Magnetická rezonance

J. Kybic, J. Hornak¹, M. Bock, J. Hozman, P.Doubek

2008-2018

¹http://www.cis.rit.edu/htbooks/mri/

Magnetická rezonance

- Úvod a motivace
- Fyzikální základy
- NMR spektroskopie
- Prostorové zobrazování
- Lékařské MR systémy
- Speciální techniky: rychlé techniky, funkční MRI, ...

Úvod

Základy

Historie Všeobecně. . .

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

Názvy a zkratky pro MRI

- MR Magnetic Resonance
- MRI Magnetic Resonance Imaging (zobrazování magnetickou rezonancí)
- MRT Magnetic Resonance Tomography Magnetic Resonance Technology
- MRS Magnetic Resonance Spectroscopy
- NMR Nuclear Magnetic Resonance
- JMR Jaderná Magnetická Rezonance
- KST Kernspintomografie
- pMRI positional MRI
- fMRI functional MRI

MR scanner

Princip MRI ve zkratce

NMR Nuclei Magnetic field Resonance

absorbce fotonu \rightarrow excitace \rightarrow relaxace

MRI Magnetic field RF pulse Induction

Permanentní magnety - architektura "OPEN"

Elektromagnety - architektura "OPEN"

Philips-Marconi Panorama 0.23T a 0.6T

FONAR Stand-Up MRI

Uzavřený magnet selenoid, válcový magnet

<u>ÚVOD</u> - průběh MRI

- 1. Umístění objektu do silného magnetického pole
- 2. Do objektu vyšleme rádiové vlny (2 až 10 ms)
- 3. Vypneme rádiový vysílač
- 4. Detekce rádiových vln vysílaných objektem
- 5. Uložení naměřených dat (rádiové vlny v čase)
- 6. Opakování bodu 2. Pro získání více dat
- 7. Zpracování "surových" dat za účelem rekonstrukce
- 8. Objekt opouští silné magnetické pole

MRI – Example

Brain slice:

Úvod

Základy Historie Všeobecně...

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

Stručná historie MRI

- 1946 Felix Bloch, Edward Purcell, nezávislý objev jevu
- 1950–1970 NMR, spektroskopická analýza
- 1971 Raymond Damadian, relaxační časy tkání jsou různé
- 1973 Hounsfield, CT ukázalo ochotu nemocnic investovat do zobrazování
- 1973 Paul Lauterbur, tomografické MRI (zpětná projekce)
- 1975 Richard Ernst, Fourier MRI
- 1977 Peter Mansfield, echo-planar imaging (EPI), později umožní 30 ms/řez

Stručná historie MRI (2)

- 1980 Edelstein, MRI těla (3D), 5 min/řez
- 1986 MRI těla (3D), 5 s
- 1986 MRI+NMR mikroskop, rozlišení 10 μ m v 1 cm vzorku
- 1987 zobrazení srdečního cyklu v reálném čase
- 1987 MRA (angiografie), tok krve (bez kontrast. látek)
- 1992 funkční MRI, mapování funkcí mozku

Nobelovy ceny

- 1952 Felix Bloch, Edward Purcell, fyzika, objev jevu
- 1991 Richard Ernst, chemie, Fourier MRI
- 2003 Paul Lauterbur, Peter Mansfield, lékařství, MRI v medicíně

Rozšíření MRI

- V r. 2013 bylo ve světě asi 20000 MRI skenerů
- 75 miliónů vyšetření za den (20/den na každém skeneru)
- V ČR desítky (17 v roce 2000, 80 v roce 2013)
- Zařízení stojí $10 \sim 100$ mil. Kč
- Jedno vyšetření ~ 10 tis. Kč

Potřebné profese, možnosti uplatnění

- Při vyšetření
 - Lékař radiolog ("čte" MR obrazy)
 - Operátor skeneru
 - Operátor dodatečného zpracování
 - 7dravotní sestra
- Údržba
 - Technik
- Vývoj
 - Fyzika magnetické rezonance
 - Fyzika supravodivých magnetů
 - Mechanika konstrukce
 - Zpracování signálů a obrazů
 - Elektronika, výpočetní technika
 - Architektura

