
Czech Technical University in Prague

Faculty of Electrical Engineering

Diploma thesis

Software for Robot Platform

Prague, 2011 Martin Dubec

Prehlásenie

Prehlasujem, že som svoju diplomovú prácu vypracoval samostatne a použ́ıval som

iba podklady (literaturu, projekty, SW atd’.) uvedené v priloženom zozname.

Nemám závažný dôvod proti použitiu tohoto školského diela v zmysle ß 60 Zákona

č.121/2000 Sb. , o práve autorskom, o právach súvisiacich s právom autorským a o zmene

niektorých zákonov (autorský zákon).

V Prahe dňa

podpis

Acknowledgement

I would like to convey my graditude to my supervisor Ing. Vladimı́r Smutný, who was

always willing to consult any problem that occured and who created perfect conditions

for elaborating this work.

Abstract

The aim of this master thesis is to create a workplace for experiments with robotic arm.

The workplace should be controlled remotely, support changing environment to reliable

simulate of the real world and return perceptions from environment. It is designed to

be a part of the european project MASH as application server to perform goal-planing

tasks.

The thesis is focused on description of the software and hardware components. There

are solved solutions to integration to MASH platform, initialization equipments (robot,

gripper, TV set), preparing/cleaning playground and processing goal-planing experiments

(capturing images from cameras, computing reward, moving robot).

iv

Anotácia

Ciel’om tejto práce je vytvorenie pracoviska pre experimenty s robotickou buňkou. Praco-

visko by malo byt ovládane na dial’ku, má podporovat’ zmenu prostredia pre hodnôvernú

simuláciu reálneho sveta a výstupom má byt’ obrazové vńımanie prostredia. Platforma je

navrhnutá tak, aby bola súčast’ou európskeho projektu MASH ako aplikačný server pre

uskutočnenie plánovaćıch úloh.

Práca je zameraná na popis softvérových a hardvérových komponentov. V práci sú

riešené riešenia pre integráciu do platformy MASH, inicializácia zariadeńı (robot, cha-

padlo, TV), pŕıprava / upratovanie ihriska a spracovanie plánovaćıch úloh (zachytenie

obrazov z kamier, výpočet odmeny t’ahu, pohyb robota).

v

Contents

List of Figures 5

List of Tables 7

List of Abbreviations 8

1 Introduction 9

1.1 Motivation . 9

1.2 The goal of MASH project . 9

1.3 Thesis structure . 10

2 Robot platform 11

2.1 Integration to MASH project . 11

2.1.1 MASH Platform . 12

2.2 Task Design and Robot Motion Strategy 12

2.3 Lifecycle of the experiment . 14

2.4 Robot platform Application server interface 14

2.4.1 Task . 16

2.4.2 World . 16

2.4.3 Environments . 16

2.4.4 Goals . 19

2.4.5 Actions . 21

2.4.6 View . 21

3 Setup of the robotic cell 23

3.1 Setup description . 23

3.1.1 Robot . 23

3.1.2 Control unit . 23

1

3.1.3 Gripper . 26

3.1.4 Cameras . 26

3.1.5 Web camera . 27

3.1.6 MASH playground . 27

3.1.7 Store . 28

3.1.8 TV screen . 28

4 Software architecture and structure 30

4.1 Programming languages . 30

4.2 Software structure . 30

4.2.1 Core environment . 34

4.2.1.1 Robot manipulation . 36

4.2.1.2 Gripper controlling . 38

4.2.1.3 Operating with TV set 40

4.2.1.4 Camera manipulation 40

4.2.1.5 Object manipulation . 41

4.2.1.6 Object recognition . 43

4.3 Server configuration . 44

4.3.1 Robot application server configuration 44

4.3.2 Core environment settings . 45

4.4 Guide to initialize robot platform . 47

5 Robot platform support modules 49

5.1 The application to display image in scene 49

5.2 Watchdog . 49

5.3 Camera calibration . 50

5.3.1 Computing of the homography . 51

5.4 World calibration . 53

5.5 Camera settings . 54

5.6 Object recognition . 55

5.7 Object manipulation . 58

5.7.1 Object placing to the playground 58

5.7.2 Object cleaning from the playground 59

5.8 Object store area . 59

6 Conclusion 61

Bibliography 62

A Appendix: Toolboxes 65

A.1 Robot toolbox . 65

A.2 Gripper toolbox . 65

A.2.1 Introduction . 65

A.2.2 Initialization and close . 66

A.2.3 Typical workflow with toolbox . 66

A.2.4 Features overview . 66

A.2.5 Basic movement . 68

A.2.6 Example . 68

A.3 TV set toolbox . 69

A.3.1 Initialization and close . 69

A.3.2 Typical workflow with toolbox . 69

A.3.3 Example . 70

A.4 Camera toolbox . 70

A.4.1 Example . 71

B Appendix: MASH Application Server Protocol 72

B.1 Description of the MAS protocol . 72

B.1.1 Command: STATUS . 72

B.1.2 Command: INFO . 73

B.1.3 Command: DONE . 73

B.1.4 Command: LIST GOALS . 73

B.1.5 Command: LIST ENVIRONMENTS 73

B.1.6 Command: INITIALIZE TASK . 74

B.1.7 Command: BEGIN TASK SETUP . 75

B.1.8 Command: END TASK SETUP . 76

B.1.9 Command: TEACHING . 76

B.1.10 Command: RESET TASK . 77

B.1.11 Command: GET VIEW . 77

B.1.12 Command: ACTION . 78

B.2 MASH Image Format . 79

4

C Appendix: Device setup parameters 81

C.1 Robot . 81

C.1.1 Robot control unit setup . 81

C.1.2 RS-232 parameters . 82

C.2 Gripper . 82

C.2.1 RS-232 parameters . 82

C.3 TV set . 83

C.3.1 RS-232 parameters . 83

C.4 Camera . 84

D Appendix: Object store area 85

D.1 Description of the objects . 85

D.2 Plan of the object store area . 86

E Appendix: Content of the enclosed CD 87

List of Figures

2.1 Components of the MASH platform. 13

2.2 Scenario of the experiment. 15

2.3 Coordinates of the robot (measured in millimeters) and lattice coordinates

(measured in lattice units). 17

2.4 The environments STATIC 12x12 (left), STATIC 8x6 (upper right), STATIC 4x4

(lower right). 18

2.5 The images of the environment from the top camera (left), from the oblique

camera (right), and from the gripper camera (bottom). The images are

examples of the images captured during learning/planning phase. The

robot arm is at position (0,11), that is just above green cylinder. The

robot arm typically obstructs part of the top camera image, sometimes is

obstructing oblique view as well. 20

2.6 Simplified view to the process of the experiment cycle. 22

3.1 Photo of the robot platform. The first the camera above the playground.

The second camera is on the right pillar capturing the oblique view. The

third camera is mounted on the gripper capturing view below the gripper.

The pan and tilt web camera is located on the upper beam of the cell

construction. Lights are mounted on the left, right and top pillar. The

TV screen is located bellow the playground behind the a protecting glass. 24

3.2 The robot Mitsubishi Melfa RV-6SDL . 25

3.3 Gripper SCHUNK PG-70 . 26

3.4 Camera PointGrey FLEA2 . 26

3.5 Top view on the robotic cell layout. Robot is in the center operating mainly

in the MASH playground and store area. The TV screen is located bellow

playground to allow to change background image. 28

3.6 Signaling between robot platform components. 29

5

LIST OF FIGURES 6

4.1 Software components of the application server. 31

4.2 Life cycle of the command processing in the Robot application server. . . 32

5.1 The positions of calibration object in the image. 51

5.2 Captured image with the calibration object from the top camera. 52

5.3 Binary image with removed all small objects. 52

5.4 The relation between lattice and robot coordinates. 53

5.5 Image with black background (left), with white background (center) and

the difference between them (right). 55

5.6 The binary image (left) and the complement to the binary image (right). 56

5.7 Recognized objects with orientation and center. 57

D.1 The plan of the object store area. 86

List of Tables

4.1 Example of the communication between experiment and application server. 33

5.1 Selected positions of the calibration object during calibration and recog-

nized coordinates of the object centers. 53

5.2 Thresholds for the object type classification. 56

5.3 Thresholds for the object color classification. 57

5.4 Amount of the color types. 60

5.5 Amount of the object types. 60

A.1 List of basic commands to manipulate with gripper. 67

C.1 Default camera settings . 84

D.1 List of all objects placed in the object store area 85

7

List of Abbreviations

2D two dimensional

MAS MASH application server

MASH Massive sets of heuristics

MS Microsoft

RAS Robot application server

8

Chapter 1

Introduction

1.1 Motivation

Entrance of robots to the industry scene is a major milestone of automation and industrial.

Most advanced component of automated systems in today’s serial production are just

robots. Robot is denoted as a stationary or mobile machine that performs the tasks

according to pre-defined plan.

The robot platform is a part of the coordinated effort in the MASH project. It acts

as physical embodiments of the general machine, which demonstrates the capabilities of

computer vision, pattern recognition, machine learning, and goal planning algorithms

implemented during the project.

1.2 The goal of MASH project

The project MASH, european project focused on machine learning, where the perfor-

mance of ML techniques are assed on various task (image classification, goal-planning).

This project is funded by the Information and Communication Technologies division of

the European Commission, Cognitive Systems and Robotics unit, under the 7th Research

Framework Program.

The main goal of the MASH project is to develop tools for the design of very large and

complex learning systems. Large set of feature extractors is needed to create such system.

The performance of this strategy will be assessed on multiple goal-planning tasks, either

in a simulation environment, or with a real robotic arm. There is presented the robotic

9

CHAPTER 1. INTRODUCTION 10

cell and the description of the of tasks for the real environment.

The robot platform operates over the simple world composed from objects lying on

the playground. The robot can be operated and controlled remotely.

