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Methodology Overview Basic Definitions

[RN10]

Objectives

Constraint Satisfaction Problem (CSP)
@ Define possible worlds in term of variables and their domains
© Specify constraints to represent real world problems
© Verify whether a possible world satisfies a set of constraints
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Methodology Overview Basic Definitions

What is a CSP? ™"

A CSP is defined by

@ Afinite set V of variables V;,i =1,...,n

@ A nonempty domain D; = dom(V;) of possible values
for each variable V; € V

@ A finite set of constraints Cy,Ca,...,Cn

e Each constraint C; limits the values that variables can take
o for subsets of the variables

Example 1

V= {V1, V2}

V= {Vl}
e D; =dom(Vy) = {1,2,3,4} . : ?(lj_c{l’él?’ D, = {1,2}
ogl“?#f e Cr: Vi +WV, <5
° 1> 0 Ci V>V,
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Methodology Overview Basic Definitions

Possible Worlds ™™

CSP model

@ A model of a CSP is an assignment of values to all of its variables
that satisfies all of its constraints.

e i.e. a model is a possible world that satisfies all constraints

<

Example 2

V= {Vl}
e Dy =dom(Vy) ={1,2,3,4} @ All models for this CSP:
@ C={Cy, G} o {V; =3}
0C1:V1752 O{V1:4}
o Cr: Vp >1

A

Radek Maiik (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 6/56



Methodology Overview Basic Definitions

Possible Worlds ™"

CSP model

@ A model of a CSP is an assignment of values to all of its variables
that satisfies all of its constraints.

e i.e. a model is a possible world that satisfies all constraints
e a CSP solution

Example 3

o V={V,V,} @ Possible worlds for this CSP:
o Dy ={1,2,3}, Dy = {1,2} o (i=1,V=1}

¢ o (Vi =1V, =2}
@ €= {Cy,(C,,Cs} o {V4 =2,V, =1} (a model)

° Ci:Vy #2 o {Vi =2V, =2}
() C2: V1+V2<5 ) {V1:3,V2:1} (amOdel)
e C3: Vi >0, 9 {V1=3,V2=2}
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Methodology Overview

Basic Definitions

Example: Map Coloring Problem

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Tasmania

Variables WA, NT, O, NSW, V,SA, T

Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
@ e.g. WA # NT (if the language allows this), or
® (WA,NT) € {(red, green), (red, blue), (green,red), ...}
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Methodology Overview Basic Definitions

Example: Map Coloring Model

Tasmv‘a

Solutions are assignments satisfying all constraints, e.g.,
{WA =red, NT = green, Q =red, NSW = green,
V =red, SA="0blue, T = green}
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Methodology Overview Basic Definitions

Constraints

Constraints are restrictions on the values that one or more variables
can take:
@ Unary constraint: a restriction involving a single variable
0 eg.V2#£2
@ k-ary constraint: a restriction involving k different variables
e eg. binary (k=2): V;+V, <5
eeg. 3ary: Vi+W+Vy <5
o We will mostly deal with binary constraints (k = 2).
@ Constraints can be specified by
@ listing all combinations of valid domain values for the variables
participating in the constraint
@ e.g. for constraint V; > V, and
dom(V1) = {1,2,3} and dom(V2) = {1,2}:
{o(W1, V2)i} ={(2,1),(3,1),(3,2)}
@ giving a function (predicate) that returns true if given values for
each variable which satisfy the constraint else false: V; > V,
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Methodology Overview Basic Definitions

Scope of a Constraint

@ Each constraint C; is a pair < scope, relation >
@ Relation ... a list of allowed combinations of variable values.

The scope of a constraint is the set of variables that are involved in the
constraint

Example 4
@ V, # 2 has scope {V»}
@ V; > V, has scope {V4, V»}
@ Vi + Vo4V, <5 has scope {Vy, Vs, V4 }

@ How many variables are in the scope of a k-ary constraint?
@ k variables
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Methodology Overview Basic Definitions

Constraint Satisfaction Problem

A finite constraint satisfaction problem (FCSP) is a CSP with a finite
set of variables and a finite domain for each variable.

@ We will only study finite CSPs here but many of the techniques
carry over to countably infinite and continuous domains.
We use CSP here to refer to FCSP.
e The scope of each constraint is automatically finite since it is a
subset of the finite set of variables.
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Methodology Overview Basic Definitions

Solution Variants

We may want to solve the following problems with a CSP:
@ determine whether or not a model exists
@ find a model
@ find all of the models
@ count the number of models
@ find the best model, given some measure of model quality
e this is now an optimization problem

@ determine whether some property of the variables holds in all
models
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Methodology Overview Basic Definitions

What is a solution?

@ A state is an assignment of values to some or all variables.

e An assignment is complete when every variable has a value.
e An assignment is partial when some variables have no values.