Výrobci

Fonar, General Electric, Hitachi, Philips, Siemens, Toshiba

Tomografické zobrazování

Tomografické zobrazování

Tomografické zobrazování

Pixel

- Abbe, Rayleigh \rightarrow nelze zobrazovat objekty o mnoho menší než λ
- U MRI $\lambda pprox 5 \sim 10\,{
 m m}$, rozlišení $\sim 1\,{
 m mm}$. Jak to?

- Abbe, Rayleigh \rightarrow nelze zobrazovat objekty o mnoho menší než λ
- U MRI $\lambda pprox 5 \sim 10\,{
 m m}$, rozlišení $\sim 1\,{
 m mm}$. Jak to?
- Standardní zobrazování používá prostorovou závislost amplitudy absorbovaného či emitovaného záření.
- MRI používá prostorovou závislost frekvence a fáze absorbovaného a emitovaného záření.

Principy MRI

- Lidské tělo: tuk a voda. 63 % vodíku.
- Jádro vodíku = proton.
- Proton má vlastnost zvanou jaderný spin (podobně jako hmotnost a elektrický náboj). Něco jako rotace kolem své osy.
- Částice s nenulovým spinem se přibližně chová jako magnet → MRI signál

Úvod

Základy

Historie Všeobecně. . .

Fyzika MRI Jaderný spin

Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

Jaderný spin

- Jaderný spin *I* je násobkem 1/2
- Volné protony, neutrony, elektrony mají spin 1/2
- Atom deuteria ²H (elektron, proton, neutron): celkový elektronový spin 1/2, celkový jaderný spin 1.
- U párů částic se spin může vyrušit. Helium (He, 2 elektrony, 2 protony, 2 neutrony): celkový spin 0
- Jen nespárované spiny $(I \neq 0)$ jsou užitečné pro MRI
- sudé hmotové číslo & sudé atomové číslo \Rightarrow I = 0 (^{12}C , ^{16}O)
- sudé hmotové číslo & liché atomové číslo $\Rightarrow I \in \{1, 2...\}$ (¹⁴N, ²H, ¹⁰B)
- liché hmotové číslo $\Rightarrow I \in \{\frac{1}{2}, \frac{3}{2}, \ldots\}$ (¹H, ¹³C, ¹⁵N)

Magnetické kvantové číslo, magnetický moment

 magnetické kvantové číslo m ∈ {I, I − 1, ..., −I} udává spinový stav jádra, pro ¹H, ¹³C, ¹⁵N, ¹⁹N, ³¹P (nejběžnější jádra)

$$I = 1/2 \Rightarrow m = \pm 1/2$$

jádro má tedy dva možné spinové stavy

• magnetický moment $\vec{\mu}$ je vektorová veličina

$$\vec{\mu} = \gamma \vec{l} h$$

kde $h = 6.63 \cdot 10^{-34}$ Js je Planckova konstanta

Spin v magnetickém poli

$$f = \gamma B$$

- f resonanční frekvence, také Larmorova frekvence
- B [Tesla] intenzita magnetického pole
- γ gyromagnetická konstanta daného jádra
- Pro ¹H, $\gamma = 42.58 \text{ MHz/T}$ (někdy udávaná v [rad/T], pak se píše $\frac{\gamma}{2\pi}$ místo γ)
- Spin (částice) může absorbovat foton o frekvenci právě f

Vlastnosti relevantních prvků

Izotop	Nukleární spin /	$\gamma ~[{\sf MHz}/{\sf T}]$	citlivost [%]
^{1}H	1/2	42.58	100%
² H	1	6.54	
¹³ C	1/2	10.71	2%
¹⁹ F	1/2	40.08	83%
²³ Na	3/2	11.27	9%
³¹ P	1/2	17.25	7%

