Algorithmic Game Theory

Repeated Games

Branislav Bošanský

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague

branislav.bosansky @agents.fel.cvut.cz

May 18, 2018

Repeated Games are the simplest type of a dynamic game that evolves over time.

As such we can treat them as an extensive-form game (the finitely repeated case), or a stochastic game (the infinitely repeated case). However, such representations are very inefficient.

Repeated games can thus be seen as an example of a compact representation.

	C	D
\overline{C}	(1,1)	(-1, 2)
D	(2, -1)	(0,0)

Natural question: Is a NE of a single game the same as in the (in)finitely repeated game?

Definition

Let $G'=(\mathcal{N},\mathcal{A},u)$ be a normal-form game. An **infinitely** repeated game with discounted payoff is an extensive-form game with simultaneous moves $G^{\infty}=(\mathcal{N},\mathcal{H},\mathcal{A},g,\delta)$, where

- $\blacksquare \mathcal{H} = \{\emptyset\} \cup \bigcup_{t=1}^{\infty} A^t \cup A^{\infty}$
- lacksquare $\mathcal{S}_i:\mathcal{H}\to\mathcal{A}_i$
- $g_i(s_i, s_{-i}) = (1 \delta) \sum_{t=1}^{\infty} \delta^t \mathbb{E}_{a_i \sim s_i, a_{-i} \sim s_{-i}} (u_i(a_i, a_{-i}))$
- \bullet $\delta \in (0,1)$ is the discount factor

We can define alternative utility functions in repeated games based on payoff vectors v_i^t for each:

- lacksquare overtaking payoff: $\lim_{T o \infty} \sum_{t=1}^T v_i^t$
- lacksquare average payoff (or limit mean payoff): $\lim_{T o \infty} \sum_{t=1}^T v_i^t / T$

Definition

Player i's min-max payoff is

$$\underline{v_i} = \min_{s_{-i}} \max_{s_i} g_i(s_i, s_{-i})$$

A strategy s is individually rational if $g_i(s) \geq \underline{v_i}$

Theorem (Nash Folk Theorem)

If v_i is a feasible and an individually rational payoff, then there exists a discount factor $\underline{\delta} < 1$ such that for all $\delta > \underline{\delta}$, there is a Nash equilibrium of G with payoff v_i .

Proof.

If v_i is feasible then there exist a strategy s such that $g_i(s)=v_i$ and let m_{-i} be the minmax strategy of other players to reach value v_i for player i. Let consider the following strategy:

- \blacksquare play according to s_i as long as no one deviates
- 2 let $\overline{v_i}$ be the maximum value player i can get by a deviation in step t

$$(1 - \delta)[v_i + \delta v_i + \ldots + \delta^t \overline{v_i} + \delta^{t+1} \underline{v_i} + \ldots] \le < (1 - \delta)[v_i + \delta v_i + \ldots + \delta^t v_i + \delta^{t+1} v_i + \ldots]$$

(Proof cont.)

By setting $\underline{\delta}$ sufficiently large approaching 1 the above inequality holds.

The Nash folk theorem says that essentially anything goes as a Nash equilibrium payoff in a discounted repeated game.

The players threat by playing *grim trigger* strategies, however, the threats might be considered non-credible:

	L	R
U	(6,6)	(0, -100)
D	(7,1)	(0, -100)

Theorem (Perfect Folk Theorem)

Let V^* is set of feasible and individually rational payoffs such that $\dim V^* = |\mathcal{N}|$. Then for any $v \in V^*$ such that $v_i > \underline{v_i}$ there exists $\underline{\delta} < 1$ such that for all $\delta > \underline{\delta}$, there is a Subgame Perfect Equilibrium of G with payoff v_i .

Proof (sketch).

Consider an outcome $v \in V^*$ that is reached via strategy profile $s \in \mathcal{S}$ such that $g_i(s) = v_i$. Now:

- Choose a feasible outcome $v' \in V^*$ such that $v'_i < v_i$ for all $i \in \mathcal{N}$.
- Choose T such that $\max_a g_i(a) + T\underline{v_i} < \min_a g_i(a) + Tv_i'$
- Choose $\varepsilon > 0$ and let

$$v^{i}(\varepsilon) = (v'_{1} + \varepsilon, \dots, v'_{i-1} + \varepsilon, v'_{i}, v'_{i+1} + \varepsilon, \dots, v'_{|\mathcal{N}|} + \varepsilon)$$

■ Let s^i be the strategy that achieves $v^i(\varepsilon)$ and m^i the minmax strategy to punish player i.