Main task of robot platform is to perform action (robot movement) on selected envi-

ronment which is represented by objects placed on the playground with specified back-

ground, with chosen goal (ex. reach the read object on the playground) and return reward

of this action and images from cameras providing perception.

1.3 Thesis structure

• Chap. 1 - Introduction - introduction to the issue, description of the MASH

project

• Chap. 2 - Robot platform - definition of the terms used in the robot platform,

design of the robotic tasks, goals and environments

• Chap. 3 - Setup of the robotic cell - description of the components and devices

• Chap. 4 - Software architecture and structure - designed software solution

• Chap. 5 - Support modules - description of support modules used in platform

(camera calibration, object store area, object manipulation, etc.)

• Chap. 6 - Conclusion - summary of objectives of the work, proposal of the

possible extensions

• App. A - Toolboxes - description of the implemented toolboxes

• App. B - MASH Application Server Protocol - description of protocol

• App. C - Device setup parameters - settings of the devices (camera, robot,

gripper, television)

• App. D - Object store area - plan of the object store area

Chapter 2

Robot platform

2.1 Integration to MASH project

The robot is a real robot arm, which interacts through software daemon with the rest

of the MASH platform with an extension of the application server protocol, described in

App. B.

The robot platform integrates a physically real robot to perform actions and the set

of cameras for a perception. Each task is defined by an environment and a goal. The

environment comprises a geometrical configuration of playground, placements of objects,

background on TV, etc. They are described in Sec. 2.4.3. The goals for this tasks are

defined in Sec. 2.4.4, and composed of a reaching certain object. From that goal derives

a reward, negative when the robot moves out the environment, positive when the goal is

reached and positive otherwise. This document gives a description of the tasks sufficient

for understanding their purpose and the challenges they induce.

The software part of robotic platform is a software daemon which implements an

extension of the MASH Application Server protocol for interactive applications. This

extension is described in App. B. This software part is called Robot Application server

(RAS).

This daemon perform the actions with the robot on a playground and the physical

interactions it has with it. The robot platform is composed of three cameras to grab

images for a perception.

11

CHAPTER 2. ROBOT PLATFORM 12

2.1.1 MASH Platform

The MASH platform as depicted on Fig. 2.1 is composed of the following Servers:

- Web Server: Standard HTTP server hosting the website used to to submit new

heuristics or schedule experiments.

- Experiment Scheduler. This daemon dispatches the experiments scheduled by the

project participants to the Experiment servers. There is a single instance of it.

- Experiment Server. It runs the heavy computations for the machine-learning ex-

periments. The settings of the experiments is sent by the Experiment scheduler,

and the data or goal-planning tasks are provided by the application servers.

- Application Servers. It provides access to either the data sets or the planning

problems. Their functionalities depend on the task it implements:

- Image Server: provides access to image databases.

- 3D Simulation Server: allows the control of an avatar in a 3D virtual world.

- Robotic Arm Server: allows the control of a robotic arm. This server is im-

plemented by CTU.

2.2 Task Design and Robot Motion Strategy

The children toy blocks with the size (height, side, diameter) 33 mm and basic colors are

used. There are placed on glass covering standard TV screen, which offers the possibility

to change the background image. The blocks are placed in the single layer in the first

series of tasks. The blocks are grasped by the robot manipulator with the two fingers

gripper. The robot fingers are always placed left and right from the grasped block, so there

are corresponding restrictions on the blocks placement, which is important especially in

random and user built environments.

The robotic cell supports three main activities: blocks placement, blocks removal

(reset), and standard motion controlled by experiment server.

During standard motion, the robot fingers move ca 65 mm above the blocks in the

plane parallel to the plane of the supporting glass. This allows free motion without the

collision with the blocks. All cameras are focused to the upper side of the blocks.

CHAPTER 2. ROBOT PLATFORM 13

Web server

Experiment
scheduler

Experiment server

Application server
(3D simulator)

Experiment server

Application server
(Image server)

IDIAP
(Switzerland)

Experiment server

Application server
(Real robot arm)

CTU
(Czech republic)

Figure 2.1: Components of the MASH platform.

CHAPTER 2. ROBOT PLATFORM 14

The region, where gripper moves during standard motion, is located within the play-

ground region, which is rectangle within intersection of top and oblique cameras field of

view, TV screen, and robot working space. This setup allows to guarantee both visibility

of blocks in all cameras and placement of blocks by the robot.

The center of the gripper moves in the regular grid given by lattice coordinates ex-

pressed as whole numbers. The centers of blocks are located in the same grid.

The goal is reached, when the gripper is just above the target cube.

2.3 Lifecycle of the experiment

The common experiment has following lifecycle:

• Task definition The Experiment server selects the goal and competent environ-

ment from the list.

• Task setup Initialization of devices (open communication with robot, gripper, TV,

turn on the lights). The robot deploy objects from object store into the playground

according the positions defined in the environment. Then the robot moved to the

start position as defined in the goal.

• Experiment loop The Experiment server is sending action commands to perform

robot movement e.g. UP, DOWN, RIGHT, LEFT. After each command the images

captured by the cameras are sent to the Experiment server. The Application server

also sends information about the current situation in the field as a reward.

• Task finished When the experiment is finished, the robot cleans the objects back

to the object store to original positions are on the same positions as were dragged.

Then are closed all open communications and turn off lights. The robot platform

is waiting for a new experiment.

2.4 Robot platform Application server interface

Experiment and Application server communicate in MAS protocol described in App. B.

MAS protocol uses following terms:

CHAPTER 2. ROBOT PLATFORM 15

client choose
goal

client choose
envirnonemt

initialize:
robot

gripper
television
cameras

lights

deploy objects
to playground

move robot to
start position

TASK
SETUP

running experiment:
perform actions
compute reward

grab images

start experiment

close:
robot

gripper
television
cameras

lights

clean objects to
cubestore

TASK
FINISHED

finished experiment

Figure 2.2: Scenario of the experiment.

CHAPTER 2. ROBOT PLATFORM 16

• Task

• Environment

• Goal

• Action

• View

The semantics of those terms in the context of the robotic platform is defined in following

section.

2.4.1 Task

Task is specified by goal and the appropriate environment. The environment comprises a

geometrical configuration, placements of blocks, etc. all defined with some random option

to ensure an infinite variety of the setup. From that goal derives a reward, negative when

the robot gripper collides with the environment and positive otherwise. When the goal

is reached, the task is over, and another round can be started.

2.4.2 World

World is a two dimensional space where robot can move. It is a subset of the MASH

playground. The world is defined as a rectangle. Dimensions and position of the world

depends on the environment. World uses its own coordinates called lattice coordinates

measured in lattice units (currently one lattice unit is 20 mm).

2.4.3 Environments

Each task comprises a 2D environment, which can be of one the following types, as

pictured on Fig. 2.4.

The currently implemented environments in robot application server:

• STATIC 12x12 - world size is [12× 12], environment contains 3 blocks,

• STATIC 8x6 - dimensions of the world are [8× 6], environment contains 3 blocks,

• STATIC 4x4 - dimensions of the world are [4× 4], environment contains 2 blocks,

CHAPTER 2. ROBOT PLATFORM 17

MASH playground

Robot base

Lattice coordinates

Robot coordinates

x

y

Figure 2.3: Coordinates of the robot (measured in millimeters) and lattice

coordinates (measured in lattice units).

CHAPTER 2. ROBOT PLATFORM 18

• RANDOM 12x12 - world size is [12× 12], block positions and types are random.

Figure 2.4: The environments STATIC 12x12 (left), STATIC 8x6 (upper

right), STATIC 4x4 (lower right).

In all these configurations, the size of the environment is from [4 × 4] to [12 × 12]

centimeters to ensure variability between different experiments.

Environment contains informations about available views, actions, goals. Environ-

ment specifies properties which are described in the MAS protocol:

• unique name - unique identifier of environment. The environment is chosen by

its name during initialization.

• supported goals - list of goals, which are supported by appropriate environment.

Currently both goals are supported by all environments.

• supported actions - list of actions, which are supported by the environment.

Currently all actions are supported by all environments.

• supported teaching - true if teaching is supported in the environment. Currently

teaching is not supported.

• supported views - list of cameras to obtain images of the playground. Currently

all environments support all views.

CHAPTER 2. ROBOT PLATFORM 19

Properties of the environment specific to robot applications server:

• tv image - image which will be displayed on the TV screen.

• border - specifies dimensions and position of the world in the lattice coordinates.

Border is an array of points in lattice coordinates in order lower-left corner, lower-

right, upper-right, upper-left,

• blocks - initial positions and types of blocks specified by block type and its position

[x, y, φ]. Blocks could currently be only aligned only to the lattice axes (φ = 0).

The list of currently available TV images: black, white, mash, water, forest.

The list of available blocks:

• Cylinders: red, green, yellow, blue.

• Boxes (right rectangular, base size 33x100 mm): red, green.

• Cubes: red, green, yellow, blue (two pieces each), unpainted wood (four pieces).

2.4.4 Goals

A goal object is present in the task, and it is reached when the robot tool moves to the

position just above them. The reward is then +20.

Goal defines properties:

• start position - start position of the robot gripper in lattice coordinates after ini-

tialization of the task,

• end position - position of the target block in lattice coordinates,

• target block - type of the target block.

We have defined two different goals, all involving reaching one object. Currently

implemented goals in robot application server:

• ReachRedCube - goal is to find a red block in the world. Position of the target block

is always in upper-right corner of the world. The reward is +20.

• ReachRedCube Random - same as goal ReachRedCube but only position of the block

is random. The reward is +20.

CHAPTER 2. ROBOT PLATFORM 20

Figure 2.5: The images of the environment from the top camera (left),

from the oblique camera (right), and from the gripper camera

(bottom). The images are examples of the images captured

during learning/planning phase. The robot arm is at position

(0,11), that is just above green cylinder. The robot arm typ-

ically obstructs part of the top camera image, sometimes is

obstructing oblique view as well.