Úvod Základy Fyzika MRI Jaderný spin Interakce Boltzmannova statistika Makroskopicky

Spin v magnetickém poli (2)

Konfigurace:

Přechod mezi energetickými stavy

• Absorbováním fotonu s energií

$$E = hf = h\nu = h\gamma B$$

může spin přejít do vysokoenergetického stavu (excitace)

• Při zpětném přechodu (relaxace) se foton vyzáří

Energetický diagram

$$E = hf = h\gamma B$$

Pro H, typicky $f = 15 \sim 80$ MHz.

Úvod

Základy

Historie Všeobecně. . .

Fyzika MRI

Jaderný spin

Interakce

Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

Continous wave NMR (1)

- Konstantní frekvence
- Proměnné magnetické pole
- Měříme absorbovanou energii

Continous wave NMR (1)

- Konstantní frekvence
- Proměnné magnetické pole
- Měříme absorbovanou energii

Continous wave NMR (1)

- Konstantní frekvence
- Proměnné magnetické pole
- Měříme absorbovanou energii

Continous wave NMR (2)

- Konstantní magnetické pole
- Proměnná frekvence
- Měříme absorbovanou energii

Continous wave NMR (2)

- Konstantní magnetické pole
- Proměnná frekvence
- Měříme absorbovanou energii

Continous wave NMR (2)

- Konstantní magnetické pole
- Proměnná frekvence
- Měříme absorbovanou energii

Úvod

Základy Histori

Všeobecně...

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice Úvod Základy Fyzika MRI Jaderný spin Interakce Boltzmannova statistika Makroskopicky

Spin v magnetickém poli (2)

Konfigurace:

Boltzmannova statistika

- Spiny v magnetickém poli
- Počet spinů s nízkou energií N^-
- Počet spinů s vysokou energií N^+

$$\frac{N^-}{N^+} = e^{-\frac{E}{kT}}$$

kde $k = 1.3805 \cdot 10^{-23}$ je Boltzmannova konstanta T [Kelvin] je teplota

Boltzmannova statistika a NMR

$$\frac{N^-}{N^+} = \mathrm{e}^{-\frac{E}{kT}}$$

- NMR detekuje (velmi malý) rozdíl $N^- N^+$
- rezonance \rightarrow citlivost NMR
- nízká $\mathcal{T} o ext{větší rozdíl}$
- vysoká $T ~
 ightarrow N^- N^+
 ightarrow 0$

Odvození Boltzmannovy statistiky

- Systém S + rezervoár R (s teplotou T)
- Mějme stavy s_i s energií ε_i s N_i částicemi.
- Jaké jsou pravděpodobnosti stavů s_i?

Odvození Boltzmannovy statistiky (2)

• Fundamentální předpoklad termodynamiky (2.zákon):

- Izolovaný systém v rovnováze má maximální entropii
- Izolovaný systém má všechny stavy stejně pravděpodobné
- *S* + *R* je izolovaný
- Zachování energie: $U_R + U_S = U_0 = \text{const}$

Odvození Boltzmannovy statistiky (2)

• Fundamentální předpoklad termodynamiky (2.zákon):

- Izolovaný systém v rovnováze má maximální entropii
- Izolovaný systém má všechny stavy stejně pravděpodobné
- S + R je izolovaný
- Zachování energie: $U_R + U_S = U_0 = \text{const}$
- Nechť počet stavů R s energií U je $\Omega(U)$
- Pravděpodobnost $P(U) \sim \Omega(U)$
- Pravděpodobnost $P(s_i) \sim \Omega_R(U_0 \varepsilon_i)\Omega_S(\varepsilon_i) = \Omega(U_0)$

Odvození Boltzmannovy statistiky (2)

• Fundamentální předpoklad termodynamiky (2.zákon):

