STRUCTURED MODEL LEARNING (SS2015) 5.SEMINAR

Assignment 1. Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a fixed classification strategy. Let $\mathcal{T}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right) \in \mathcal{X} \times \mathcal{Y} \mid\right.$ $i \in\{1, \ldots, m\}\}$ be a training set drawn from i.i.d. random variables with distribution $p(\boldsymbol{x}, \boldsymbol{y})$. A probability that the expected risk $R(h)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p}\left[\ell(\boldsymbol{y}, h(\boldsymbol{x})]\right.$ deviates from the empirical risk $R_{\mathcal{T}}(h)=$ $\frac{1}{m} \sum_{i=1}^{m} \ell\left(\boldsymbol{y}^{i}, h\left(\boldsymbol{x}^{i}\right)\right)$ by at least $\varepsilon>0$ can be bounded by the Hoeffding's inequality

$$
\mathcal{P}_{\mathcal{T} \sim p^{m}}\left(\left|R(h)-R_{\mathcal{T}}(h)\right| \geq \varepsilon\right) \leq 2 \exp \left(\frac{-2 m \varepsilon^{2}}{l_{\max }}\right)
$$

where $l_{\max }$ is the maximal value of the loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow\left[0, l_{\text {max }}\right]$. Prove that for a finite hypothesis space $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{Y}}$, i.e. $|\mathcal{H}|<\infty$, the following inequality holds

$$
\mathbb{P}_{\mathcal{T} \sim p^{m}}\left(\max _{h \in \mathcal{H}}\left|R(h)-R_{\mathcal{T}}(h)\right| \geq \varepsilon\right) \leq 2|\mathcal{H}| \exp \left(\frac{-2 m \varepsilon^{2}}{l_{\max }}\right)
$$

Hint: A similar bound was proven in Lecture 6, section 5 for the likelihood function. Use the same procedure.

Assignment 2. Consider multi-class linear classifier $h: \mathbb{R}^{n} \rightarrow \mathcal{Y}=\{1, \ldots, K\}$ defined by

$$
h\left(\boldsymbol{x} ; \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{K}\right)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}}\left\langle\boldsymbol{x}, \boldsymbol{w}_{y}\right\rangle
$$

where $\boldsymbol{w}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right) \in \mathbb{R}^{n \times K}$ are parameters. Derive a variant of the Perceptron algorithm to learn the parameters \boldsymbol{w} from linear separable examples $\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right) \in \mathbb{R}^{n} \times \mathcal{Y} \mid i \in\{1, \ldots, m\}\right\}$.

Assignment 3. Consider joint distribution

$$
p_{\boldsymbol{q}, \boldsymbol{g}}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{Z(\boldsymbol{q}, \boldsymbol{g})} \exp \left(\sum_{v \in \mathcal{V}} q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)\right)=\frac{1}{Z(\boldsymbol{q}, \boldsymbol{g})} \exp f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})
$$

Show that the optimal (Bayes) classifier minimizing the expected risk with 0/1-loss, i.e.

$$
R(h)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{q}, \boldsymbol{g}}} \llbracket \boldsymbol{y} \neq h(\boldsymbol{x}) \rrbracket
$$

is the max-sum classifier

$$
h(\boldsymbol{x} ; \boldsymbol{q}, \boldsymbol{g}) \in \underset{\boldsymbol{y} \in \mathcal{Y}^{\nu}}{\operatorname{argmax}} f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})
$$

For the same distribution $p_{q, g}(\boldsymbol{x}, \boldsymbol{y})$ derive the optimal classifier $h: \mathcal{X}^{\mathcal{V}} \rightarrow \mathcal{Y}^{\mathcal{V}}$ minimizing the expected risk with the Hamming distance used as the loss, i.e

$$
R(h)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{q}, \boldsymbol{g}}}\left[\sum_{v \in \mathcal{V}} \llbracket y_{v} \neq h_{v}(\boldsymbol{x}) \rrbracket\right]
$$

