_j
right_track_j
front_right_flipper_j
rear_right_flipper_j

3 Flipper collision detection

Autonomous adaptive traversability is a hard task with lots of subtasks.
One on them is a detection of the free configuration space. This task was
implemented as a ROS service called flipper_configuration space. This
service receives 8 angles in radians as a float32 number which represents
an angle requirements for all four flippers for angle up and down from the
current flipper position. Output is also 8 angles which represents how much
can be each flipper turned before it hits some obstacle (e.g. floor). Maximum
returned angle is equal to the input one which means that the flipper can be
turned along the collision free trajectory. If the 0 is returned, it means that
the flipper is currently in or very close to a collision and can not be turned
in this direction. In real situation it can raise the robot over the obstacle or
simply chop down the grass but this decision is left for the higher cognition
functions of the robot.

3.1 Algorithm used

The detection process is simple using the environment server (see the section
2.2). The collision map is build from the pointcloud2 messages using the
octomap server as on the Fig. 2. The current state of the robot is obtained
from the environment server and then all the flipper are tested separately
for the collisions and the angles are iteratively increased/decreased about 0.2
rad? until they reach the required angle. If the collision is reported, process
for the current flipper and direction is terminated and the last collision free
angle is reported.

2the angle between leading edges of the flipper is 0.4 rad

Figure 2: Collision map build by octomap server

4 Evaluation

Despite all the efforts the service was not successfully tested because the
laser scanner detected the robot flippers as an obstacle. Therefore the front
flippers were in collision with itself and the service allowed their movement
about 0 rad. The solution of this problem is in the more accurate laser data
filtration to eliminate the robot body from the pointcloud2 message which is
used for building the occupancy grid. The visualization of the flipper in the
collision with itself is on the Fig. 3.

Figure 3: Right track (red) with detected collision (yellow dots) and the fake
collision on the front right flipper. Other yellow dots are collisions with left
track which is not visualized.

References

1]

2]

“Robot Operating System.” http://wuw.ros.org/wiki/R0OS. Accessed:
26,/04,/2013.

“arm_navigation stack.” http://wiki.ros.org/arm_navigation. Ac-
cessed: 24/09/2013.

“Natural human-robot cooperation in dynamic environments.” http://
www.nifti.eu. Accessed: 26/04/2013.

“Planning description configuration wizard.” http://wiki.ros.
org/arm_navigation/Tutorials/tools/Planning’20Description
20Configuration’20Wizard. Accessed: 24/09/2013.

“Understanding and adjusting the auto-generated arm navigation appli-
cation.” http://wiki.ros.org/arm_navigation/Tutorials/tools/
Understanding’%20and’20adjusting}%20the)20autogenerated’20arm_
navigation20application. Accessed: 24/09/2013.

7

“octomap _server.” http://wiki.ros.org/octomap_server. Accessed:

24/09/2013.

10

http://www.ros.org/wiki/ROS
http://wiki.ros.org/arm_navigation
http://www.nifti.eu
http://www.nifti.eu
http://wiki.ros.org/arm_navigation/Tutorials/tools/Planning%20Description%20Configuration%20Wizard
http://wiki.ros.org/arm_navigation/Tutorials/tools/Planning%20Description%20Configuration%20Wizard
http://wiki.ros.org/arm_navigation/Tutorials/tools/Planning%20Description%20Configuration%20Wizard
http://wiki.ros.org/arm_navigation/Tutorials/tools/Understanding%20and%20adjusting%20the%20autogenerated%20arm_navigation%20application
http://wiki.ros.org/arm_navigation/Tutorials/tools/Understanding%20and%20adjusting%20the%20autogenerated%20arm_navigation%20application
http://wiki.ros.org/arm_navigation/Tutorials/tools/Understanding%20and%20adjusting%20the%20autogenerated%20arm_navigation%20application
http://wiki.ros.org/octomap_server

	Introduction
	Arm navigation stack
	Configuration
	Environmental server
	Moving with the virtual robot

	Flipper collision detection
	Algorithm used

	Evaluation