- Izolovaný systém v rovnováze má maximální entropii
- Izolovaný systém má všechny stavy stejně pravděpodobné
- S + R je izolovaný
- Zachování energie: $U_R + U_S = U_0 = \text{const}$
- Nechť počet stavů R s energií U je $\Omega(U)$
- Pravděpodobnost $P(U) \sim \Omega(U)$
- Pravděpodobnost $P(s_i) \sim \Omega_R(U_0 \varepsilon_i)\Omega_S(\varepsilon_i) = \Omega(U_0)$

$$\frac{P(s_1)}{P(s_2)} = \frac{\Omega_R(U_0 - \varepsilon_1)}{\Omega_R(U_0 - \varepsilon_2)}$$

Entropie

Entropie = míra neuspořádanosti

Statistická definice

$$S = k \log \Omega$$

Termodynamická definice

$$\mathrm{d}S = \frac{\mathrm{d}U}{T}$$

kde Ω je počet stavů a ΔU je rozptýlená nevyužitelná energie.

Odvození Boltzmannovy statistiky (3)

Odvozené pravděpodobnosti:

$$\frac{P(s_1)}{P(s_2)} = \frac{\Omega_R(U_0 - \varepsilon_1)}{\Omega_R(U_0 - \varepsilon_2)}$$

z definice entropie: $S = k \log \Omega \rightarrow \Omega = e^{S/k}$

$$\frac{P(s_1)}{P(s_2)} = \frac{\mathrm{e}^{S_R(U_0 - \varepsilon_1)/k}}{\mathrm{e}^{S_R(U_0 - \varepsilon_2)/k}} = \mathrm{e}^{S_R(U_0 - \varepsilon_1)/k - S_R(U_0 - \varepsilon_2)/k}$$
$$= \mathrm{e}^{\frac{\Delta S_R}{k}}$$

Odvození Boltzmannovy statistiky (3)

$$\frac{P(s_1)}{P(s_2)} = e^{S_R(U_0 - \varepsilon_1)/k - S_R(U_0 - \varepsilon_2)/k} = e^{\frac{\Delta S_R}{k}}$$

jelikož $\varepsilon_i \ll U_0$

$$S_{R}(U_{0} - \varepsilon_{i}) \approx S_{R}(U_{0}) - \varepsilon_{i} \frac{\mathrm{d}S_{r}}{\mathrm{d}U} = U_{0}$$
$$\Delta S_{R} = -(\varepsilon_{1} - \varepsilon_{2}) \frac{\mathrm{d}S_{r}}{\mathrm{d}U} = U_{0}$$

z termodynamické definice dS = dU/T:

$$\Delta S_R = -\frac{(\varepsilon_1 - \varepsilon_2)}{T}$$

Odvození Boltzmannovy statistiky (3)

$$\frac{P(s_1)}{P(s_2)} = e^{S_R(U_0 - \varepsilon_1)/k - S_R(U_0 - \varepsilon_2)/k} = e^{\frac{\Delta S_R}{k}}$$
$$\Delta S_R = -\frac{(\varepsilon_1 - \varepsilon_2)}{T}$$
$$\frac{P(s_1)}{P(s_2)} = \frac{e^{-\varepsilon_1/(kT)}}{e^{-\varepsilon_2/(kT)}}$$

$P(s_i) \propto { m e}^{-arepsilon_i/(kT)}$

kde $e^{-\varepsilon_i/(kT)}$ je Boltzmannův faktor.

Boltzmannova statistika

- Spiny v magnetickém poli
- Počet spinů s nízkou energií N^-
- Počet spinů s vysokou energií N^+

$$\frac{N^-}{N^+} = e^{-\frac{E}{kT}}$$

kde $k = 1.3805 \cdot 10^{-23}$ je Boltzmannova konstanta T [Kelvin] je teplota

Vliv magnetického pole (I = 1/2)

V základním stavu (a) jsou jaderné spiny orientovány náhodně a neexistuje mezi nimi energetický rozdíl (jsou tzv. degenerované).