Assignment 4. The LP relaxation of the max-sum problem reads

$$
\boldsymbol{\mu}^{*}=\underset{\boldsymbol{\mu} \in \mathbb{R}^{|\mathcal{V} \| \mathcal{V}|+|\mathcal{E}||\mathcal{Y}|^{2}}}{\operatorname{argmax}}\left[\sum_{v \in \mathcal{V}} \sum_{y \in \mathcal{Y}} \mu_{v}(y) q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \sum_{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2}} \mu_{v, v^{\prime}}\left(y, y^{\prime}\right) g_{v, v^{\prime}}\left(y, y^{\prime}\right)\right]
$$

subject to

$$
\sum_{y^{\prime} \in \mathcal{Y}} \mu_{v, v^{\prime}}\left(y, y^{\prime}\right)=\mu_{v}(y),\left\{v, v^{\prime}\right\} \in \mathcal{E}, y \in \mathcal{Y}, \quad \sum_{y \in \mathcal{Y}} \mu_{v}(y)=1, v \in \mathcal{V}, \quad \boldsymbol{\mu} \geq \mathbf{0}
$$

Derive the LP dual and show that it can be expressed as an unconstrained problem

$$
\varphi^{*}=\underset{\varphi}{\operatorname{argmin}}\left[\sum_{v \in \mathcal{V}} \max _{y \in \mathcal{Y}} q_{v}^{\varphi}\left(x_{v}, y\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \max _{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2}} g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right)\right]
$$

where

$$
\begin{aligned}
g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right) & =g_{v v^{\prime}}\left(y, y^{\prime}\right)+\varphi_{v v^{\prime}}(y)+\varphi_{v^{\prime} v}\left(y^{\prime}\right), & & \left\{v, v^{\prime}\right\} \in \mathcal{E}, y, y^{\prime} \in \mathcal{Y} \\
q_{v}^{\varphi}(y) & =q_{v}(y)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}(y), & & v \in \mathcal{V}, y \in \mathcal{Y}
\end{aligned}
$$

Assignment 5. Consider a max-sum classifier for playing Sudoku:

$$
\boldsymbol{y}^{*}=h(\boldsymbol{x} ; \boldsymbol{q}, \boldsymbol{g})=\underset{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}}\left(\sum_{v \in \mathcal{V}} q\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g\left(y_{v}, y_{v^{\prime}}\right)\right)
$$

where

- $\mathcal{V}=\left\{(i, j) \in \mathbb{N}^{2} \mid 1 \leq i \leq 9,1 \leq j \leq 9\right\}$
- $\mathcal{E}=\left\{\left\{(i, j),\left(i^{\prime}, j^{\prime}\right)\right\} \mid i=i^{\prime} \vee j=j^{\prime} \vee\left(\lceil i / 3\rceil=\left\lceil i^{\prime} / 3\right\rceil \wedge\lceil j / 3\rceil=\left\lceil j^{\prime} / 3\right\rceil\right)\right\}$
- $\boldsymbol{x}=\left(x_{v} \in\{\square, 1, \ldots, 9\} \mid v \in \mathcal{V}\right)$
- $\boldsymbol{y}=\left(y_{v} \in\{1, \ldots, 9\} \mid v \in \mathcal{V}\right)$
- $q:\{\square, 1, \ldots, 9\} \times\{1, \ldots, 9\} \rightarrow \mathbb{R}$
- $g:\{1, \ldots, 9\}^{2} \rightarrow \mathbb{R}$

Let $(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}})$ be an example of the Sudoku assignment and its correct solution, respectively. Derive a variant of the Perceptron algorithm which finds the quality functions \boldsymbol{q} and \boldsymbol{g} such that $\hat{\boldsymbol{y}}=h(\hat{\boldsymbol{x}} ; \boldsymbol{q}, \boldsymbol{g})$ and the max-sum problem $\mathcal{P}=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \hat{\boldsymbol{x}})$ has a strictly trivial equivalent. Apply the algorithm on a particular example of the Sudoku puzzle and try to interpret the learned quality functions $(\boldsymbol{q}, \boldsymbol{g})$.

