Introduction to Artificial Neural Networks part 2

Pattern recognition

2.4.2019

Outline

- Recap from previous part
- On the usefulness of gradient descent
- Simple ANN example
 - PyTorch ultra-fast intro
- CNN part II
- Simple CNN example
- Other useful ANNs

Back-propagation /recap/

- ▶ Gradient descent
 - Adjust weights in the direction of steepest gradient of the error/cost function
 - Ideally, error computed from every sample
 - In reality: computationally infeasible (e.g. memory problems)
 - \blacktriangleright \rightarrow stochastic gradient descent (mini-batches)

Compute gradient for the error/cost function:

$$J = \sum_{i=1}^{n} \frac{1}{2} (y_i - \hat{y}_i)^2$$
 (1)

Activation function (sigmoid function):

$$y_i = \sigma\left(\sum_{j=1}^m x_j w_{ij} - \theta_i\right)$$
(2)

Separate the sum from the function:

$$y_i = \sigma\left(z_i\right) \tag{3}$$

where

$$z_i = \sum_{j=1}^n x_j w_{ij} - \theta_i \tag{4}$$

Back-propagation /recap/

$$\frac{\partial J}{\partial w_{ij}^{L}} = \frac{\partial z_{i}^{L}}{\partial w_{ij}^{L}} \frac{\partial y_{i}^{L}}{\partial z_{i}^{L}} \frac{\partial J}{\partial y_{i}^{L}}$$
$$\frac{\partial J}{\partial w_{ij}^{L}} = \sum_{j=1}^{m} y_{j}^{L-1} \sigma' \left(z_{i}^{L} \right) \left(y_{i}^{L} - \hat{y}_{i} \right)$$

Gradient descent

Usefulness of Gradient descent

$$y = Xw, \tag{5}$$

- where X is a n by #dim matrix containing input data, y are the "labels" or output data, and w are the weights used to generate the data (unknown in real world)
- Standard representation of a system of linear equations:

$$Ax = b$$

ln our case, $b \approx y$, $A \approx X$, and $x \approx w$, therefore we can rewrite equation (5) as:

$$Xw = y$$

and to calculate w, we want to find values satisfying:

$$w^* = \arg\min_{w} \|Xw - y\|^2 \tag{6}$$

Usefulness of Gradient descent

• Equation equation (6) can be solved* by:

$$X^{-1}Xw = X^{-1}y$$

$$\mathcal{I}w = X^{-1}y$$

- For simple data, this method is faster and more efficient!
- So, why GD?
 - higher dimensionality
 - larger datasets
 - \blacktriangleright \sim anything that cannot actually be computed via analytical solution with the available resources

Convolutional neural networks part 2

- Motivation
 - larger input size (RGB image 32 × 32 × 3 ~ 3000 weights per neuron)

▶ patterns in the input can shifted → in FCN small change in input = large in output - bad for images

- Hyperparameters
 - # of inputs (input dimension)
 - kernel/filter size
 - ► # of filters
 - padding & stride

Often used in combination with FCN

Simple CNN on MNIST

(**0**) q S

Simple CNN on MNIST

Generative adversarial networks

- Data sampled from an unknown distribution
 - only samples available
- Generator G network attempts to generate similar data
- Discriminator D attempts to recognize "fake" data
- Both G and D are trained together
 - ► G attempts to approximate the original distribution
 - D improves its classification error
- Benefits
 - less training data required
 - artificial data generation
 - "image arithmetics
- Problems:
 - convergence, discrepancy between G and D
- One of the most interesting concepts in ML in the past years
 - many variations exist

Generative adversarial networks

Autoencoders

Autoencoders

- Network is trained to generate the same values on output as were provided on input
- > Afterwards, the "top half" of the network is discarded
- Uses:
 - dimensionality reduction
 - visualization
 - encoding (compression) with decoder
 - combination with GAN

Thank you for your attention