Vlivem silného externího magnetického pole (b) dojde k orientaci spinů buď v souhlasném nebo opačném směru. Vždy existuje malý přebytek spinů v souhlasném směru (nižší energetický stav). Úvod Základy Fyzika MRI Jaderný spin Interakce Boltzmannova statistika Makroskopicky

Vliv magnetického pole (I = 1/2)

Je-li stav β obsazen 10° spinů, stav α obsahuje10°+přebytek.

Úvod

Základy Historie

Všeobecně...

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

Vlastnosti relevantních prvků

Izotop	Nukleární spin /	$\gamma ~[{ m MHz}/{ m T}]$	citlivost [%]
^{1}H	1/2	42.58	100%
² H	1	6.54	
¹³ C	1/2	10.71	2%
¹⁹ F	1/2	40.08	83%
²³ Na	3/2	11.27	9%
³¹ P	1/2	17.25	7%

Výskyt izotopů v přírodě

Prvek	Četnost [%]
^{1}H	99.985
² H	0.015
¹³ C	1.11
^{14}N	99.63
¹⁵ N	0.37
²³ Na	100
³¹ P	100
³⁹ K	93.1
⁴³ Ca	0.145

Biologická četnost prvků

Prvek	Četnost [%]	
Н	63	
0	26	hlavní izotop ¹⁶ O s nulovým spinem
С	9.4	hlavní izotop ¹² C s nulovým spinem
Ν	1.5	
Р	0.24	
Ca	0.22	
Na	0.041	

Spinový paket

- Spinový paket = prostorově ohraničený soubor spinů, na které působí stejné magnetické pole.
- Vektor magnetizace M magnetické pole spinového paketu

$$\mathbf{M} = \sum \vec{\mu}$$
$$\mathbf{M} \parallel \propto N^+ - N^-$$

- Celková/čistá Magnetizace (net magnetization) = součet magnetizací od všech paketů
- Soubor spinů = v NMR všechny spinové pakety v měřeném vzorku

Úvod

Základy Historie

Všeobecně...

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace Blochova rovnice

• V rovnováze, $\mathbf{M} = M_0 \mathbf{e}_z$, $M_z = M_0$ klidová magnetizace.

- V rovnováze, $\mathbf{M} = M_0 \mathbf{e}_z$, $M_z = M_0$ klidová magnetizace.
- Vyšleme elmag. (RF) impuls. Vhodnou energií $M_z = 0$

- V rovnováze, $\mathbf{M} = M_0 \mathbf{e}_z$, $M_z = M_0$ klidová magnetizace.
- Vyšleme elmag. (RF) impuls. Vhodnou energií $M_z = 0$

- V rovnováze, $\mathbf{M} = M_0 \mathbf{e}_z$, $M_z = M_0$ klidová magnetizace.
- Vyšleme elmag. (RF) impuls. Vhodnou energií $M_z = 0$

T_1 relaxace (2)

Po odeznění impulsu se M_z vrací do rovnovážného stavu.

$$M_z = M_0 \left(1 - \mathrm{e}^{-rac{t}{T_1}}
ight)$$

 T_1 — mřížková relaxační časová konstanta (spin-lattice relaxation time) energie se přenáší na mřížku (lattice) jako teplo Silnější impuls může překlopit $M_z = -M_0$.

Silnější impuls může překlopit $M_z = -M_0$.

Silnější impuls může překlopit $M_z = -M_0$.

х

T_1 relaxace (3) Silnější impuls může překlopit $M_z = -M_0$. $M_z = M_0 \left(1 - 2e^{-rac{t}{T_1}} ight)$

T_1 relaxace (3) Silnější impuls může překlopit $M_z = -M_0$.

T_1 relaxace (3) Silnější impuls může překlopit $M_z = -M_0$.

T_1 relaxace (3)

Silnější impuls může překlopit $M_z = -M_0$.

$$M_z = M_0 \left(1 - 2 \mathrm{e}^{-\frac{t}{T_1}} \right)$$

• Pokud je **M** překlopena do *xy*...

