Constraint Satisfaction Problem

Radek Mařík

FEE CTU, K13132

May 9, 2017

¹Based on the slides created by Stuart Russell

Radek Mařík (marikr@fel.cvut.cz)

Constraint Satisfaction Problem

Outline

Methodology Overview

Basic Definitions

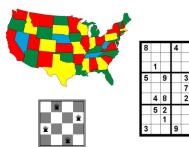
Algorithms

- Generate and Test
- Backtracking search
- Variable and value ordering heuristics
- Forward checking
- Node consistency, arc consistency, path consistency
- Local search for CSPs: min-conflict heuristic

Objectives [RN10]

Constraint Satisfaction Problem (CSP)

- Define possible worlds in term of variables and their domains
- Specify constraints to represent real world problems
- Verify whether a possible world satisfies a set of constraints



4 6 5

7 8

3

5

9

What is a CSP? [RN10]

A CSP is defined by

- A finite set \mathcal{V} of variables V_i , i = 1, ..., n
- ② A nonempty domain D_i = dom(V_i) of possible values for each variable V_i ∈ V
- **O** A finite set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that variables can take
 - for subsets of the variables

Example 1

•
$$\mathcal{V} = \{V_1\}$$

• $D_1 = \operatorname{dom}(V_1) = \{1, 2, 3, 4\}$

•
$$\mathcal{C} = \{C_1, C_2\}$$

•
$$C_2: V_1 > 1$$

•
$$\mathcal{V} = \{V_1, V_2\}$$

• $D_1 = \{1, 2, 3\}, D_2 = \{1, 2\}$
• $\mathcal{C} = \{C_1, C_2, C_3\}$
• $C_1: V_1 \neq 2$
• $C_2: V_2 + V_2 < 5$

•
$$C_2$$
: $V_1 + V_2 < 5$
• C_3 : $V_1 > V_2$

Possible Worlds [RN10]

CSP model

- A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.
 - i.e. a model is a possible world that satisfies all constraints

Example 2

•
$$\mathcal{V} = \{V_1\}$$

• $D_1 = \operatorname{dom}(V_1) = \{1, 2, 3, 4\}$
• $\mathcal{C} = \{C_1, C_2\}$

• All models for this CSP:

•
$$\{V_1 = 3\}$$

• $\{V_1 = 4\}$

C₁: V₁ ≠ 2
C₂: V₁ > 1

Possible Worlds [RN10]

CSP model

- A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.
 - i.e. a model is a possible world that satisfies all constraints
 - a CSP solution

Example 3

•
$$\mathcal{V} = \{V_1, V_2\}$$

• $D_1 = \{1, 2, 3\}, D_2 = \{1, 2\}$

5

$$\mathcal{C} = \{C_1, C_2, C_3\}$$

•
$$C_1: V_1 \neq 2$$

• $C_2: V_1 + V_2 <$

•
$$C_3$$
: $V_1 > V_2$

Possible worlds for this CSP:

• {
$$V_1 = 1, V_2 = 1$$
}
• { $V_1 = 1, V_2 = 2$ }
• { $V_1 = 2, V_2 = 1$ } (a model)
• { $V_1 = 2, V_2 = 2$ }
• { $V_1 = 3, V_2 = 1$ } (a model)
• { $V_1 = 3, V_2 = 2$ }

Methodology Overview

Basic Definitions

Example: Map Coloring Problem

Variables WA, NT, Q, NSW, V, SA, T Domains $D_i = \{red, green, blue\}$

Constraints: adjacent regions must have different colors

• e.g. $WA \neq NT$ (if the language allows this), or

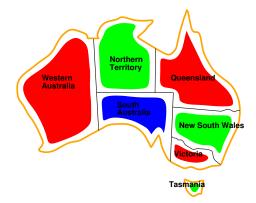
• $(WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\}$

M

Methodology Overview Basi

Basic Definitions

Example: Map Coloring Model



Solutions are assignments satisfying all constraints, e.g.,

$$\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$$

N.C.

Constraints

Constraints are restrictions on the values that one or more variables can take:

• Unary constraint: a restriction involving a single variable

• e.g.: $V2 \neq 2$

- *k*-ary constraint: a restriction involving *k* different variables
 - e.g. binary (k = 2): $V_1 + V_2 < 5$

• e.g. 3-ary: $V_1 + V_2 + V_4 < 5$

- We will mostly deal with binary constraints (k = 2).
- Constraints can be specified by
 - Iisting all combinations of valid domain values for the variables participating in the constraint
 - e.g. for constraint $V_1 > V_2$ and dom $(V1) = \{1, 2, 3\}$ and dom $(V2) = \{1, 2\}$: $\{v(V_1, V_2)_i\} = \{(2, 1), (3, 1), (3, 2)\}$
 - 2 giving a function (predicate) that returns true if given values for each variable which satisfy the constraint else false: $V_1 > V_2$

Scope of a Constraint

- Each constraint C_i is a pair < scope, relation >
- **Relation** ... a list of allowed combinations of variable values.

