
Introduction to Arti�cial Neural Networks
part 2

Pattern recognition

2. 4. 2019



Outline

I Recap from previous part

I On the usefulness of gradient descent

I Simple ANN example
I PyTorch ultra-fast intro

I CNN part II

I Simple CNN example

I Other useful ANNs



Back-propagation /recap/

I Gradient descent
I Adjust weights in the direction of steepest gradient of the

error/cost function
I Ideally, error computed from every sample
I In reality: computationally infeasible (e.g. memory problems)
I → stochastic gradient descent (mini-batches)

I Compute gradient for the error/cost function:

J =
n∑

i=1

1

2
(yi − ŷi )

2 (1)

I Activation function (sigmoid function):

yi = σ

 m∑
j=1

xjwij − θi

 (2)

I Separate the sum from the function:

yi = σ (zi ) (3)

where

zi =
n∑

j=1

xjwij − θi (4)



Back-propagation /recap/

∂J

∂wL
ij

=
∂zLi
∂wL

ij

∂yLi
∂zLi

∂J

∂yLi

∂J

∂wL
ij

=
m∑
j=1

yL−1j σ′
(
zLi

)
(yLi − ŷi )



Gradient descent



Usefulness of Gradient descent

y = Xw , (5)

I where X is a n by #dim matrix containing input data, y are
the �labels� or output data, and w are the weights used to
generate the data (unknown in real world)

I Standard representation of a system of linear equations:

Ax = b

I In our case, b ≈ y , A ≈ X , and x ≈ w , therefore we can
rewrite equation (5) as:

Xw = y

I and to calculate w , we want to �nd values satisfying:

w∗ = argmin
w
‖Xw − y‖2 (6)



Usefulness of Gradient descent

I Equation equation (6) can be solved∗ by:

X−1Xw = X−1y

Iw = X−1y

I For simple data, this method is faster and more e�cient!

I So, why GD?
I higher dimensionality
I larger datasets
I ∼ anything that cannot actually be computed via analytical

solution with the available resources



Convolutional neural networks part 2

I Motivation
I larger input size (RGB image 32× 32× 3 ∼ 3000 weights per

neuron)
I patterns in the input can shifted → in FCN small change in

input = large in output � bad for images

I Hyperparameters
I # of inputs (input dimension)
I kernel/�lter size
I # of �lters
I padding & stride

I Often used in combination with FCN



Simple CNN on MNIST



Simple CNN on MNIST

Convolution Max-Pool
Convolution

Max-Pool

Dense

1@28x28 6@24x24 6@12x12
16@8x8

16@4x4

1x256

1x10



Generative adversarial networks

I Data sampled from an unknown distribution
I only samples available

I Generator G network attempts to generate similar data

I Discriminator D attempts to recognize �fake� data

I Both G and D are trained together
I G attempts to approximate the original distribution
I D improves its classi�cation error

I Bene�ts
I less training data required
I arti�cial data generation
I �image arithmetics

I Problems:
I convergence, discrepancy between G and D

I One of the most interesting concepts in ML in the past years
I many variations exist



Generative adversarial networks



Autoencoders

I FCN & CNN autoencoders



Autoencoders

I Network is trained to generate the same values on output as
were provided on input

I Afterwards, the �top half� of the network is discarded

I Uses:
I dimensionality reduction
I visualization
I encoding (compression) with decoder
I combination with GAN



Thank you for your attention