• Pokud je **M** překlopena do *xy*...

• Pokud je **M** překlopena do *xy*...

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

- Pokud je **M** překlopena do *xy*...
- ... **M** začne rotovat s Larmorovou frekvencí $f = \gamma B$

Frekvence je stejná jako rezonanční frekvence pro změnu orientace.

Precese — použití pro měření

Jak uvidíme později, měřitelný signál vyvolává pouze rotující komponenta magnetizace v rovině xy, neboť pro indukci napětí v RF cívce (které je měřeno) je nutný magnetický tok měnící se v čase. Komponenta M_z takové napětí neindukuje.

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

 $\mathbf{C} = \boldsymbol{\mu} imes \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

$\mathbf{C} = \boldsymbol{\mu} imes \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

 $\mathbf{C} = \boldsymbol{\mu} imes \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

 $\mathbf{C} = \boldsymbol{\mu} \times \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

$\mathbf{C} = \boldsymbol{\mu} imes \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

 $\mathbf{C} = \boldsymbol{\mu} imes \mathbf{B}_0$

Magnetické pole se snaží natočit spin μ do směru \mathbf{B}_0 . To vytváří moment síly

 $\mathbf{C} = \boldsymbol{\mu} \times \mathbf{B}_0$

T_2 relaxace (2)

Transversální magnetizace M_{xy} postupně klesá

 T_2 — spinová relaxační časová konstanta (spin-spin relaxation time), $T_2 < T_1$
- Transversální magnetizace M_{xy} postupně klesá
- Zároveň (ale pomaleji) dochází k návratu $M_z
 ightarrow M_0.$

- Transversální magnetizace M_{xy} postupně klesá
- Zároveň (ale pomaleji) dochází k návratu $M_z
 ightarrow M_0.$

- Transversální magnetizace M_{xy} postupně klesá
- Zároveň (ale pomaleji) dochází k návratu $M_z
 ightarrow M_0.$

- Transversální magnetizace M_{xy} postupně klesá
- Zároveň (ale pomaleji) dochází k návratu $M_z
 ightarrow M_0.$

Důvody T_2 relaxace

- Molekulární interakce (T₂)
- Nehomogenita magnetického pole (T^{inhom})

Kombinovaná časová konstanta T_2^* :

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2^{\mathsf{inhom}}}$$

Další faktory ovlivňující relaxaci

- Pohyb molekul (vlivem nehomogenity mag. pole)
- Teplota
- Viskozita
- Fluktuace

Časy relaxace (1.5 T)		
tkáň	T_1 [ms]	<i>T</i> ₂ [ms]
tuk	260	80
sval	870	45
mozek (šedá hmota)	900	100
mozek (bílá hmota)	780	90
játra	500	40
mozkomíšní tekutina	2400	160

 μ rotující s frekvencí f se zdá stacionární

Úvod

Základy

Historie Všeobecně. . .

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese

Excitace

Blochova rovnice

Cívka s osou x vytvoří magnetické pole ve směru x

- Cívka s osou x vytvoří magnetické pole ve směru x
- Střídavý proud s frekvencí f vytvoří pole \mathbf{B}_1 s frekvencí f

- Cívka s osou x vytvoří magnetické pole ve směru x
- Střídavý proud s frekvencí f vytvoří pole \mathbf{B}_1 s frekvencí f
- \mathbf{B}_1 se dá rozložit na $\mathbf{B}_1^+ + \mathbf{B}_1^-$, rotující okolo z s frekvencí $\pm f$

- Cívka s osou x vytvoří magnetické pole ve směru x
- Střídavý proud s frekvencí f vytvoří pole B₁ s frekvencí f
- \mathbf{B}_1 se dá rozložit na $\mathbf{B}_1^+ + \mathbf{B}_1^-$, rotující okolo z s frekvencí $\pm f$
- **B**⁺₁ bude v rotující soustavě souřadnic stacionární.