CHAPTER 2. ROBOT PLATFORM 21

2.4.5 Actions

All tasks have four actions to move forward, backward, left and right. Action moves the

robot tool 20 mm in the chosen direction to the neighboring cell in the lattice coordinates.

Robot is able to move in four directions :

• UP

• DOWN

• LEFT

• RIGHT

A negative reward of −10 is produced if the robot tool collides with a wall.

Reward is computed after action:

• -10 robot hit the wall,

• 0 robot performed allowed move,

• +20 robot reached the target.

2.4.6 View

Currently implemented views:

• CAMERA TOP - top camera, resolution: 1280x960, output format: MIF

• CAMERA OBLIQUE - oblique camera, resolution: 1280x960, output format: MIF

• CAMERA GRIPPER - gripper camera, resolution: 1280x960, output format: MIF

These goals, while simple, already require the learning system to implement some

crude form of object detection and localization (objects, robot).

CHAPTER 2. ROBOT PLATFORM 22

internet

Experimental server

Robot application server

Client

sending actions
(RIGHT, LEFT, UP DOWN) receiving reward, views

perform action
(robot movement) robot cameras

grab images from
all cameras

compute reward

Figure 2.6: Simplified view to the process of the experiment cycle.

Chapter 3

Setup of the robotic cell

Robotic cell is composed of several components. Major role in the platform has the

robot with the gripper, which is used to perform the experiments and to prepare the

playground. There are also used three cameras, lights, TV set.

3.1 Setup description

3.1.1 Robot

The robot Mitsubishi Melfa RV-6SDL (Fig. 3.2) is 6 degree of freedom angular manip-

ulator. It is equipped with a magnet to manipulate ferromagnetic blocks and a gripper

(Sec. 3.1.3). The maximum weight of the blocks is about 1 kg. The robot manipulates

the blocks lying on the horizontal table around the robot.

3.1.2 Control unit

Robot is controlled by the control unit CR2D-711 is with teaching pendant R32TB. The

control unit is programmed in language Melfa Basic V. Mitsubishi Melfa Toolbox [4] is

used to to control the robot.

23

CHAPTER 3. SETUP OF THE ROBOTIC CELL 24

Top camera

Cube store

TV set

Robot

Oblique
camera

Web camera

Light

Light

Light

Gripper

Gripper
camera

Figure 3.1: Photo of the robot platform. The first the camera above the

playground. The second camera is on the right pillar captur-

ing the oblique view. The third camera is mounted on the

gripper capturing view below the gripper. The pan and tilt

web camera is located on the upper beam of the cell construc-

tion. Lights are mounted on the left, right and top pillar.

The TV screen is located bellow the playground behind the a

protecting glass.

CHAPTER 3. SETUP OF THE ROBOTIC CELL 25

Figure 3.2: The robot Mitsubishi Melfa RV-6SDL

CHAPTER 3. SETUP OF THE ROBOTIC CELL 26

3.1.3 Gripper

The gripper is universal, flexible, servo-electric 2-finger parallel gripper with gripping

force control and stroke 70 mm. The gripper is operating through Gripper Toolbox

described in App. A.2.

Figure 3.3: Gripper SCHUNK PG-70

3.1.4 Cameras

Robotic platform contains three color CCD cameras PointGrey FLEA2 FL2G-13S2C

with maximum resolution 1288x964. The camera is controlled from the computer by

using Camera Toolbox described in App. A.4.

Figure 3.4: Camera PointGrey FLEA2

Cameras layout is seen in Fig. 3.1.

• First camera is placed just above playground to capture approximately top view of

the playground.

• Second camera is capturing oblique view of the playground.

CHAPTER 3. SETUP OF THE ROBOTIC CELL 27

• Third camera is mounted on the gripper to view below them.

Default cameras settings are described in App. C.4.

3.1.5 Web camera

The web pan and tilt camera AXIS PTZ 211 allows to check the situation of the robotic

cell independently to Experiment and Application server infrastructure.

The access to the camera is allowed to people experimenting with it.

3.1.6 MASH playground

The region of the table in front of the robot is a playground, where MASH algorithms

operate. The playground is a physical space satisfying following criteria:

• Background The TV screen located under the playground displays different images

which effectively make a controlled background of image processing algorithms.

The displayed images are controlled by the Experiment server. The controlled

background also simplifies cleaning procedure when experiment is reset.

• Robot manipulated The robot has to be able to reach and manipulate the objects

located within the playground.

• Camera observed The images of playground scene are captured by cameras lo-

cated in the robotic cell.

• Easy to describe To simplify the description of playground area, the playground

is a rectangle whose axis are aligned with the robot base axes.

The back side of the robot table serves as a store of the blocks.

The rectangular area of the table in front of robot (see Fig. 3.5) is dedicated to be

a MASH playground. This area is divided logically into the lattice of points, where the

blocks could be placed. This logical division is used to allow simplified description of the

task and the planing algorithm. The blocks are supposed to be in a single layer. Both

restrictions are on the SW layer and could be released in future set of tasks if that proves

necessary or useful.

CHAPTER 3. SETUP OF THE ROBOTIC CELL 28

Robot working envelope

TV sreen

MASH playground

Store for blocks

Robot base

Robot table

Figure 3.5: Top view on the robotic cell layout. Robot is in the center

operating mainly in the MASH playground and store area.

The TV screen is located bellow playground to allow to change

background image.

3.1.7 Store

The area behind the robot is intended as a store of blocks. The printed plan allows to

manually place the blocks into the store and the robot could blindly grasp for them.

The robot will take blocks from the store during initialization and return them after the

experiment during routine use.

3.1.8 TV screen

TV screen is placed underneath the playground to allow to change background appearance

during advanced experiments. Chosen was LCD SHARP 40LE705, screen has a HD

resolution (1920x1080 pixels) and 40̈.

CHAPTER 3. SETUP OF THE ROBOTIC CELL 29

Firewire
Serial line
Ethernet

Experimental
server

lights

TV set

cameras

robot

control unit

gripper

Figure 3.6: Signaling between robot platform components.

Chapter 4

Software architecture and structure

4.1 Programming languages

The software part of the robot platform is programmed in the various programming

languages. MAS is programmed in Java using development tool Eclipse. The core

environment is running in the Matlab and calling MEX functions in C language. All source

codes of the robot platform are saved in the GIT repository of the project MASH at

Switzerland.

4.2 Software structure

Robot application server is complex software solutions running as daemon. It has many

software components, mainly part, called Mash Application Server (MAS) is handling

incoming connections from the experimental server or the external users and allowing

only one connection to the core environment. The software solution is divided into the

several parts.

Main two parts are:

• Robot application server - manage incoming connections, allowing only one con-

nection to the core environment. It is parsing and checking input commands and

sending them to process to the core environment (Matlab) through MatlabControl

library. It is written in JAVA SE 5 language. There is implemented TCP socket

server to operate with connected experiment server or external user.

30

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 31

• Core environment - processing most of the commands, controlling all devices (robot,

gripper, TV set, cameras). There is implemented whole logic of the experiment,

manipulation with objects by the robot (placing and cleaning), object recognition,

etc.

Experiment server

Robot Application Server
(JAVA)

TCP/IP connections
to receiving MAS commands

and sending responses

Core environment
(Matlab)

Watchdog

Camera toolbox
(Matlab + C)

Gripper toolbox (Matlab)

Robot toolbox (Matlab)

Television toolbox (Matlab)

Monitor Tools (C#)

processing only one request
at time from one connected client

External user

External user

calling functions to
device manipulation

Figure 4.1: Software components of the application server.

The experiment server sends a command to the robot application server, which reply

with a response. The application server never sends data spontaneously to the experi-

mental server. Protocols is text-based, but binary data are enclosed in the case, where

the images are as a response. All commands and responses are terminated by a UNIX

end-of-line character.

Experimental server or external user is connected by TCP channel to the RAS. The

communication between experimental server and application server is based on the com-

mands described in the App. B. The command is send by experimental server and pro-

cessed by RAS, where is command parsed, checked the syntax of the command. Com-

mands, for a checking the status, version and type of application server, are processed

immediately in the Robot application server. Other commands are forwarded to the

core environment to the processing. Response from the core environment is sending back

through the RAS to the experiment server or external user.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 32

Received valid
command?

Yes

No

Created new thread to
handle client

Connected new
client

System is busy
(someone is already

connected?)

Yes

Send error response Send response that
system is busyNo

Send command to core
environment

(MATLAB) calling
matlab function

mrIO

Core environment (MATLAB)

Receive response as a
return value to calling

matlab function
mrIO

Send response
as was received

Figure 4.2: Life cycle of the command processing in the Robot application

server.

Example of the communication between experiment and application server (SEND):

At the beginning of the experiment, the server is waiting for the selecting the goal and of

select duties and the adjacent environment. Experimental server doesn’t know the goals

supported by our server, so it must ask by the command LIST GOALS for them. Next, it

need to know supported environments by selected the goal, so experimental server send

the command LIST ENVIRONMENTS. Next phase is initialization Robot application server

by the command INITIALIZE TASK. The devices are not still initialized. Supported views

and actions are returned as a response. Following the part where can be setup custom

properties of the experiments. Currently our server is not using this feature. All devices

(robot, gripper, TV set, cameras, lights) are initialized at the end of the task setup.

The objects are released to the playground and the robot is moved to the start position,

which is defined in the goal object. Next part is self experiment, where are receiving

action commands ACTION and as responses are sending commands with reward, state

and event description. Images from specific camera is send if the command GET VIEW is

received. If the goal is reached after the action during the experiment, application server

send response that experiment is finished. Then all devices close the communications and

turn OFF.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 33

Received command Response

STATUS READY

INFO TYPE ApplicationServer

SUBTYPE Interactive

PROTOCOL 1.2

LIST GOALS GOAL ReachRedCube

END LIST GOALS

LIST ENVIRONMENTS ReachRedCube ENVIRONMENT STATIC 12x12

END LIST ENVIRONMENTS

INITIALIZE TASK ReachRedCube STATIC 12x12 AVAILABLE ACTIONS UP DOWN RIGHT LEFT

AVAILABLE VIEWS CAMERA TOP:640x480

BEGIN TASK SETUP OK

END TASK SETUP OK

ACTION RIGHT REWARD 0

EVENT Robot move

STATE UPDATED

GET VIEW CAMERA TOP VIEW CAMERA TOP image/mif 921608

image representing by byte array

.

