
STRUCTURED MODEL LEARNING (SS2015)

5.SEMINAR

Assignment 1. Let h : X → Y be a fixed classification strategy. Let T = {(xi,yi) ∈ X × Y |
i ∈ {1, . . . ,m}} be a training set drawn from i.i.d. random variables with distribution p(x,y). A
probability that the expected risk R(h) = E(x,y)∼p[`(y, h(x)] deviates from the empirical risk RT (h) =
1
m

∑m
i=1 `(y

i, h(xi)) by at least ε > 0 can be bounded by the Hoeffding’s inequality

PT ∼pm

(∣∣∣R(h)−RT (h)
∣∣∣ ≥ ε) ≤ 2 exp

(
−2mε2

lmax

)
where lmax is the maximal value of the loss function ` : Y × Y → [0, lmax]. Prove that for a finite
hypothesis space H ⊆ YY , i.e. |H| <∞, the following inequality holds

PT ∼pm

(
max
h∈H

∣∣∣∣R(h)−RT (h)

∣∣∣∣ ≥ ε) ≤ 2|H| exp

(
−2mε2

lmax

)
Hint: A similar bound was proven in Lecture 6, section 5 for the likelihood function. Use the same
procedure.

Assignment 2. Consider multi-class linear classifier h : Rn → Y = {1, . . . ,K} defined by

h(x;w1, . . . ,wK) = argmax
y∈Y

〈x,wy〉

where w = (w1, . . . ,wk) ∈ Rn×K are parameters. Derive a variant of the Perceptron algorithm to learn
the parameters w from linear separable examples {(xi,yi) ∈ Rn × Y | i ∈ {1, . . . ,m}}.

Assignment 3. Consider joint distribution

pq,g(x,y) =
1

Z(q, g)
exp

(∑
v∈V

qv(xv, yv) +
∑

{v,v′}∈E

gvv′(yv, yv′)

)
=

1

Z(q, g)
exp f(x,y; q, g)

Show that the optimal (Bayes) classifier minimizing the expected risk with 0/1-loss, i.e.

R(h) = E(x,y)∼pq,g
[[y 6= h(x)]]

is the max-sum classifier

h(x; q, g) ∈ argmax
y∈YV

f(x,y; q, g)

For the same distribution pq,g(x,y) derive the optimal classifier h : XV → YV minimizing the expected
risk with the Hamming distance used as the loss, i.e

R(h) = E(x,y)∼pq,g

[∑
v∈V

[[yv 6= hv(x)]]

]
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Assignment 4. The LP relaxation of the max-sum problem reads

µ∗ = argmax
µ∈R|V||Y|+|E||Y|2

[∑
v∈V

∑
y∈Y

µv(y)qv(xv, yv) +
∑

{v,v′}∈E

∑
(y,y′)∈Y2

µv,v′(y, y′)gv,v′(y, y′)

]

subject to ∑
y′∈Y

µv,v′(y, y′) = µv(y), {v, v′} ∈ E , y ∈ Y,
∑
y∈Y

µv(y) = 1, v ∈ V, µ ≥ 0

Derive the LP dual and show that it can be expressed as an unconstrained problem

ϕ∗ = argmin
ϕ

[∑
v∈V

max
y∈Y

qϕv (xv, y) +
∑

{v,v′}∈E

max
(y,y′)∈Y2

gϕvv′(y, y
′)

]

where
gϕvv′(y, y

′) = gvv′(y, y′) + ϕvv′(y) + ϕv′v(y′), {v, v′} ∈ E , y, y′ ∈ Y
qϕv (y) = qv(y)−

∑
v′∈N (v)

ϕvv′(y), v ∈ V, y ∈ Y

Assignment 5. Consider a max-sum classifier for playing Sudoku:

y∗ = h(x; q, g) = argmax
y∈YV

(∑
v∈V

q(xv, yv) +
∑

{v,v′}∈E

g(yv, yv′)

)

where

• V = {(i, j) ∈ N2 | 1 ≤ i ≤ 9, 1 ≤ j ≤ 9}

• E = {{(i, j), (i′, j′)} | i = i′ ∨ j = j′ ∨ (di/3e = di′/3e ∧ dj/3e = dj′/3e)}

• x = (xv ∈ {�, 1, . . . , 9} | v ∈ V)

• y = (yv ∈ {1, . . . , 9} | v ∈ V)

• q : {�, 1, . . . , 9} × {1, . . . , 9} → R

• g : {1, . . . , 9}2 → R

Let (x̂, ŷ) be an example of the Sudoku assignment and its correct solution, respectively. Derive a
variant of the Perceptron algorithm which finds the quality functions q and g such that ŷ = h(x̂; q, g)
and the max-sum problem P = (V, E , q, g, x̂) has a strictly trivial equivalent. Apply the algorithm on a
particular example of the Sudoku puzzle and try to interpret the learned quality functions (q, g).
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