
Functional Programming
Lecture 1: Introduction

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

Acknowledgements

This course is based on materials created by:
• Jiří Vyskočil, Michal Pěchouček

– ČVUT, Czech Republic

• Koen Claessen and Emil Axelsson
– Chalmers University of Technology, Sweden

• H. James Hoover
– University of Alberta, Canada

• Ben Wood
– Wellesley College, USA

• H. Abelson, G. J. Sussman and Julie Sussman
– Massachusetts Institute of Technology, USA

• Alan Borning
– University of Washington, USA

• R. Kent Dybvig
– Indiana University, USA

...

What is functional programming?

Wikipedia: Functional programming is a
programming paradigm that treats computation
as the evaluation of mathematical functions.

Programming paradigm: a style of building the
structure and elements of computer programs.

Goal of the course

1. Improve your programming skills!
– master recursion

– master problem decomposition

– rethink side effects (stateless programs)

– different perspective to the same problems

2. Learn principles of functional programming
– has clear benefits for SOME problems

– it is used in many other languages

Why do I care?

• quickly learn new programming languages

• programming paradigms change and develop

• no side effects is great for parallelization and
verification

• understanding fundamentals of computation

Does anyone use it?

• Lisp: AutoCAD, Emacs, Gimp

• Haskell: Facebook, Google, Intel

• Scala: Twitter, eBay, Linkedin

• Erlang: Facebook, Pinetrest

• Clojure: Walmart, Atlassian

Imperative vs. Declarative

• Instructions to change
the computer’s state

– x:=x+1

– deleteFile(“slides.pdf”)

• Are executed

– have effects

• Run program by following
instructions top-down

• Functions used to declare
dependences between
data values:

– z = g(y)

– y = f(x)

• Expressions are evaluated

– result to a value

• Run program by
evaluating dependencies

Pure functional programming

• No side effects
– output of a function depends only on its inputs

– function does not change anything in evaluation

– can be evaluated in any order (many times, never)

• No mutable data

• More complex function based on recursion
– no for/while cycles

– natural problem decomposition
• mathematical induction

Pure functional programming

• Forbids most of what you use in (C/Java)
– we will show you do really not loose anything

– it can be useful for many tasks

– it often leads to more compact code !?!

• Substantially less time spent debugging
– encapsulation, repeatability, variety of mistakes

• Focus on operations with symbols

• Easier parallelization and verification

• Generally less computationally efficient

Brief History
• Lambda calculus (1930s)

– formal theory of computation older than TM

• Lisp = List processor (1950s)

– early practical programming language

– second oldest higher level language after Fortran

• ML = Meta language (1970s)

– Lisp with types, used in compilers

• Haskell = first name of Curry (1990s)

– standard for functional programming research

• Python, Scala, Java8, C++ 11, ….

What will we learn?

Lisp (Scheme)

Lambda calculus

Haskell

Why LISP?

• Extremely simple

• Reasonably popular

• Allows deriving all concepts from principles

• Directly matches lambda calculus

Why Haskell?

• Purely functional language
– promotes understanding the paradigm

• Rich syntactic sugar (contrast to Lisp)

• Most popular functional language

• Standard for functional programming research

• Fast prototyping of complex systems

• Why not Scala?

Course organization

• Web: cw.fel.cvut.cz/wiki/courses/fup

• Lectures + Labs

• Homework – every 2 weeks (50 %)
– 3x10 Scheme

– 2x10 Haskell

– must have at least 1 point from each and >= 25

– Deadlines: -3 + -1 per day until +1 is left

• Programming exam (30 %)

• Test (20 %)

Suggested literature

R. Kent Dybvig: The Scheme Programming
Language, Fourth Edition, MIT Press, 2009.

https://www.scheme.com/tspl4/

Greg Michaelson: An Introduction to Functional
Programming Through Lambda Calculus, Dover
edition, 2011.

Scheme

• Dialect of Lisp (such as Common Lisp, Racket)

• Created in 1970 at MIT by Steele and Sussman

• Last standard from 2007

– The Revised6 Report on the Algorithmic Language
Scheme (R6RS)

• Supports imperative programming

– we will initially not use it (we want to learn FP)

• DrRacket: racket-lang.org

– text editor + REPL (read-evaluate-print loop)

Scheme syntax

Scheme program is a collection of expressions

Expression Evaluates to

5 5

"abc" "abc"

#t #t

+ #<procedure:+>

a ?

Prefix notation

Infix notation

 1+2*5

Prefix notation

+ 1 * 2 5

In Scheme, there are no operator preferences

(+ 1 (* 2 5))

S - expression

(fn arg1 arg2 … argN)

(“operator of calling a function”

fn expression that evaluates to a procedure

argX arguments of the function

) end of function call

Conventions

Special suffixes

? for predicates

! for procedures with side effects

-> in procedures that transform a type of an object

Prefix of character / string / vector procedures

char-, string-, and vector-

Basics data types

Numbers (infinite precision, complex, etc.)
+, -, *, /, abs, sqrt

Logical values
#t, #f, >, <, and, or, boolean?

Strings
"abc", "Hello !!!", string?, substring

Other types
symbol?, char?, procedure?, pair?, port?,

vector?

Quote

Do not evaluate, just to return the argument
(quote exp)

Abbreviated by '

A quoted expression can be evaluated by eval
(eval (quote (+ 1 2))

Evaluate part of the argument

(quasiquote (* 1 2 3 (unquote (+ 2 2)) 4 5)

Abbreviated by ` and , respectively

Identifiers

Keywords, variables, and symbols may be
formed from the following set of characters:

the lowercase letters a through z,

the uppercase letters A through Z,

the digits 0 through 9, and

the characters ? ! . + - * / < = > : $ % ^ & _ ~@

cannot start with 0-9, +, -, @ (still usually works)

Define

Naming expressions
(define id exp)

Defining functions

(define (name <formals>) <body>)

Nested defines

(define (name <formals>)

 (define (fn <formals>)

 <body-using-fn>)

Comments

; starts a comment until the end of the line

on the line before the explained expression

;;; still start a comment until the end of the line

used to comment a function or code segment

#| |# delimit block comments

Conditional expressions

if
(if test-exp then-exp else-exp)

cond
(cond

 (test-exp1 exp)

 (test-exp2 exp)

 (#t exp)

 ...)

Recursion

A function calling itself

(define (fact n)

 (cond ((= 0 n) 1)

 ((= 1 n) 1)

 (#t (* n (fact (- n 1))))

)

)

Avoiding infinite recursion

1. First expression of the function is a cond

2. The first test is a termination condition

3. The "then" of the first test is not recursive

4. The cond pairs are in increasing order of the
amount of work required

5. The last cond pair is a recursive call

6. Each recursive call brings computations
closer to the termination condition

What have we learned?

• Functional programming is an alternative
programming paradigm

– no side effects

– no mutable data structures

– focus on symbols

• Recursion is the key programming method