- Cívka s osou x vytvoří magnetické pole ve směru x
- Střídavý proud s frekvencí f vytvoří pole B₁ s frekvencí f
- \mathbf{B}_1 se dá rozložit na $\mathbf{B}_1^+ + \mathbf{B}_1^-$, rotující okolo z s frekvencí $\pm f$
- **B**⁺₁ bude v rotující soustavě souřadnic stacionární.
- **B**⁻₁ bude mít frekvencí 2*f*, daleko od rezonance, zanedbáme.

- Cívka s osou x vytvoří magnetické pole ve směru x
- Střídavý proud s frekvencí f vytvoří pole B₁ s frekvencí f
- \mathbf{B}_1 se dá rozložit na $\mathbf{B}_1^+ + \mathbf{B}_1^-$, rotující okolo z s frekvencí $\pm f$
- B₁⁺ bude v rotující soustavě souřadnic stacionární.
- **B**₁⁻ bude mít frekvencí 2*f*, daleko od rezonance, zanedbáme.
- \rightarrow pole **B**₁ se bude v rotující soustave jevit stacionární, ve směru x'.

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

 $\alpha = 2\pi\gamma\tau B_1$ flip angle

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

 $\alpha = 2\pi\gamma\tau B_1$ flip angle

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

 $\alpha = 2\pi\gamma\tau B_1$ flip angle

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

 $\alpha = 2\pi\gamma\tau B_1$ flip angle

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

 $\alpha = 2\pi\gamma\tau B_1$ flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy $B_1(x')$ o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Impuls o Larmorově frekvenci f (tzv. *rezonanční podmínka*), amplitudě B_1 a délce trvání τ
- \rightarrow magnetizace **M** se natočí podle osy B_1 (x') o úhel

$$\alpha = 2\pi\gamma\tau B_1$$
 flip angle

- 90° impuls natočí M do směru y'
- 180° impuls natočí M do směru -z'
- v nerotující soustavě souřadnic...

- Magnetizace je otočena o úhel α z libovolné počáteční pozice
- 180° impuls pro $\mathbf{M} \| y'$

- Magnetizace je otočena o úhel α z libovolné počáteční pozice
- 180° impuls pro $\mathbf{M} \| y'$

- Magnetizace je otočena o úhel α z libovolné počáteční pozice
- 180° impuls pro $\mathbf{M} \| y'$

- Magnetizace je otočena o úhel α z libovolné počáteční pozice
- 180° impuls pro $\mathbf{M} \| y'$

Úvod

Základy

Historie Všeobecně. . .

Fyzika MRI

Jaderný spin Interakce Boltzmannova statistika Makroskopický pohled Relaxace a precese Excitace

Blochova rovnice

Blochova rovnice

 $\frac{\mathrm{d} {\bf M}}{\mathrm{d} t} = \gamma {\bf M} \times {\bf B}$ kde ${\bf B}$ je celkové magnetické pole (${\bf B}_0 + {\bf B}_1).$

Blochovy rovnice (2)

$$\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}t} = \gamma \mathbf{M} \times \mathbf{B}$$

dosadíme za B, přidáme ztráty a přejdeme do rotujícího systému

$$\begin{aligned} \frac{\mathrm{d}M_{x'}}{\mathrm{d}t} &= (\omega_0 - \omega)M_{y'} - \frac{M_{x'}}{T_2}\\ \frac{\mathrm{d}M_{y'}}{\mathrm{d}t} &= -(\omega_0 - \omega)M_{x'} + 2\pi\gamma B_1 M_z - \frac{M_{y'}}{T_2}\\ \frac{\mathrm{d}M_z}{\mathrm{d}t} &= -2\pi\gamma B_1 M_{y'} - \frac{M_z - M_{z0}}{T_1} \end{aligned}$$

kde $\omega_0 = 2\pi f_0 = 2\pi \gamma B_0$, ω je frekvence rotace spinu.