Scope

The scope of a constraint is the set of variables that are involved in the constraint

Example 4

- $V_2 \neq 2$ has scope $\{V_2\}$
- *V*₁ > *V*₂ has scope {*V*₁, *V*₂}
- $V_1 + V_2 + V_4 < 5$ has scope $\{V_1, V_2, V_4\}$
- How many variables are in the scope of a k-ary constraint?
 - k variables

Finite Constraint Satisfaction Problem

FCSP

A finite constraint satisfaction problem (FCSP) is a CSP with a finite set of variables and a finite domain for each variable.

- We will only study finite CSPs here but many of the techniques carry over to countably infinite and continuous domains.
 We use CSP here to refer to FCSP.
 - The scope of each constraint is automatically finite since it is a subset of the finite set of variables.

Solution Variants

We may want to solve the following problems with a CSP:

- determine whether or not a model exists
- find a model
- find all of the models
- count the number of models
- find the best model, given some measure of model quality
 - this is now an optimization problem
- determine whether some property of the variables holds in all models

What is a solution?

• A state is an assignment of values to some or all variables.

- An assignment is complete when every variable has a value.
- An assignment is **partial** when some variables have no values.

Consistent assignment

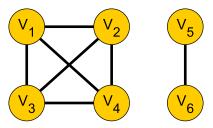
- the assignment does not violate the constraints
- A solution to a CSP is a complete and consistent assignment.
- Some CSPs require a solution that maximizes an *objective function*.
- **Preferences** (soft contraints): can be represented using costs, and lead to **constrained optimization problems**.

Solving Constraint Satisfaction Problems

- Even the simplest problem of determining whether or not a model exists in a general CSP with finite domains is NP-hard
 - There is no known algorithm with worst case polynomial runtime.
 - We can't hope to find an algorithm that is polynomial for all CSPs.
- However, we can try to:
 - find efficient (polynomial) consistency algorithms that reduce the size of the search space
 - identify special cases for which algorithms are efficient
 - work on approximation algorithms that can find good solutions quickly, even though they may offer no theoretical guarantees
 - find algorithms that are fast on typical (not worst case) cases

Constraint Graph

- Binary CSP: each constraint relates at most two variables
- Constraint graph:
 - nodes are variables
 - arcs are binary constraints
- The structure of the graph can be exploited to provide problem solutions:
 - Graph can be used to simplify search
 - e.g. a decomposition into subproblems

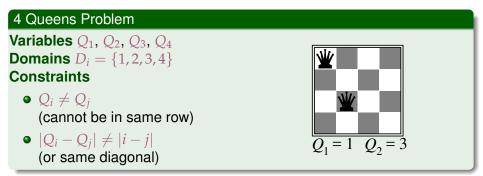


Real-world CSPs

- Assignment problems (e.g. who teaches what class)
- Timetabling problems
 - e.g. which class is offered when and where?
- Hardware configuration
- Hardware verification (e.g. IBM)
- Transportation scheduling
- Factory scheduling
- Floor planning
- Puzzle solving (e.g. crosswords, sudoku)
- Software verification (small to medium programs)

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?



Translate each constraint into a set of allowable values for its variables E.g., values for (Q_1, Q_2) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

Generate and Test

Generate and Test (GT) Algorithms

- Systematically check all possible worlds
 - Possible worlds: cross product of domains

```
\operatorname{dom}(V_1) \times \operatorname{dom}(V_2) \times \cdots \times \operatorname{dom}(V_n)
```

- Generate and Test:
 - Generate possible worlds one at a time
 - Test constraints for each one.

Example 5

3 variables
$$A, B, C$$

for $a \in dom(A)$
for $b \in dom(B)$
for $c \in dom(C)$
if $\{A = a, B = b, C = c\}$ satisfies all constraints
return $\{A = a, B = b, C = c\}$
fail

Standard search formulation (incremental)

- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - **1** Initial state: the empty assignment, \oslash
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
 - ⇒ fail if no legal assignments (not fixable!)
 - Goal test: the current assignment is complete

- 🕚 This is the same for all CSPs! 😂
- 2 Every solution appears at depth *n* with *n* variables
 - \Rightarrow use depth-first search
- Path is irrelevant, so can also use complete-state formulation

• $b = (n - \ell)d$ at depth ℓ , hence $n!d^n$ leaves!!!!