Proof (sketch cont.)

Now the following strategy achieves a SPE:

- I Play according to s as long as no one deviates. If j deviates, go to strategy II_{j} .
- II_j Play according to m^j for T periods then go to III_j if no one deviates. If k deviates, go to II_k .
- III_j Play according to s^j as long as no one deviates. If k deviates, go to II_k .

Why do we need the full dimensionality assumption?

Strategies in repeated games can be represented as machines (or automata).

Definition

A machine (or an automaton) for player i is a tuple (Q_i,q_i^0,f_i,τ_i) , where

- lacksquare Q_i is the set of states
- $\blacksquare q_i^0$ is the initial state
- f_i is the output function that assigns an action to each state $f_i:Q_i \to \mathcal{A}_i$
- τ_i is the transition function that assigns a state to every pair of current state and a played action profile $\tau_i: Q_i \times \mathcal{A} \to Q_i$.

How does the situation change in the finitely repeated games?

There is a known horizon (say T turns).

What the players have to play in the last turn?

How this affects the set of Nash equilibria and folk theorems?

Theorem (Nash Folk theorem for finitely repeated games)

If $G=(\mathcal{N},\mathcal{A},u_i)$ has a Nash equilibrium s^* in which the payoff of every player i exceeds his minmax payoff $\underline{v_i}$ then for any strictly individually rational outcome s' of G and any $\epsilon>0$ there exists an integer T' such that if T>T' the T-period repeated game of G has a Nash equilibrium in which the payoff of each player i is within of ϵ of $u_i(s)$.

How do the machines look like in this case?

How about Subgame Perfect Equilibrium in finitely repeated games?

	C	D	E
C	(3, 3)	(0,4)	(0,0)
D	(4,0)	(1, 1)	(0,0)
E	(0,0)	(0,0)	$\left(\frac{1}{2},\frac{1}{2}\right)$

Extending Repeated Games

If the machines and repeated games are seen as compact representation of strategies in sequential games, we can reason about modifications of strategy representation beyond mixed/behavioral strategies.

Consider an EFG with imperfect recall that is created as an abstraction (or basically any dynamic game) and a strategy can be represented as a machine, where mixed and behavioral strategies are two extremes.

Or we can seek an optimal machine to commit to in repeated games [2].

Algorithmic Rationality: Game Theory with Costly Computation

Joseph Halpern and Rafael Pass introduced game-theoretic framework for reasoning about strategic agents performing possibly costly computation.

Costly computations.

Consider the following game. You are given a random odd n-bit number x and you are supposed to decide whether x is prime or composite. If you guess correctly you receive \$2, if you guess incorrectly you instead have to pay a penalty of \$1000. Additionally you have the choice of "playing safe" by giving up, in which case you receive \$1.

- traditional game theory (computation is considered "costless") compute whether x is prime or composite and output the correct answer; this is the only Nash equilibrium of the one-person game, no matter what n (the size of the prime) is;
- when n grows larger most people would probably decide to "play safe"; eventually the cost of computing the answer (e.g., by buying powerful enough computers) outweighs the possible gain of \$1.

Algorithmic Rationality: Game Theory with Costly Computation

Costly computations can cause non-existence of Nash equilibria:

Consider rock-paper-scissors game and machines that play this game. Suppose that we take the complexity of a deterministic strategy to be 1, and the complexity of a strategy that uses randomization to be 2. The utility is reward in the game (from the set $\{-1,0,1\}$) minus the cost for complexity.

From any randomized strategy, a player wants to deviate to a pure strategy, but there is no pure equilibrium stable strategy.

References I

(besides the books)

- M. Osborne and A. Rubinstein, A course in game theory.
 MIT press, 1994.
- [2] S. Zuo and P. Tang, "Optimal Machine Strategy to Commit to in Two-Person Repeated Games," in *In Proceedings of AAAI Conference on Artificial Intelligence (AAAI)*, 2015.