Medical Imaging Magnetic Resonance Imaging, an Overview (Outline of Lecture 1)

Boris Flach

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~flachbor, flachbor@cmp.felk.cvut.cz

- What do we see in the image? What is measured?
- What physical effects are used? Which fields of physics are needed?
- What hardware components are needed? How should they interplay?

- Living tissue: 60-80% water + macro-molecules
 - both contain hydrogen ¹H, its nucleus \rightarrow proton
 - proton has spin $1/2 \rightarrow$ magnetic dipole
 - the water is either free or bounded to the surface of macro-molecules

3/6

- **Magnetic dipole:** localised stationary distribution of currents
 - magnetic dipole moment $\vec{m}_{\rm mg}$
 - magnetic field \vec{B}_{dipole} of a magnetic dipole
 - homogeneous external field \vec{B}_0 exerts a torque $\vec{\tau}$ on a magnetic dipole
- Larmor precession of a dipole in an external magnetic field
 - Larmor precession $\vec{\omega}_0 = \gamma \vec{B}_0$, gyromagnetic ratio
 - decay, macroscopic effect in a system of interacting dipoles in a heat bath, magnetisation $\vec{M} \sim \vec{B}_0$.

- **Resonant excitation** by Radio Frequency pulses
 - circularly rotating magnetic field $\vec{B}_1(t) \perp \vec{B}_0$ (Larmor frequency)
 - appropriate pulse length ightarrow spins precess coherently in the plane $\perp ec{B_0}$

4/6

- decay of the macroscopic magnetisation \vec{M}_{\perp} , \vec{M} approaches \vec{M}_0 .
- decay times T_1 and T_2 .
- decaying coherent precession induces a current in a receiver coil
- Spatial localisation needed for imaging
 - add a small, linear, position dependent magnetic field
 - by using pulses choose a slice and vary frequency and phase of the precession spatially

• Measurement: the measured signal $s(\vec{r})$ is

$$s(\vec{r}) = \rho(\vec{r}) \left[1 - \exp^{-T_R/T_1(\vec{r})} \right] \exp^{-T_E/T_2(\vec{r})}$$

- $\rho(\vec{r})$ density of protons (water) at \vec{r}
- $T_1(\vec{r}) T_1$ decay at \vec{r}
- $T_2(\vec{r}) T_2$ decay at \vec{r}
- T_E , T_R process parameters

System Architecture

m p

6/6

Hardware components

- Electromagnet for \vec{B}_0 , where $B_0 > 1$ Tesla, homogeneity
- Gradient field coils with small rise time
- RF transmitter/receiver