Backtracking search

Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]Only need to consider assignments to a single variable at each node

$$\Rightarrow$$
 $b = d$ and there are d^n leaves

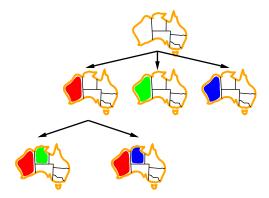
Depth-first search for CSPs with single-variable assignments is called backtracking search Backtracking search is the basic uninformed algorithm for CSPs Can solve *n*-queens for $n \approx 25$

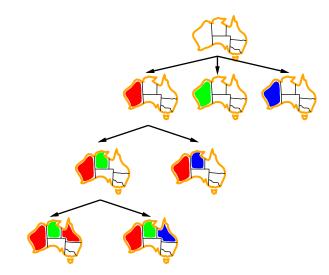
Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure **return** RECURSIVE-BACKTRACKING({ }, *csp*) function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment $var \leftarrow Select-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result ← RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

Algorithms

Backtracking search





Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

- Which variable should be assigned next?
- In what order should its values be tried?
- Oan we detect inevitable failure early?
- Oan we take advantage of problem structure?

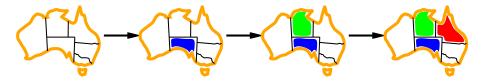
Minimum remaining values

Minimum remaining values (MRV): choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables Degree heuristic:

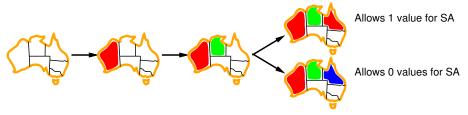
choose the variable with the most constraints on remaining variables



Least constraining value

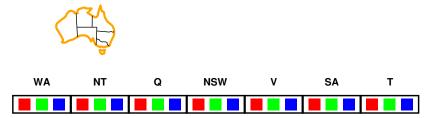
Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

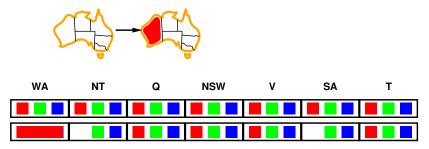


Combining these heuristics makes 1000 queens feasible

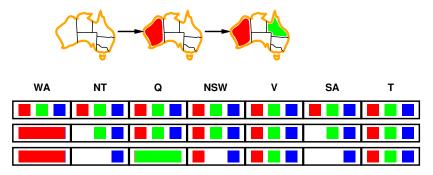
Idea: Keep track of remaining legal values for unassigned variables



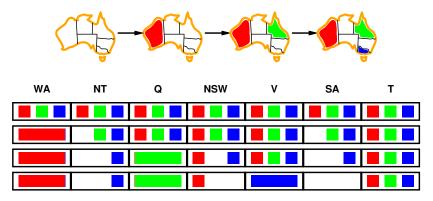
Idea: Keep track of remaining legal values for unassigned variables



Idea: Keep track of remaining legal values for unassigned variables

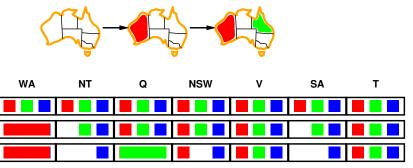


Idea: Keep track of remaining legal values for unassigned variables



Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:



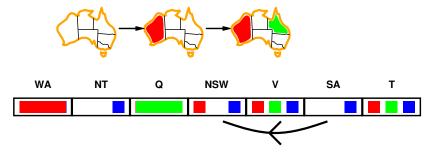
NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent $X \rightarrow Y$ is consistent iff

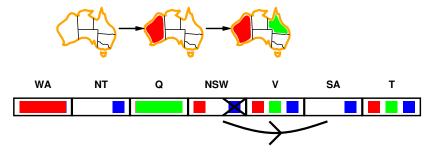
for **every** value *x* of *X* there is **some** allowed *y*



Arc consistency

Simplest form of propagation makes each arc consistent $X \rightarrow Y$ is consistent iff

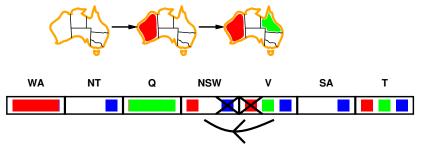
for **every** value *x* of *X* there is **some** allowed *y*