@ Consistent assignment
e the assignment does not violate the constraints
@ A solution to a CSP is a complete and consistent assignment.
@ Some CSPs require a solution that maximizes an objective
function.

@ Preferences (soft contraints): can be represented using costs,
and lead to constrained optimization problems.
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Methodology Overview Basic Definitions

Solving Constraint Satisfaction Problems

@ Even the simplest problem of determining whether or not a model
exists in a general CSP with finite domains is NP-hard
e There is no known algorithm with worst case polynomial runtime.
e We can’t hope to find an algorithm that is polynomial for all CSPs.
@ However, we can try to:
e find efficient (polynomial) consistency algorithms that reduce the
size of the search space
e identify special cases for which algorithms are efficient
e work on approximation algorithms that can find good solutions
quickly, even though they may offer no theoretical guarantees
e find algorithms that are fast on typical (not worst case) cases
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Methodology Overview Basic Definitions

Constraint Graph

@ Binary CSP: each constraint relates at most two variables
@ Constraint graph:
e nodes are variables
@ arcs are binary constraints
@ The structure of the graph can be exploited to provide problem
solutions:

e Graph can be used to simplify search
e e.g. a decomposition into subproblems
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Methodology Overview Basic Definitions

Real-world CSPs

@ Assignment problems (e.g. who teaches what class)
@ Timetabling problems
@ e.g. which class is offered when and where?

Hardware configuration

°
@ Hardware verification (e.g. IBM)

@ Transportation scheduling

@ Factory scheduling

@ Floor planning

@ Puzzle solving (e.g. crosswords, sudoku)
@ Software verification (small to medium programs)
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Methodology Overview Basic Definitions

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

4 Queens Problem

Variables O, >, O3, Q4
Domains D; = {1,2,3,4}

Constraints
® Qi #Qj
(cannot be in same row)
® |Q;— Q| # i —jl

(or same diagonal)

Translate each constraint into a set of allowable values for its variables
E.g., values for (Qq, O,) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)
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Algorithms Generate and Test

Generate and Test (GT) Algorithms

@ Systematically check all possible worlds
@ Possible worlds: cross product of domains

dom(Vy) x dom(V,) x - - - x dom(V,,)

@ Generate and Test:
@ Generate possible worlds one at a time
@ Test constraints for each one.

Example 5

3 variables A, B, C
fora € dom(A)
forb € dom(B)
forc € dom(C)
if {A =4, B=10, C =} satisfies all constraints
return {A =4, B=0b, C =}
fail
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Algorithms Generate and Test

Standard search formulation (incremental)

@ Let’s start with the straightforward, dumb approach, then fix it
@ States are defined by the values assigned so far

@ Initial state: the empty assignment,

@ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= falil if no legal assignments (not fixable!)

@ Goal test: the current assignment is complete

@ This is the same for all CSPs! @

@ Every solution appears at depth » with » variables
= use depth-first search

© Path is irrelevant, so can also use complete-state formulation
©Q b= (n—"/)d at depth 7, hence n!d" leaves!!l! @
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Algorithms Backtracking search

Backiracking search

Variable assignments are commutative, i.e.,

[WA =red then NT = green] same as [NT = green then WA = red]
Only need to consider assignments to a single variable at each node

= b=d and there are 4" leaves

Depth-first search for CSPs with single-variable assignments

is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for 1 ~ 25
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Algorithms Backtracking search

Backiracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var<+ SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result+ RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

May 9, 2017 PLYAS

Constraint Satisfaction Problem
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Backtracking example

~D

— ]

¢ & ¢
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
@ Which variable should be assigned next?
@ In what order should its values be tried?
© Can we detect inevitable failure early?
© Can we take advantage of problem structure?
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Algorithms Variable and value ordering heuristics

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

SSEs Sths Sthe S
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Algorithms Variable and value ordering heuristics

Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:

choose the variable with the most constraints on remaining variables

L Rt
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Algorithms Variable and value ordering heuristics

Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

‘\g% Allows 1 value for SA
—d¢ _.‘i
\_L’: \_L’: \_L’: < ‘\g% Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible
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Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

S

WA NT Q NSW v SA T
MrEErEErEErEErE (R
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Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

SSIA S5

WA NT Q NSW v SA T
(ErEErEErEErE(ErE[ErE(EEE|
(| sEjErEErE(EeE| PE(EDE|

Radek Maiik (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 36/56



Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

S SSi S

WA NT Q NSW v SA T

(ErEErEErEErE(ErE[ErE(EEE|
(| sEjErEErE(EeE| PE(EDE|
| I— Hjmewis EE0E]| EENNE]|

Radek Maiik (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017

37 /56



Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

SN SSEn Sl S

WA NT Q NSW v SA T
T I IR Irerirerireni
(| PEErEErE(EeE| PE(EEE|
| I— Hjioows EEnE| EEEE|
| I— 1l | — T ]
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Algorithms Node consistency, arc consistency, path consistency

Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

S SSi S

WA NT Q NSW v SA T
T I IR Irerirerireni
(| PEErEErE(EeE| PE(EEE|
| I— Hjioows EEnE| EEEE|

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X — Y is consistent iff

for every value x of X there is some allowed y

S SSE S

WA NT Q NSW v SA T

\{/
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X — Y is consistent iff

for every value x of X there is some allowed y

S SSE S

WA NT Q NSW v SA T

| I— 1 1 EENE|

\}/
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X — Y is consistent iff

for every value x of X there is some allowed y

S SSi S

WA NT Q NSW \ SA T

| I— II_II':(EI:I‘II EEEE|

~—

If X loses a value, neighbors of X need to be rechecked
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X — Y is consistent iff

for every value x of X there is some allowed y

S SSE S

WA NT Q NSW Vv SA T

1 1S o-dal p (LI 1]
:\ < /
If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X3, Xz, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;)to queue

function REMOVE-INCONSISTENT-VALUES( X;, X;) returns true iff succeeds
removed < false
for each x in DOMAIN[X;] do
if no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
then delete x from DOMAIN[X;]; removed <+ true
return removed

O(n*d?), can be reduced to O(n?d”) (but detecting all is NP-hard)
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Algorithms Local search for CSPs: min-conflict heuristic

Problem structure

@ Tasmania and mainland are independent subproblems
@ Identifiable as connected components of constraint graph
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Algorithms Local search for CSPs: min-conflict heuristic

Problem structure contd.

@ Suppose each independent subproblem has ¢ variables out of n
total

@ 12/c subproblems, each of which takes at most 7“ work to solve
@ Worst-case solution costis n/c - d, linear in n

n==80,d=2,c=20

@ 2% = 4 billion years at 10 million nodes/sec
Q 4-2%Y = 0.4 seconds at 10 million nodes/sec
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Algorithms Local search for CSPs: min-conflict heuristic

Tree-structured CSPs

() (&)
On0
© ®

@ Any try with » nodes has n — 1 arcs.

@ The graph made directed arc-consistent in O(#) steps.

@ Each step must compare up to O(d) possible domain values
for 2 variables.

Theorem 6

Theorem: If the constraint graph has no loops, the CSP can be solved
in O(n d?) time

@ Compare to general CSPs, where worst-case time is O(d")
@ This property also applies to logical and probabilistic reasoning:
e an important example of the relation between syntactic restrictions ;.

and the complexity of reasoning.
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Algorithms Local search for CSPs: min-conflict heuristic

Algorithm for tree-structured CSPs

Algorithm

@ Topological sort:
Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

(&) (E)
QG QG (ALBXOXDKENE)

@ For j from 1 down to 2, apply
REMOVEINCONSISTENT(Parent(X;), X;)

© For j from 1 to 1, assign X; consistently with Parent(X;)
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Algorithms Local search for CSPs: min-conflict heuristic

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O—@ O—@
P NNC
&—© = @
O O
O, @

@ Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

@ Cutset size ¢ = runtime O(d° - (n — ¢)d?*), very fast for small ¢
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Algorithms Local search for CSPs: min-conflict heuristic

lterative algorithms for CSPs

@ Hill-climbing, simulated annealing typically work with
“‘complete” states, i.e., all variables assigned
@ To apply to CSPs:

@ allow states with unsatisfied constraints
@ operators reassign variable values

Variable selection

@ randomly select any conflicted variable
@ min-conflicts heuristic:

@ choose value that violates the fewest constraints
e i.e., hillclimb with /:(17) = total number of violated constraints
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Algorithms Local search for CSPs: min-conflict heuristic

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: /1(1) = number of attacks

|
AE
ﬂlﬂl =

h=5
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Algorithms Local search for CSPs: min-conflict heuristic

Performance of min-conflicts

@ Given random initial state, can solve n-queens in almost constant
time for arbitrary » with high probability

@ e.g. queens n = 10,000,000 in = 50 steps
@ The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio.

_number of constraints
number of variables

CPU}
time

. .I
critical
ratio

Radek Maiik (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017



Algorithms Local search for CSPs: min-conflict heuristic

Summary

@ CSPs are a special kind of problem:
o states defined by values of a fixed set of variables
e goal test defined by constraints on variable values.
@ Basic solution:
e Backtracking = depth-first search with one variable assigned per
node
@ Speed-ups:
e Variable ordering and value selection heuristics help significantly
e Forward checking prevents assignments that guarantee later failure
e Constraint propagation (e.g., arc consistency) does additional work

to constrain values and detect inconsistencies
e The CSP representation allows analysis of problem structure

@ Tree-structured CSPs can be solved in linear time
@ Iterative min-conflicts is usually effective in practice
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Algorithms Local search for CSPs: min-conflict heuristic
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