STRUCTURED MODEL LEARNING (S52015)
5.SEMINAR

Assignment 1. Let h: X — Y be a fixed classification strategy. Let 7 = {(z’,y") € X x Y |
i € {1,...,m}} be a training set drawn from i.i.d. random variables with distribution p(z,y). A
probability that the expected risk R(h) = E (g 4)~p[l(y, h(x)] deviates from the empirical risk Ry (h) =
LS U(y', h(x")) by at least € > 0 can be bounded by the Hoeffding’s inequality

Pron ('R(h) _ RT(h)‘ > 5> < 2exp (;m52>

max

where I, is the maximal value of the loss function £: Y x ¥ — [0,ln4z]- Prove that for a finite
hypothesis space H C VY, i.e. |H| < oo, the following inequality holds

R~ Rr(h)] 2 ¢ ) < 20Kl (_12m€2>
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Hint: A similar bound was proven in Lecture 6, section 5 for the likelihood function. Use the same
procedure.

Assignment 2. Consider multi-class linear classifier h: R® — Y = {1,..., K} defined by

hz;ws, ..., wk) = argmax{x, w,)
yey
where w = (w1, ..., wy) € R"*X are parameters. Derive a variant of the Perceptron algorithm to learn
the parameters w from linear separable examples {(x*,y") e R" x YV |i € {1,...,m}}.

Assignment 3. Consider joint distribution

exp f(x,y:q,9)

1
pq,g(may) = exp <Z %(%,yu) + Z Gov’ (yvyy'u’)> =

1
Z(q,9) = e Z(q,9)

Show that the optimal (Bayes) classifier minimizing the expected risk with 0/1-loss, i.e.

R(h) = E(a:,y)wpq,g [[y 7& h(w)]]

is the max-sum classifier

h(zx;q,g) € argmax f(x,y; q,g)
yeyv

For the same distribution py 4(,y) derive the optimal classifier h: XV — VY minimizing the expected
risk with the Hamming distance used as the loss, i.e

R(h) = E(@.y)~pg [Z[[y” a h”(w)]]}

veVY



Assignment 4. The LP relaxation of the max-sum problem reads

p* = argmax [ZZMu(y)qv(wu,va S0 e @ Y)guw W y)

2
HER\V“y\+‘S\‘y| veV yey {’L),’U/}Gg (y,y’)elﬂ

subject to

S o @ y) = @) v, eEyed, Y pmy)=1LveV, p>0

y'ey yey

Derive the LP dual and show that it can be expressed as an unconstrained problem

@* = argmin [Zggqq‘f (@, y)+ > Jmax g (v )

A\ veY {v,v'}e€ vy)eys
where 3 . , . , )
9oy WY = Gouw W, Y) F Qo (¥) + @un(y’), {v,0'} €& y,y €
@y = w@-— D, euw®), veVyed
v’ €N (v)

Assignment 5. Consider a max-sum classifier for playing Sudoku:
y" = h(z;q,9) = argmax (ZQ(%yv) + > g(yquyv/))
SVAGE {v,v'}eE
where
e V={(i,j) eN?|1<i<9,1<j<9}
€={{0,5), @, "N} li=dVvi=3V([i/3] =[i'/3] A[5/3] = [5'/3])}
xz=(z,€{00,1,...,9} |veEV)
y=(y, €{1,...,9} |veEV)
q: {0,1,...,9} x{1,...,9} =R

g:{1,...,9}> = R

Let (&,9¢) be an example of the Sudoku assignment and its correct solution, respectively. Derive a
variant of the Perceptron algorithm which finds the quality functions q and g such that § = h(&;q,g)
and the max-sum problem P = (V, &, q, g, ) has a strictly trivial equivalent. Apply the algorithm on a
particular example of the Sudoku puzzle and try to interpret the learned quality functions (q, g).