Arc consistency

Simplest form of propagation makes each arc consistent $X \rightarrow Y$ is consistent iff

for **every** value *x* of *X* there is **some** allowed *y*

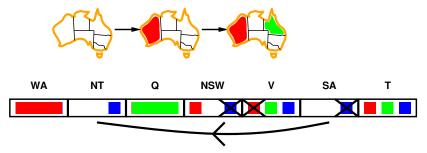


If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent $X \rightarrow Y$ is consistent iff

for **every** value x of X there is **some** allowed y



If *X* loses a value, neighbors of *X* need to be rechecked Arc consistency detects failure earlier than forward checking Can be run as a preprocessor or after each assignment

Radek Mařík (marikr@fel.cvut.cz)

Arc consistency algorithm

function AC-3(*csp*) **returns** the CSP, possibly with reduced domains **inputs**: *csp*, a binary CSP with variables $\{X_1, X_2, ..., X_n\}$ **local variables**: *queue*, a queue of arcs, initially all the arcs in *csp*

while queue is not empty do $(X_i, X_j) \leftarrow \mathsf{REMOVE}\operatorname{FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in NEIGHBORS $[X_i]$ do add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in DOMAIN[X_i] do if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN[X_i]; removed \leftarrow true return removed

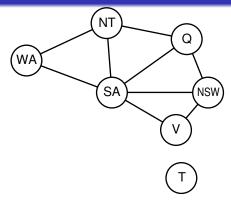
 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting all is NP-hard)

Radek Mařík (marikr@fel.cvut.cz)

Constraint Satisfaction Problem

May 9, 2017 45 / 56

Problem structure



- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph

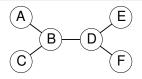
Problem structure contd.

- Suppose each independent subproblem has c variables out of n total
- *n*/*c* subproblems, each of which takes at most *d^c* work to solve
- Worst-case solution cost is $n/c \cdot d^c$, linear in n

n = 80, d = 2, c = 20

- **1** $2^{80} = 4$ billion years at 10 million nodes/sec
- 2 $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

Tree-structured CSPs



- Any try with *n* nodes has n-1 arcs.
- The graph made directed arc-consistent in O(n) steps.
- Each step must compare up to O(d) possible domain values for 2 variables.

Theorem 6

Theorem: If the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time

- Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning:
 - an important example of the relation between syntactic restrictions and the complexity of reasoning.

Radek Mařík (marikr@fel.cvut.cz)

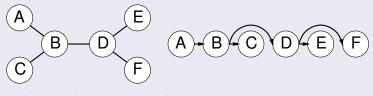
Constraint Satisfaction Problem

Algorithm for tree-structured CSPs

Algorithm

Topological sort:

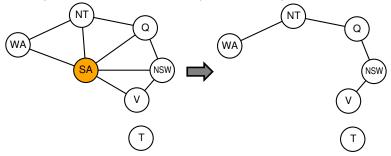
Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- For *j* from *n* down to 2, apply REMOVEINCONSISTENT(*Parent*(X_i), X_i)
- So For *j* from 1 to *n*, assign X_j consistently with $Parent(X_j)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains



 Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

• Cutset size $c \Rightarrow$ runtime $O(d^c \cdot (n-c)d^2)$, very fast for small c

Iterative algorithms for CSPs

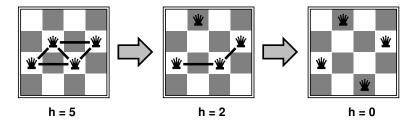
- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values

Variable selection

- randomly select any conflicted variable
- min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hillclimb with h(n) = total number of violated constraints

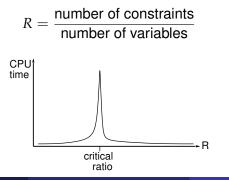
Example: 4-Queens

States: 4 queens in 4 columns ($4^4 = 256$ states) Operators: move queen in column Goal test: no attacks Evaluation: h(n) = number of attacks



Performance of min-conflicts

- Given random initial state, can solve *n*-queens in almost constant time for arbitrary *n* with high probability
 - e.g. queens n = 10,000,000 in ≈ 50 steps
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.



Summary

• CSPs are a special kind of problem:

- states defined by values of a fixed set of variables
- goal test defined by constraints on variable values.

Basic solution:

 Backtracking = depth-first search with one variable assigned per node

• Speed-ups:

- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
 - Tree-structured CSPs can be solved in linear time

• Iterative min-conflicts is usually effective in practice

References I

Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.