Table 4.1: Example of the communication between experiment and appli-

cation server.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 34

4.2.1 Core environment

The core environment consists of two main parts:

• MashFramework - implement the whole logic of the experiment cycle and also com-

mands processing

• Modules - support modules used to camera calibration, cube manipulation, object

recognition, controlling the devices (robot, gripper, TV set) etc.

When the core environment is started (Matlab), the paths to the toolboxes and mod-

ules are initialized by the function initPath. Input function, which is processing all

received commands, is mrIO. Responses are returned also through this function. Each

command is processed by method with name mrCMD commandname, where commandname is

the name of the received command. This method is called from the input function mrIO.

These functions are stored in the directory Commands.

The current state (selected goal and environment) is saved in Matlab memory in the

static object mrMain.

The goals, environments, views and actions are coded modular, so adding new ones

is easily (add class file to appropriate directory). There is no needed registration or

manually hardcoding the list of goals, environments, views or actions. Everything is

doing automatically that the appropriate directory is scanned for the class files.

There are existing the base Matlab classes for the representing goal, environment,

view and action. The final classes inherit from the base classes. Directory structure,

where are saved inherited final classes:

• Goal - goal classes inherited from the base class mrGoal

• View - view classes inherited from the base class mrView

• Environment - environment classes inherited from the base class mrEnvironment

• Action - saved action classes inherited from the base class mrAction

Abstract methods and properties, which are needed to be implemented in the inherited

class, for each base class:

• mrGoal - representing the goal (Sec. 2.4.4)

- property name - unique name of the goal

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 35

- property startPosition - lattice coordinates of the start position

- property endPosition - lattice coordinates of the goal position

- method getReward - return the reward and state base on the performed action

- method initializeGoal - method called during the initialization the task,

body of the method can be empty

• mrView - representing the view (Sec. 2.4.6)

- property name - unique name of the view

- method getImageData - return the binary image data and the size of the byte

array

- method getImageSize - return the image resolution

- method getImageType - return the image type (JPG, PNG, MIF, etc.)

• mrAction - representing the action (Sec. 2.4.5)

- property name - unique name of the action

- method positionAfterMove - return the position in the lattice coordinates

which will be reach after the robot movement

- method performAction - perform the action (robot movement)

• mrEnvironment - representing the environment (Sec. 2.4.3)

- property name - unique name of the environment

- property goals - list of supported goals

- property actions - list of supported actions

- property views - list of supported views

- property imageTV - path to the image file to display on TV set

- property teachingSupported - if the teaching (after each action is returned

the action that best towards to the goal) is supported

- property borders - corners of the playground in lattice coordinates

- property cubes - list of cubes to release on the playground before starting the

experiment

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 36

- property upwardWorld - height of the robot over the playground in the mil-

limeters during the experiment

- method resetEnvironment - method called during the reset the environment

- method initializeEnvironment - method called during the initialization

phase

The modules of the core environment are using toolboxes described in App. A.

In the next part are described modules for the robot, gripper, TV set operation, cube

manipulation, object recognition.

4.2.1.1 Robot manipulation

• Opening the communication with the robot, turn ON the servo and set the default

speed.

r = robotOpen(‘RV6SDL’);

- input: name of the robot

- output: handle to the object of the robot

• Closing the communication with the robot, turn OFF the servo.

robotClose(r);

- input:

- r - handle to the object of the robot

• Setting the robot speed.

setSpeed(r,speed);

- input:

- r - handle to the object of the robot

- speed - value of the speed

– example (set the speed to 20):

setSpeed(r,20);

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 37

• Moving the robot in the cartesian coordinates. The method is waiting until the

robot reach the position.

moveToPosXYZABC(r,position);

- input:

- r - handle to the object of the robot

- position - column vector representing the position
[
x y z a b c

]T
,

where x, y, z are cartesian coordinates in mm and a, b, c are angles yaw,

pitch, roll in degrees.

- example (move robot to the position
[
600 0 400 180 0 180

]T
):

moveToPosXYZABC(r,[600;0;400;180;0;180]);

• Moving the robot in the lattice coordinates. Transformation between lattice and

robot coordinates is defined the configuration file conf. The method is waiting

until the robot reach the position.

moveToPos(r,latticePos, up, fi);

- input:

- r - handle to the object of the robot

- latticePos - column vector representing the position in the lattice coor-

dinates
[
x y

]T
.

- up - optional parameter defining the height (axis Z), default value is

200mm.

- fi - optional parameter representing the rotation of the last joint J6 in

degrees, default value is 180.

- example (move robot to the position
[
2 3

]T
) with default height and rotation:

moveToPos(r,[2;3]);

• Moving the robot in the joint coordinates. The method is waiting until the robot

reach the position.

moveToJoint(r,jointPos);

- input:

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 38

- r - handle to the object of the robot

- jointPos - column vector of rotation angles for each joint in degrees[
α1 α2 α3 α4 α5 α6

]T
.

- example (move robot to the position
[
−90 0 90 0 90 0

]T
):

moveToJoint(r,[-90;0;90;0;90;0]);

• Getting the current robot position in cartesian coordinates.

[~, position, ~, ~] = mmGetPos(r, ’P’);

- input:

- r - handle to the object of the robot

- output:

- position - column vector of the current robot position in the cartesian

coordinates
[
x y z a b c

]T
4.2.1.2 Gripper controlling

• Power ON the gripper, open the communication with the gripper, reset the gripper

errors, turn ON the light on the gripper.

g = gripperOpen(r,‘SCHUNK’);

- input:

- r - handle to the object of the robot (needed for a power on the gripper)

- name of the gripper

- output:

- g - handle to the object of the gripper

• Close the communication with the gripper, turn OFF the lights and power OFF

the gripper.

gripperClose(r,g);

- input:

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 39

- r - handle to the object of the robot

- g - handle to the object of the gripper

• Move the gripper to the position

gripperMovePos(g,position);

- input:

- g - handle to the object of the gripper

- position - position of the gripper in millimeters

– example of usage (move the gripper to the position 50mm and wait until the

gripper reach the position):

gripperMovePos(g,50);

gpWaitForPos(g,50);

• Gripping by the force:

gripperMoveGrip(g,force);

- input:

- g - handle to the object of the gripper

- force - force representing as a current [A].

– example of usage (grip by force and wait until the gripper stop ⇒ object is

gripped):

gripperMovePos(g,-1);

gpWaitForStop (g);

• Stop moving the gripper:

gpStop(g);

- input:

- g - handle to the object of the gripper

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 40

4.2.1.3 Operating with TV set

Set of commands used to control the TV set.

• Open the communication with the TV set and turn ON the screen.

t = televisionOpen(r,‘SHARP’);

- input:

- name of the television

- output:

- t - handle to the object of the TV set

• Close the communication with the TV set and power OFF it.

televisionClose(t);

- input:

- t - handle to the object of the TV set

• Select image as a background on the TV set.

setTvPicture(path)

- input:

- path - full path to the image file

– example of usage (set the black image as a background):

setTvPicture(’C:\Img\black.png’);

4.2.1.4 Camera manipulation

Camera context is open only once during the initialization or at each change of camera

mode (frame-rate, resolution). Next, the images are captured from the camera. All

open camera contexts are saved in the Matlab memory (static object camSingleton). To

camera manipulation is used Camera Toolbox described in App A.4.

• Grab the image from the camera.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 41

im = ctGrabImage(cam_num, mode);

- input:

- cam num - camera number to grab the image

1 - oblique camera

2 - top camera

3 - gripper camera

- mode - handle to the object of the TV set

1 - resolution 640x480, frame-rate 7.5fps

2 - resolution 800x600, frame-rate 7.5fps

3 - resolution 1024x768, frame-rate 7.5fps

4 - resolution 1280x960, frame-rate 7.5fps

- example of usage (grab the image from the oblique camera with resolution

640x480):

im = ctGrabImage(1, 4);

• Close all camera contexts.

camSingleton.instance.closeAllContexts

4.2.1.5 Object manipulation

The 19 objects are located on the right side of the robot at object store area described in

Sec. 5.8. There are described methods used to manipulate with objects (gripping, releas-

ing, cleaning, deploying). There is described set of methods used to object manipulation.

• Get the position of the object from the object store area in the robot coordinates.

pos = cubeStore(id);

- input:

- id - id number of the object (see App. D)

- output:

- pos - position of the center of the object in robot coordinates

• Clean all objects back to the object store area.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 42

cubeClean(r, g, objArray);

- input:

- r - handle to the object of the robot

- g - handle to the object of the gripper

- objArray - matrix of type [id,x,y;...], where id is number of the

object, x,y is the position of the object, where actually is placed, in the

robot coordinates

• Concept of the method to clean objects based on the image

cubeCleanFromImage(r, g)

- input:

- r - handle to the object of the robot

- g - handle to the object of the gripper

• Release the objects to the playground from the object store area.

cubeDeploy(r, g, objArray);

- input:

- r - handle to the object of the robot

- g - handle to the object of the gripper

- objArray - matrix of type [id,x,y;...], where id is number of the

object, x,y is the position of the object, where it will be placed, in the

robot coordinates

• Grip the object from the playground or store area.

cubeGrip(r, g, pos);

- input:

- r - handle to the object of the robot

- g - handle to the object of the gripper

- pos - column vector of the position [x;y] of the object to grip in the

robot coordinates

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 43

• Place the object to the playground or store area.

cubeRelease(r, g, pos);

- input:

- r - handle to the object of the robot

- g - handle to the object of the gripper

- pos - column vector of the position [x;y] of the object to place in the

robot coordinates

4.2.1.6 Object recognition

The methods from Image Acquisition Toolbox are used to object recognition (see

Sec. 5.6)

• Convert the image to the binary image by thresholding.

bw = im2bw(im, level);

- input:

- im - image

- level - threshold level (0-1)

- output:

- bw - binary image

• Computes the complement image of the binary image.

bw = imcomplement(im);

- input:

- im - binary image

- output:

- bw - complement image

• Remove all small objects (fewer than X pixels).

bw = bwareaopen(im, X);

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 44

- input:

- im - binary image

- X - objects with area lower then X pixels will be removed

- output:

- bw - filtered binary image

• Trace the exterior boundary of objects.

