Introduction to Artificial Neural Networks
part 2

Pattern recognition

2. 4. 2019

Outline

» Recap from previous part

v

On the usefulness of gradient descent

v

Simple ANN example
» PyTorch ultra-fast intro

» CNN part Il
Simple CNN example
Other useful ANNs

vy

Back-propagation /recap/

» Gradient descent

> Adjust weights in the direction of steepest gradient of the
error/cost function

> Ideally, error computed from every sample

> In reality: computationally infeasible (e.g. memory problems)

> — stochastic gradient descent (mini-batches)

» Compute gradient for the error/cost function:
1
J :2; 5(}’1 7}//\1')2
i=

» Activation function (sigmoid function):
m
Yi=0 Z XjWij — 9,‘
=1

» Separate the sum from the function:

yi=o(z)

where

n
zZi = E xjwij — 0;
j=1

1)

®3)

(4)

Back-propagation /recap/

aJ 82" 8y, aJ

8WI-JL- 6WL 82’- By,’-

i: Lll() I_L_}?I_)

%

Gradient descent

Usefulness of Gradient descent

y = Xw, (5)

» where X is a n by #dim matrix containing input data, y are
the “labels” or output data, and w are the weights used to
generate the data (unknown in real world)

> Standard representation of a system of linear equations:
Ax=0»b

» In our case, b~ y, A= X, and x = w, therefore we can
rewrite equation (5) as:

Xw =y

» and to calculate w, we want to find values satisfying:

w* = argmin || Xw — y|? (6)

Usefulness of Gradient descent
» Equation equation (6) can be solved™ by:

X IXw=X"1y

Iw = X1y

» For simple data, this method is faster and more efficient!

» So, why GD?
» higher dimensionality
> larger datasets
» ~ anything that cannot actually be computed via analytical
solution with the available resources

Convolutional neural networks part 2

> Motivation
> larger input size (RGB image 32 x 32 x 3 ~ 3000 weights per
neuron)
» patterns in the input can shifted — in FCN small change in
input = large in output — bad for images
» Hyperparameters
» # of inputs (input dimension)
> kernel/filter size
> of filters
» padding & stride

» Often used in combination with FCN

Simple CNN on MNIST

Simple CNN on MNIST

1x256

16@8x8
1x10

Max-Pool] i
Convolution

Convolution
Max-Pool

Dense

Generative adversarial networks

>

Data sampled from an unknown distribution
» only samples available

Generator G network attempts to generate similar data
Discriminator D attempts to recognize “fake” data

Both G and D are trained together

» G attempts to approximate the original distribution
» D improves its classification error

Benefits

> less training data required
» artificial data generation
> “image arithmetics

Problems:
» convergence, discrepancy between G and D

One of the most interesting concepts in ML in the past years
» many variations exist

Generative adversarial networks

Real Van Gogh

-

Reconstructed

Generated Van Gogh

Autoencoders

» FCN & CNN autoencoders

Autoencoders

> Network is trained to generate the same values on output as
were provided on input

> Afterwards, the “top half” of the network is discarded

> Uses:
» dimensionality reduction
» visualization
» encoding (compression) with decoder
» combination with GAN

Thank you for your attention