[~,L] = bwboundaries(im, ’noholes’);

- input:

- im - binary image after removing small objects

- output:

- L - traced exterior boundaries

• Measure the properties of image regions.

objProps = regionprops(im, ’all’);

- input:

- im - traced exterior boundaries

- output:

- objProps - array of the properties recognized objects

4.3 Server configuration

The application server configuration is divided into the two parts. One configuration is

for Robot application server (Java) and next one is for Core environment (Matlab).

4.3.1 Robot application server configuration

Robot application server is user configurable. There are options to setup parameters such

as listening socket port, enabling watchdog, etc. The configuration section is located in

the file AppServer.java.

List of setting options and their default values:

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 45

• PORT - Specifies the port on which the socket server listen. Default value is 10993.

• DEBUG - Enables debug mode, where are additional informations written to the log.

Default value is false.

• MATLAB RECONNECT - It defines whether Matlab is automatically restarted after the

crash. Default value is true.

• WATCHDOG - Enables watchdog (see Sec. 5.2). Default value is true.

• WATCHDOG TIMEOUT - Specifies watchdog interval to fire watchdog procedure. De-

fault value is 60 seconds.

• BUGZILLA SERVICE PATH - URL path to bugzilla webservice for a tracking errors in

the system.

4.3.2 Core environment settings

The are option to setup many parameters such as paths to the toolboxes, names of the

used devices, environment setup, robot default position, calibration of the world, etc.

The configuration settings are saved in the M-file conf.m.

Definition of paths to the toolboxes:

• pathMonitorTools - Specifies the path to application Monitor Tools (Sec. 5.1)

• pathTvToolbox - Specifies the path to TV toolbox toolbox (App. A.3)

• pathGripperToolbox - Specifies the path to Gripper toolbox (App. A.2)

• pathRobotToolbox - Specifies the path to Robot toolbox

• pathCameraToolbox - Specifies the path to Camera toolbox

Settings the device names:

• robotName - Name of the robot. Default value is RV6SDL.

• tvName - Name of the TV. Default value is SHARP.

• gripperName - Name of the gripper. Default value is SCHUNK.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 46

Parameters of the setup of the robot motion during placing, gripping, cleaning the

objects, :

• upwardService - Specifies the service height [mm] of the robot when robot is moving

from object store to playground and back. Default value is 200 mm.

• downwardWorld - It is defining the height [mm] of the robot during the laying of

objects at playground or object store. Default value is 55 mm.

• rotZ - It specifies rotation of the last robot joint J6 in degrees during the experi-

ment. Default value is 180 degree.

Enabling devices in the application server:

• robotSupported - Enables the robot in the application server. If it is 0, robot is

not moving and also all operations with objects are not realizing. Default value is

1.

• tvSupported - Enables the TV in the application server. If it is 0, image on TV

screen is is not displayed. Default value is 1.

• gripperSupported - Enables the robot in the application server. If it is 0, gripper is

not used in the application server and operations with objects are disabled. Default

value is 1.

• toolNumber - Specifies the number of tools mounted on the robot.

1 - gripper

2 - ferromagnet

Default value is 1.

• cubeManipulation - Enables the operations with the objects (deploying the objects

to the playground, cleaning the objects back to the object store). Default value is

1.

Parameters of the world calibration (transformation between lattice and robot coor-

dinates)

• angle - Defines the angle in degrees between coordinate systems. Default value is

90 degree.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 47

• step - Specifies the scale [mm], ie. size of the one lattice. Default value is 20 mm.

• trans - Represents the beginning of lattice coordinate system in the robot coordi-

nates. Default value is [711;-600].

4.4 Guide to initialize robot platform

This guide describes process of initialization robot platform. There are several steps,

which are needed to do.

1. Distribution board

- The distribution board is powered on by the main switch on the left side.

- Check, that the green power indicator on the left side is light on.

2. Robot

- Turn on the robot control unit by switching the power switch to the upper

position.

- Wait, until the display is not showing status READY on the control unit.

- Check, that the control switch is switched to AUTOMATIC mode.

- Verify, that the teach pendandt is turned off. The light indicator TP ENABLED

must be not light up in the front of the teach pendandt.

3. TV set

- TV set turn on the power by switching the switch to ON on the left side of

the TV screen.

4. Playground

- The remaining blocks on the playground is necessarily to place in the object

store area.

5. Computer

- Turn on the computer near the robot, optionally switch on LCD monitor.

CHAPTER 4. SOFTWARE ARCHITECTURE AND STRUCTURE 48

- Log in by username MASH.

6. Starting Robot Application server

- Application server is started by the icon with name ROBOT APPLICATION SERVER

which is placed on the desktop.

- Console application window is automatically opened.

- MATLAB is started by application server.

Chapter 5

Robot platform support modules

5.1 The application to display image in scene

Robotic cell contain TV set (see Sec. 3.1.8) used as a monitor background, which is placed

in under the playground. It is mainly intended for simulation more real environment and

make the recognition task more difficult.

TV set is connected to computer by serial line to control it and by HDMI to display

a image.

The application is called Monitor Tools and it is written in C# .NET and it was a

developed in MS Visual Studio 2010. It is using the windows extended desktop (TV set

is representing the second monitor) because the computer has only one graphics card.

The application is started maximized on the second monitor. The control PictureBox

(control from Windows Forms) is used by application to display image.

Usage: MonitorTools.exe path to image

Usage from Matlab by using function setTvPicture(path to image)

5.2 Watchdog

Watchdog is a software timer that periodically triggers some actions. The role of watchdog

is to check status of robotic cell components (robot, gripper, television, lights, cameras)

and test them. If the watchdog test failed, error message is automatically reporting to

bug-tracking system. The advantage is quick detection errors of some components caused

by dropped communication or hardware failure and fixing them in time.

49

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 50

Watchdog testing components :

• robot - it opens/closes robot communication and robot moves from position


600

0

300


to


500

0

300

 and back.

• gripper - it opens/closes gripper communication and move gripper from 60 mm to

50 mm and back.

• TV set - it opens/closes communication with TV set and turn it on/off.

• lights - it turns on/off lights around robotic cell.

• cameras - take image from all three cameras (top, oblique, gripper).

Watchdog is running every 2 hours if no experiments is performing. During the

experiment is watchdog disableds.

It is written in Java and Matlab and is starting in separate thread together with

Robot application server.

Java part consist of 2 classes (Watchdog, AppServerObserver). Class Watchdog is

starting new thread and inform that a timeout has occurred. AppServerObserver is

evaluating Matlab function watchdog.m through MatlabControl JMI Wrapper, which

performs actions to test the components.

5.3 Camera calibration

The informations about the scene are obtained from camera. Top camera is used for the

cleaning objects on the playground, because gives the view of whole playground.

Objects, which are recognized in the image, are gripped by the robot. We need to

know the relation between the coordinates in the image and the coordinate system of the

robot.

Objects used in the experiments has standard height 33mm, ie. the upper bases of

objects lies in one plane. This allow us to solve this problem as 2D → 2D transforma-

tion. This transformation is represented by homography, for that ~u = H~x, where ~u is

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 51

representing in our case homogeneous coordinates of the center of the object recognized

in the image and ~x is representing homogenous coordinates of the center of the object in

the robot coordinates system.

5.3.1 Computing of the homography

We have mapping ~x→ ~u , where ~x is value of positioning by the robot and ~u is recognized

center of the object in the image. Homography is computed by DLT algorithm described

in [14].

At least four correspondences (Fig. 5.1) are needed for a computing the homography

by this algorithm. Correspondences are obtained by placing calibration object to four

different positions in the view of top camera. More precise calibration is obtained if the

positions are in the corners of the playground. Calibration object is placed by the robot

to the selected position and the next step is to recognized the center of the object in the

image from the top camera.

Figure 5.1: The positions of calibration object in the image.

We can see on Fig. 5.1 the quite dark image, because the TV set is turned off. Glass

above the TV reflect the construction, where top camera is attached.

Recognition of the center of the object in the image:

• Capture the image from the top camera and crop them (selected rows from 60 to

870).

• Convert the image to the binary image by thresholding with level 0.4.

• Remove all small objects (fewer than 200 pixels).

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 52

• Trace the exterior boundary of objects.

• Measure properties of image regions.

Figure 5.2: Captured image with the calibration object from the top cam-

era.

Figure 5.3: Binary image with removed all small objects.

We have obtained correspondence ~x → ~u, similarly repeat for the next positions to

obtain four correspondences.

Homography is computed by the DLT algorithm, where the input are these corre-

spondences.

H =


0.0066 0.5876 221.9813

0.5812 −0.0050 −375.5685

0.0000 0.0000 1.000


Usage: ~x = H−1~u, where ~u is recognized center of the object in the image.

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 53

Position Robot coordinates Image coordinates

x y x y

1 700 -350 46.8 821.5

2 700 300 1175.8 815.1

3 300 -300 1166.8 123.0

4 300 -350 44.3 132.9

Table 5.1: Selected positions of the calibration object during calibration

and recognized coordinates of the object centers.

5.4 World calibration

World, where is experiment processing, has own coordinate systems, called lattice coor-

dinates. All robot movements during experiment and also coordinates of lying objects on

playground are in lattice coordinates.

Figure 5.4: The relation between lattice and robot coordinates.

The relation ~l → ~x is represented by transformation matrix composed from rotation

(Mr), scale (Ms) and translation matrix (Mt), where ~l are lattice homogenous coordinates

and ~x are robot homogenous coordinates, that ~x = T~l.

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 54

Mr =


cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 0 1

 (5.1)

Ms =


s 0 0

0 s 0

0 0 1

 (5.2)

Mt =


1 0 0

0 1 0

tx ty 1

 (5.3)

T = (Ms ·Mr ·Mt)
T (5.4)

where α is angle between coordinate systems, ~t =

[
tx

ty

]
is representing the beginning

of lattice coordinate system in the robot coordinates, s is a scale coefficient.

Parameters α, ~t and s are saved in Matlab configuration file conf.m.

Current settings:

α = 90 (5.5)

s = 20 (5.6)

~t =

[
711

−600

]
(5.7)

Transformation matrix between lattice coordinates and the robot coordinates is

T =


0 −20 710

20 0 −265

0 0 0


Usage: ~x = T~l, where ~l are homogenous lattice coordinates and ~x are homogenous

robot coordinates.

5.5 Camera settings

Robot cell contains three color CCD cameras Pointgrey Flea2 to interact with environ-

ment. Each camera has own settings dependent on external illumination to return images

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 55

with same color intensity, white balance. This settings can be made automatically by

using of reference images or manually where the values are set to a certain type of en-

vironment. We are not using auto mode in camera, under our conditions did not work

correctly (color intensity in image was too high). Settings is described for each camera

in the App. C.4.

5.6 Object recognition

At the beginning of the experiments objects are placed on the playground and after

experiments are put placed to the store. Because it is not possible to always rely on the

fact that object will be positioned at the end of the experiment in the same position as

at the beginning, so we need to find these objects using the camera.

It is necessarily to find coordinates of the centers of objects placed on the playground,

their orientation and color. We chose the method for this purpose, which recognize objects

and their parameters from the image from the top camera.

Procedure for object recognition:

• Prepare the environment for the recognition, ei. move robot out of the view of the

top camera, turn on the lights.

• Set white background on the TV set and grab the image from the top camera.

• Set black background and also grab the image.

• Make difference between these two images (white image - black image). This image

will be used further.

Figure 5.5: Image with black background (left), with white background

(center) and the difference between them (right).

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 56

• Crop the image (selected are rows from index 60 to 870).

• Convert the image to the binary image by thresholding and computes the comple-

ment of the binary image.

• Remove all small objects (fewer than 200 pixels).

Figure 5.6: The binary image (left) and the complement to the binary

image (right).

• Trace the exterior boundary of objects.

• Measure properties of image regions:

- Area - the actual number of pixels in the region.

- Perimeter - the distance around the boundary of the region.

- Circularity - computed as 4πArea
Perimeter2

.

- Orientation - the angle between the x-axis and the major axis of the region.

- Centroid - the center of mass of the region.

• Classify the object type by the thresholding measured properties (area, circularity).

• Classify the color of the object by the thresholding mean value for each color in-

tensity.

Object type Area Circularity

From To From To

cube 2800 3200 0.65 0.85

cylinder 2100 2600 0.85 1

bridge 9200 9600 0.4 0.65

Table 5.2: Thresholds for the object type classification.

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 57

Figure 5.7: Recognized objects with orientation and center.

Color R G B

From To From To From To

blue 20 55 40 75 85 135

natural 145 190 125 170 100 140

yellow 175 230 150 200 40 80

green 55 120 110 160 40 80

red 155 220 45 75 35 60

Table 5.3: Thresholds for the object color classification.

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 58

5.7 Object manipulation

We need to prepare playground for the experiments. Playground is composed from various

types of objects which are placed on them by robot. Robot have to grip the object in

the object store are and place it to playground on the specified position. When the

experiment is finished, all objects on the playground are cleaned back to the object store

area.

5.7.1 Object placing to the playground

There is described algorithm to placing the objects from the object store area to the

playground.

input: An array of the ids and positions in the robot coordinates of the

objects, which will be placed on the playground ObjArray of size 3× n

place all objects to the playground ;

for i← 1 to n do

get the position of the object in the robot coordinates, where will be object

placed on the playground:

playgroundObjectPosition ← ObjArray(i, 2 : 3)T ;

get the position of the place in the object store area in the robot coordinates,

from where will be object gripped:

cubeStoreObjectPosition ← CubeStore(ObjArray(i, 1));

grip the object from the object store area:

CubeGrip(cubeStoreObjectPosition);

place the object to the playground:

CubeRelease(playgroundObjectPosition);

end

Algorithm 1: Placing the objects to the playground

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 59

5.7.2 Object cleaning from the playground

There is described algorithm to cleaning the objects from the playground to the object

store area.

input: An array of the ids and positions in the lattice coordinates of the

objects on the playground, which will be cleaned ObjArray of size 3× n

clean all objects placed on the playground ;

for i← 1 to n do

get the position of the object placed on the playground in the robot

coordinates from the input:

playgroundObjectPosition ← ObjArray(i, 2 : 3)T ;

get the position of the place in the object store area in the robot coordinates,

where will be object cleaned:

cubeStoreObjectPosition ← CubeStore(ObjArray(i, 1));

grip the object from the playground:

CubeGrip(playgroundObjectPosition);

place the object to the object store area:

CubeRelease(cubeStoreObjectPosition);

end

Algorithm 2: Cleaning the objects from the playground

5.8 Object store area

Objects, which are used for creating environments, for experiments and for calibration,

are stored in special area on the side in the ready of the robot.

At the beginning of the experiments objects are placed on the playground and after

experiments are placed back to the store.

The plan contains printed bases of objects with exact size and approximate color. It

is generated as post-script file in a Matlab together with MAT-file, which contains coor-

dinates of the centers of the objects in store (post-script) coordinations. This generator

CHAPTER 5. ROBOT PLATFORM SUPPORT MODULES 60

is using one source data file (Excel), where are described the properties of all objects

(height, width, color, eventually diameter). Post-script file is printed to a paper, which is

attached to the table on the side of the robot. The service operator is placing the cubes

by color, shape and symbol.

For better manipulation, recognition was chosen set of blocks with standard module

33 mm. Subset of 18 objects various colors and shapes was selected. The plan has own

coordinate system with center in upper-left corner. Unit is millimeter.

Store contains 18 objects (3 types of shapes, 5 types of colors) and 1 special calibration

cylinder. Each object has unique ID represented as number (1− 19) list in App.D.

Color Amount

green 4

red 4

blue 4

natural 4

yellow 4

Table 5.4: Amount of the color types.

Shape Amount

bridge 2

cylinder 7

cube 9

Table 5.5: Amount of the object types.

Chapter 6

Conclusion

The goal of the thesis is to study the robot Mitsubishi RV6SDL, the planned function of

robot platform in the project MASH. Design software for remote robot control, automatic

distribution and resetting of manipulated objects. Next task is to implement designed

software and perform experiments with it.

Integration of robotic cell to the MASH platform and design of the robotic task (en-

vironments, goals, actions) is described in the first part. Currently are is implemented

one series of robotic tasks, where the goal is reach the red cube at four different environ-

ments. Devices (robot, gripper, camera, TV set), which are used in the robot platform,

are described in the next part.

Chapter about software architecture and its structure describes in detail software

solution, where the application has two main parts - Robot application server written in

JAVA and Core environment written in Matlab.

Last part describes modules: camera calibration, world calibration, application to

display image in scene, object manipulation and recognition, which are used in the robot

platform.

Robot platform is able to to perform action (robot movement) on selected environment

(currently implemented four environment) which is represented by objects placed on

the playground with specified background, with chosen goal (reach the read object on

the playground) and return reward of this action and images from cameras providing

perception.

The displacement of blocks takes currently about 5 seconds per block, the similar is

the time for block removal. Both times seems to be both sufficiently fast as well there is

a little space for improvement.

The standard motion step, that is accepting the command, move, capturing of three

61

CHAPTER 6. CONCLUSION 62

full resolution images and sending them to the experiment server takes currently about

4 seconds, most of the time consumed by image handling and transfer. There seems to

be quite a space for improvement here.

The robot platform is connected to the MASH platform. It is very often used by our

contributor at INRIA France for the goal-planning experiments.

The platform is modular, so it is possible to simply adding new goals, environments,

actions. It has several features which can be implemented in future. One of the planned

extensions is to have the possibility to define the background image by the user. Extension

of the MAS protocol is needed in this case. Next one is the possibility to define the size

of the world and the position of individual blocks will greatly extent the flexibility of

the robotic platform. One of the extensions worth to consider is an user defined reward.

This significantly increases flexibility of the system to perform different tasks without

explicitly recoding the properties of the robot platform.

Bibliography

[1] P. Abbet and F. Fleuret. First series of simulator tasks. European Project MASH -

Massive sets of Heuristics for Machine Learning deliverable, June 2010.

[2] P. Abbet and F. Fleuret. Protocol specifications. European Project MASH - Massive

sets of Heuristics for Machine Learning deliverable, March 2010.

[3] The MathWorks, Inc. MATLAB Documentation, 2011. http://www.mathworks.

com/help/techdoc/ [Accessed 12th May 2011].

[4] M. Meloun. Mitsubishi melfa robot control toolbox pro matlab, 2011. http://cw.

felk.cvut.cz/doku.php/help/common/robot_mitsubishimelfa_toolbox/ [Ac-

cessed 12th May 2011].

[5] MITSUBISHI ELECTRIC CORPORATION. CR1D/CR2D/CR3D Controller - IN-

STRUCTION MANUAL - Controller setup, basic operation, and maintenance, 2009.

[6] MITSUBISHI ELECTRIC CORPORATION. CRnQ/CRnD Controller - INSTRUC-

TION MANUAL - Detailed explanations of functions and operations, 2009.

[7] MITSUBISHI ELECTRIC CORPORATION. RV-6SD Series - INSTRUCTION

MANUAL - ROBOT ARM SETUP, MAINTENANCE, 2009.

[8] MITSUBISHI ELECTRIC CORPORATION. RV-6SD/6SDL Series - Standard

Specifications Manual, 2009.

[9] SCHUNK GmbH. Servo Electric 2-Finger-Parallel-Gripper Type PG 70, As-

sembly and Operating Manual, 2009. http://cmp.felk.cvut.cz/cmp/hardware/

chapadloSchunk/PG70_en_2010-02.pdf [Accessed 12th May 2011].

[10] SCHUNK GmbH. SCHUNK Motion, 2010. http://cmp.felk.cvut.cz/cmp/

hardware/chapadloSchunk/MotionControl_Eng.pdf [Accessed 12th May 2011].

63

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/techdoc/
http://cw.felk.cvut.cz/doku.php/help/common/robot_mitsubishimelfa_toolbox/
http://cw.felk.cvut.cz/doku.php/help/common/robot_mitsubishimelfa_toolbox/
http://cmp.felk.cvut.cz/cmp/hardware/chapadloSchunk/PG70_en_2010-02.pdf
http://cmp.felk.cvut.cz/cmp/hardware/chapadloSchunk/PG70_en_2010-02.pdf
http://cmp.felk.cvut.cz/cmp/hardware/chapadloSchunk/MotionControl_Eng.pdf
http://cmp.felk.cvut.cz/cmp/hardware/chapadloSchunk/MotionControl_Eng.pdf

BIBLIOGRAPHY 64

[11] SHARP ELECTRONICS. LCD COLOUR TELEVISION - OPERATION MAN-

UAL, 2009.

[12] V. Smutný and M. Dubec. First series of robotic tasks. European Project MASH -

Massive sets of Heuristics for Machine Learning deliverable, December 2010.

[13] V. Smutný and M. Dubec. Operational robot. European Project MASH - Massive

sets of Heuristics for Machine Learning deliverable, September 2010.

[14] Hartley, R. and Zisserman, A. Multiple View Geometry in computer vision.

Cambridge University Press, 2nd edition, 2003.

[15] t. Sonka, M. and Boyle, R. Image Processing, Analysis, and Machine Vision.

Thomson Learning, 3rd edition, 2007.

Appendix A

Appendix: Toolboxes

To control hardware devices is necessary to have a software. Many devices are delivered

only with a description of the communication interface. Therefore is necessary to pro-

gram the specific driver for the communication. The next section will be described such

drivers for robot, gripper, television and camera. All of these devices except cameras

communicates with the computer via a serial line.

A.1 Robot toolbox

The Mitsubishi robot RV6SDL (Sec. 3.1.1) is controlled by the Mitstubishi Melfa

Toolbox. Detail description of this toolbox is in manual [4].

A.2 Gripper toolbox

A.2.1 Introduction

This toolbox provides access to gripper control in Matlab using a standard interface for

grippers Schunk. Allows to move the gripper to certain position or gripping by force.

Toolbox actually supports electrical gripper SCHUNK PG70. Communication with the

gripper controller is realized through RS232 interface. Gripper control toolbox requires

MATLAB 7.6 (R2008) and above, with the support serial port object (x64 to be higher).

Make sure the power is on the gripper.

65

APPENDIX A. APPENDIX: TOOLBOXES 66

A.2.2 Initialization and close

g r ippe r = gpOpen(’SCHUNK’)

Function load gripper specification and open communication port. The port must be

free for Matlab. Object gripper is an instance of class derived from hgsetget class. This

function returns the control object used by other toolbox functions.

gpClose (g r ippe r)

Close the communication with the gripper.

A.2.3 Typical workflow with toolbox

First we need to open communication with the gripper by using gpOpen, thus creating

a handle to the gripper. Closing of communication shall be made by calling function

gpClose. Function gpOpen required free serial port, after calling is serial port acquired.

On other side, function gpClose is expecting occupied serial port, and after end of com-

munication with gripper is released.

Writing to the serial link is performed by gpPrintf, reading gpScanf. Respectively,

can be used the gpSendCmd for write command and to read the answers. gpExec function

sends the command specified in [10] and reads the answer. Identifier of the gripper is

automatically entered from gripper description. All functions check whether the commu-

nication was successful.

Finally, the functions gpClose close communication with the gripper.

Returns variable r, which returns most of the functions, means that there is a problem

communicating with the gripper (force command, etc), where r is zero, so communication

was successful, ie. a command was sent from a PC, the gripper took command and is

syntactically correct. For some functions with Safe option, which immediately after

sending the command checks whether the gripper was an error.

A.2.4 Features overview

All functions are prefixing gp. For all the functions is the argument a handle to the

gripper and the return variable r (control communications described above). Summary

of commonly used functions and the arguments / return values:

APPENDIX A. APPENDIX: TOOLBOXES 67

gpAcquireCom Acquires this com port for a grip-

per.

gpClose Closes communication with grip-

per.

gpComprops Serial Creates serial object properties

structure. The properties’ names

must match to the serial object

properties’ names.

gpFlush Flushes gripper comport.

gpGetState Returns gripper position, current,

velocity and state.

gpGrippers Lists available grippers imple-

mented in the toolbox.

gpIsFreeCom Whether the communication is

not acquired.

gpMoveGrip Moves the gripper to force.

gpMovePos Moves the gripper to specified po-

sition.

gpOpen Opens the communication with

gripper.

gpParseIO Parses the IO state bitfield into

structure.

gpParseState Parses the gripper state bitfield

into structure.

gpPurge Clears errors.

gpSendCmd Sends a command to gripper and

reads the reply.

gpSendCmdSafe Sends a command to gripper,

reads the reply and checks error.

gpStop Stops the gripper.

gpWaitForPos Waits until the gripper reach po-

sition.

gpWaitForStop Waits until the gripper is in stop

state.

Table A.1: List of basic commands to manipulate with gripper.

APPENDIX A. APPENDIX: TOOLBOXES 68

A.2.5 Basic movement

The control unit returns the position of gripper in millimeters. Function gpMovePos per-

form movement for certain position, otherwise function gpMoveGrip perform movement

on the force. All movement functions are asynchronous. Waiting for completion of move-

ment can be used gpWaitForStop. Detailed description of physical features is the manual

for a gripper [9].

A.2.6 Example

%open the g r i p p e r communication wi th d e f a u l t p r o p e r t i e s

g = gpOpen(’SCHUNK’) ;

%move g r i p p e r to p o s i t i o n 50mm

gpMovePos (g , 5 0) ;

%wait u n i t the g r i p p e r reach the p o s i t i o n 48mm

gpWaitForPos (g , 4 8) ;

%g r i p p i n g by f o r c e −1A

gpMoveGrip (g ,−1) ;

%wait to s top the g r i p p e r

gpWaitForStop (g) ;

%g e t the curren t p o s i t i o n

pos = gpGetState (g) ;

%c l o s e the communication wi th g r i p p e r

gpClose (g) ;

APPENDIX A. APPENDIX: TOOLBOXES 69

A.3 TV set toolbox

Television toolbox is used to control television in Matlab. Provides remote control of TV

through serial line. Allows power on/off, switch the input source. Toolbox is supporting

only SHARP televisions. It requires Matlab 7.6 (R2008) and above, with the support

serial port object (x64 to be higher).

A.3.1 Initialization and close

tv = tvOpen (’SHARP’)

Function load television specification and open communication port. The serial port must

be free for Matlab. Object television is an instance of class derived from hgsetget class.

This function returns the control object used by other toolbox functions.

tvClose (tv)

Close the communication with the television.

A.3.2 Typical workflow with toolbox

First we need to open communication with the television by using tvOpen, thus creating

a handle to the television. Closing of communication shall be made by calling function

tvClose. Function tvOpen required free serial port, after calling is serial port acquired.

On other side, function tvClose is expecting occupied serial port, and after end of com-

munication with the television is released.

Writing to the serial link is performed by tvPrintf, reading tvScanf. Respectively,

can be used the tvSendCmd for write command and to read the answers. tvExec function

sends the command specified in [11] and reads the answer. Identifier of the television

is automatically entered from television description. All functions check whether the

communication was successful.

Finally, the functions tvClose close communication with the television.

Returns variable r, which returns most of the functions, means that there is a problem

communicating with the television (force command, etc), where r is zero, so communica-

tion was successful, ie. a command was sent from a PC, the television took command and

is syntactically correct. For some functions with Safe option, which immediately after

sending the command checks whether the television was an error.

APPENDIX A. APPENDIX: TOOLBOXES 70

A.3.3 Example

%open the TV s e t communication wi th d e f a u l t p r o p e r t i e s

t = tvOpen (’SCHUNK’) ;

%power on t v

tvPowerOn (t) ;

%s e t the HDMI1 as source o f s i g n a l

tvInputHDMI (t , 1) ;

%mute the volume

tvVolume (t , 0) ;

%power o f f t v

tvPowerOff (t) ;

%c l o s e the communication wi th TV s e t

tvClose (g) ;

A.4 Camera toolbox

The cameras are connected to the computer by bus Firewire 800. They are controlled

from Matlab by using MEX libraries written in C. The MEX libraries are using original

SDK FlyCapture2 from Point Great Research to direct access to cameras. They were

developed in the MS Visual Studio 2010.

Matlab function ctGrabImage is creating (if not existing yet) camera context, next

grab the image and demosaicing them.

List of MEX libraries and their description:

• ctInitCam - create the camera context, connect to this context, set the video mode

and frame-rate and start capturing

• ctGrabImg - grab the image from the buffer, convert them to RGB format

APPENDIX A. APPENDIX: TOOLBOXES 71

• ctStopCam - stop capturing and destroy the context

A.4.1 Example

%open the camera c o n t e x t f o r the TOP camera

%with r e s o l u t i o n 640 x480

context = ctInitCam () ;

%grab the images

img1 = ctGrabImg (context) ;

img2 = ctGrabImg (context) ;

img3 = ctGrabImg (context) ;

%stop the camera c o n t e x t

ctStopCam (context)

Appendix B

Appendix: MASH Application

Server Protocol

B.1 Description of the MAS protocol

This section details the version 1.5 of the protocol used by the Robot Application Server.

[2]

B.1.1 Command: STATUS

Response:

READY

OR

BUSY

Description:

Indicates whether the Server can accept commands from the Client on this connection,

or if the Server is already busy.

For instance, the Experiment Servers can only run one experiment at a time, but the

Image Server can serve images to an unlimited number of clients.

72

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 73

B.1.2 Command: INFO

Response:

TYPE ApplicationServer

SUBTYPE Interactive

PROTOCOL 1.5

Description:

Used to check that the Client talks to the correct Server, using the correct protocol.

B.1.3 Command: DONE

Response:

GOODBYE

Description:

The connection is closed after that.

B.1.4 Command: LIST GOALS

Response:

GOAL <name 1>

GOAL <name 2>

...

GOAL <name N>

END_LIST_GOALS

Description:

Ask for a list of the goals provided by the Server.

B.1.5 Command: LIST ENVIRONMENTS

Format:

LIST_ENVIRONMENTS <goal name>

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 74

Response:

ENVIRONMENT <name 1>

ENVIRONMENT <name 2>

...

ENVIRONMENT <name N>

END_LIST_ENVIRONMENTS

Otherwise:

UNKNOWN_GOAL <goal>

OR

INVALID_ARGUMENTS <arguments>

Description:

Ask for a list of the environments provided by the Server where the given goal can be

used.

B.1.6 Command: INITIALIZE TASK

Format:

INITIALIZE_TASK <task name> <environment name>

Responses:

When successful:

AVAILABLE_ACTIONS <action 1> <action 2> ... <action N>

AVAILABLE_VIEWS <view 1> <view 2> ... <view N>

Otherwise:

UNKNOWN_GOAL <goal>

OR

UNKNOWN_ENVIRONMENT <environment>

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 75

OR

INVALID_ARGUMENTS <arguments>

OR

ERROR <description>

Description:

Notify the Server about the task that the Client wants to work on. The Response

contains:

• all the actions that can be performed on the task

• a description of each available view, in the form <name>:<width>x<height> (for

example: main:320x240)

B.1.7 Command: BEGIN TASK SETUP

Responses:

OK

OR

NO_TASK_SELECTED

OR

ERROR <description>

Description:

Tell the Server that all the following Commands (up until END TASK SETUP) are task-

specific settings. See the documentation of the chosen task for more details.

Note that a task must have been successfully initialized before receiving that com-

mand.

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 76

B.1.8 Command: END TASK SETUP

Responses:

OK

OR

ERROR <description>

Description:

Terminate the TASK SETUP section.

B.1.9 Command: TEACHING

Format:

TEACHING <ON or OFF>

Response:

OK

OR

NOT_SUPPORTED

OR

NO_TASK_SELECTED

OR

INVALID_ARGUMENTS <arguments>

OR

ERROR <description>

Description:

When enabled (ON), the Application Server might provide “good” actions as part of

the Responses to the ACTION Commands. They may be used to train a predictor. The

default is OFF.

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 77

B.1.10 Command: RESET TASK

Response:

When successful:

STATE_UPDATED

Otherwise:

NO_TASK_SELECTED

OR

ERROR <description>

Description:

Reset the state of the task. The initial state is task-dependent: it can be something

random or always the same thing.

B.1.11 Command: GET VIEW

Format:

GET_VIEW <view name>

Responses:

When successful:

VIEW <view name> <MIME type> <image size in bytes>

<binary data>

Otherwise:

NO_TASK_SELECTED

OR

INVALID_ARGUMENTS <arguments>

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 78

OR

UNKNOWN_VIEW <view>

OR

ERROR <description>

Description:

Retrieves one of the views. The Server indicates the format of the image by sending

its MIME type as part of the Response. The following MIME types are supported:

• image/ppm: Portable Pixel Map

• image/pgm: Portable Gray Map

• image/jpeg: JPEG images

• image/png: PNG images

• image/mif: MASH Image Format (see Appendix B.2 on the following page)

B.1.12 Command: ACTION

Format:

ACTION <action>

Responses:

When successful:

REWARD <reward>

(optional) EVENT <event>

(optional) TEACHER_ACTION <action>

STATE_UPDATED | FINISHED

Otherwise:

NO_TASK_SELECTED

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 79

OR

UNKNOWN_ACTION <action>

OR

INVALID_ARGUMENTS <arguments>

OR

ERROR <description>

Description:

Perform the given action on the task.

EVENT is an optional part of the Response, that contains a human-readable description

of what happened due to the action.

TEACHER ACTION is an optional part of the Response, that provides a “good” action

as calculated by the Application Server. It may be used to train a predictor.

FINISHED indicates that the task was successfully solved.

B.2 MASH Image Format

The MASH Image Format has a very simple structure. The primary goal is to simplify

the implementation of the Application Servers, which do not have to rely on an external

library to transmit images to their clients. [2]

The header for version 1 is 8 byte long, composed of the following unsigned chars:

Offset Value Meaning

0 77 ASCII code of ’M’

1 73 ASCII code of ’I’

2 70 ASCII code of ’F’

3 1 Version number

4 width % 256 Width least significant byte

5 width / 256 Width most significant byte

6 height % 256 Height least significant byte

7 height / 256 Height most significant byte

APPENDIX B. APPENDIX: MASH APPLICATION SERVER PROTOCOL 80

then from 8 to 8 + 3 * width * height, pixels are listed line after line. Each pixel

is defined with 3 bytes to be interpreted as the RED, GREEN and BLUE components

encoded as unsigned char (0..255).

Hence, the total byte size of an image in that format is

8 + 3 * width * height

Appendix C

Appendix: Device setup parameters

C.1 Robot

C.1.1 Robot control unit setup

The robot is unique identify by robot and slot number:

• Robot number: 1

• Slot number: 1

Robot control unit setup parameters:

• MEPAR - work above plane with the z coordinate. Value: 50 mm.

• MEJAR - sets the overrun limit value for each joint axis. Value:

Joint - [deg] + [deg]

J1 -170 170

J2 -93 135

J3 -129 166

J4 -160 160

J5 -100 100

J6 -200 200

• MEXTL - sets the default value for the tool data. Value:

• COMSPEC specified the communication method of the robot controller and RT-

ToolBox2 (conventional communication method). Value: 0

81

APPENDIX C. APPENDIX: DEVICE SETUP PARAMETERS 82

(MEXTL) [mm, deg]

X 0

Y 0

Z 159.2

A 0

B 0

C 0

C.1.2 RS-232 parameters

RS-232 cable has to be crossed according documentation [7]. RS-232 is currently set to:

• COM9,

• 38400 baud,

• 8 bits,

• parity even,

• two stopbits,

• non-procedural,

• terminator CR

C.2 Gripper

The gripper is unique identify by gripper ID:

• Gripper ID: 12

C.2.1 RS-232 parameters

RS-232 is set to:

• COM8,

• 38400 baud,

APPENDIX C. APPENDIX: DEVICE SETUP PARAMETERS 83

• 8 bits,

• parity even,

• two stopbits,

• non-procedural,

• terminator CR

C.3 TV set

C.3.1 RS-232 parameters

RS-232 is set to:

• COM7,

• 9600 baud,

• 8 bits,

• non-parity,

• two stopbits,

• non-procedural,

• terminator CR

APPENDIX C. APPENDIX: DEVICE SETUP PARAMETERS 84

C.4 Camera

Each camera has own default settings described in table:

Top Oblique Gripper

Brightness [%] 0 0 0

Exposure [EV] 1.757 0.539 1.398

Sharpness 1024 1024 1024

Hue [deg] 0 0 0

Saturation [%] 100 100 100

Gamma 1 1 1

Pan 2 2 2

Tilt 0 0 0

Shutter [ms] 16.020 149.869 172.678

Gain [dB] -4.012 6.053 9.678

Frame Rate [fps] 7.5 7.5 7.5

W.B. (Red) 597 480 519

W.B. (Blue) 693 839 752

Table C.1: Default camera settings

Appendix D

Appendix: Object store area

D.1 Description of the objects

The next table is describing all objects placed in the object store area and their properties

used as input to the plan generator (Sec. 5.8).

Coordinates

ID Shape Width Height Diameter Color x y

1 cube 33 33 - natural 55 50

2 cube 33 33 - natural 165 50

3 cube 33 33 - natural 275 50

4 cube 33 33 - natural 385 50

5 cube 33 33 - blue 495 50

6 cube 33 33 - blue 55 150

7 cube 33 33 - red 165 150

8 cube 33 33 - red 275 150

9 cube 33 33 - green 385 150

10 cube 33 33 - green 495 150

11 cube 33 33 - yellow 55 250

12 cube 33 33 - yellow 165 250

13 bridge 100 33 - red 275 250

14 bridge 100 33 - green 495 250

15 cylinder - - 33 blue 55 350

16 cylinder - - 33 green 165 350

17 cylinder - - 33 yellow 275 350

18 cylinder - - 33 red 495 350

Table D.1: List of all objects placed in the object store area

85

APPENDIX D. APPENDIX: OBJECT STORE AREA 86

D.2 Plan of the object store area

We can see on Fig. D.1 generated plan, which is attached to the table.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

18

17

16

15

19

Figure D.1: The plan of the object store area.

Appendix E

Appendix: Content of the included

CD

CD is included to work. It contains the source codes and electronic version of thesis.

• Directory src - complete source codes of the application server

• Directory thesis - final electronic version of the thesis

• Directory thesis-src - LaTeX source codes of the electronic version of the thesis

(contains also figures)

87

