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Methodology Overview Basic Definitions

Objectives [RN10]

Constraint Satisfaction Problem (CSP)
1 Define possible worlds in term of variables and their domains
2 Specify constraints to represent real world problems
3 Verify whether a possible world satisfies a set of constraints
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Methodology Overview Basic Definitions

What is a CSP? [RN10]

A CSP is defined by
1 A finite set V of variables Vi, i = 1, . . . , n
2 A nonempty domain Di = dom(Vi) of possible values

for each variable Vi ∈ V

3 A finite set of constraints C1, C2, . . . , Cm
Each constraint Ci limits the values that variables can take
for subsets of the variables

Example 1

V = {V1}
D1 = dom(V1) = {1, 2, 3, 4}

C = {C1, C2}
C1: V1 6= 2
C2: V1 > 1

V = {V1, V2}
D1 = {1, 2, 3}, D2 = {1, 2}

C = {C1, C2, C3}
C1: V1 6= 2
C2: V1 + V2 < 5
C3: V1 > V2
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Methodology Overview Basic Definitions

Possible Worlds [RN10]

CSP model
A model of a CSP is an assignment of values to all of its variables
that satisfies all of its constraints.

i.e. a model is a possible world that satisfies all constraints

Example 2

V = {V1}
D1 = dom(V1) = {1, 2, 3, 4}

C = {C1, C2}
C1: V1 6= 2
C2: V1 > 1

All models for this CSP:
{V1 = 3}
{V1 = 4}

Radek Mařík (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 6 / 56



Methodology Overview Basic Definitions

Possible Worlds [RN10]

CSP model
A model of a CSP is an assignment of values to all of its variables
that satisfies all of its constraints.

i.e. a model is a possible world that satisfies all constraints
a CSP solution

Example 3

V = {V1, V2}
D1 = {1, 2, 3}, D2 = {1, 2}

C = {C1, C2, C3}
C1: V1 6= 2
C2: V1 + V2 < 5
C3: V1 > V2

Possible worlds for this CSP:
{V1 = 1, V2 = 1}
{V1 = 1, V2 = 2}
{V1 = 2, V2 = 1} (a model)
{V1 = 2, V2 = 2}
{V1 = 3, V2 = 1} (a model)
{V1 = 3, V2 = 2}
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Methodology Overview Basic Definitions

Example: Map Coloring Problem

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT, Q, NSW, V, SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g. WA 6= NT (if the language allows this), or
(WA, NT) ∈ {(red, green), (red, blue), (green, red), . . .}
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Methodology Overview Basic Definitions

Example: Map Coloring Model

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA= red, NT = green, Q= red, NSW = green,
V = red, SA= blue, T = green}

Radek Mařík (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 9 / 56



Methodology Overview Basic Definitions

Constraints

Constraints are restrictions on the values that one or more variables
can take:

Unary constraint: a restriction involving a single variable
e.g.: V2 6= 2

k-ary constraint: a restriction involving k different variables
e.g. binary (k = 2): V1 + V2 < 5
e.g. 3-ary: V1 + V2 + V4 < 5
We will mostly deal with binary constraints (k = 2).

Constraints can be specified by
1 listing all combinations of valid domain values for the variables

participating in the constraint
e.g. for constraint V1 > V2 and
dom(V1) = {1, 2, 3} and dom(V2) = {1, 2}:
{v(V1, V2)i} = {(2, 1), (3, 1), (3, 2)}

2 giving a function (predicate) that returns true if given values for
each variable which satisfy the constraint else false: V1 > V2
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Methodology Overview Basic Definitions

Scope of a Constraint

Each constraint Ci is a pair < scope, relation >

Relation . . . a list of allowed combinations of variable values.

Scope
The scope of a constraint is the set of variables that are involved in the
constraint

Example 4

V2 6= 2 has scope {V2}
V1 > V2 has scope {V1, V2}
V1 + V2 + V4 < 5 has scope {V1, V2, V4}
How many variables are in the scope of a k-ary constraint?

k variables
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Methodology Overview Basic Definitions

Finite Constraint Satisfaction Problem

FCSP
A finite constraint satisfaction problem (FCSP) is a CSP with a finite
set of variables and a finite domain for each variable.

We will only study finite CSPs here but many of the techniques
carry over to countably infinite and continuous domains.
We use CSP here to refer to FCSP.

The scope of each constraint is automatically finite since it is a
subset of the finite set of variables.
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Methodology Overview Basic Definitions

Solution Variants

We may want to solve the following problems with a CSP:
determine whether or not a model exists
find a model
find all of the models
count the number of models
find the best model, given some measure of model quality

this is now an optimization problem

determine whether some property of the variables holds in all
models
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Methodology Overview Basic Definitions

What is a solution?

A state is an assignment of values to some or all variables.
An assignment is complete when every variable has a value.
An assignment is partial when some variables have no values.

Consistent assignment
the assignment does not violate the constraints

A solution to a CSP is a complete and consistent assignment.
Some CSPs require a solution that maximizes an objective
function.
Preferences (soft contraints): can be represented using costs,
and lead to constrained optimization problems.
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Methodology Overview Basic Definitions

Solving Constraint Satisfaction Problems

Even the simplest problem of determining whether or not a model
exists in a general CSP with finite domains is NP-hard

There is no known algorithm with worst case polynomial runtime.
We can’t hope to find an algorithm that is polynomial for all CSPs.

However, we can try to:
find efficient (polynomial) consistency algorithms that reduce the
size of the search space
identify special cases for which algorithms are efficient
work on approximation algorithms that can find good solutions
quickly, even though they may offer no theoretical guarantees
find algorithms that are fast on typical (not worst case) cases
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Methodology Overview Basic Definitions

Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph:

nodes are variables
arcs are binary constraints

The structure of the graph can be exploited to provide problem
solutions:

Graph can be used to simplify search
e.g. a decomposition into subproblems
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Methodology Overview Basic Definitions

Real-world CSPs

Assignment problems (e.g. who teaches what class)
Timetabling problems

e.g. which class is offered when and where?

Hardware configuration
Hardware verification (e.g. IBM)
Transportation scheduling
Factory scheduling
Floor planning
Puzzle solving (e.g. crosswords, sudoku)
Software verification (small to medium programs)
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Methodology Overview Basic Definitions

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

4 Queens Problem
Variables Q1, Q2, Q3, Q4
Domains Di = {1, 2, 3, 4}
Constraints

Qi 6= Qj
(cannot be in same row)
|Qi −Qj| 6= |i− j|
(or same diagonal) 1

Q = 1
2

Q = 3

Translate each constraint into a set of allowable values for its variables
E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)
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Algorithms Generate and Test

Generate and Test (GT) Algorithms

Systematically check all possible worlds
Possible worlds: cross product of domains

dom(V1)× dom(V2)× · · · × dom(Vn)

Generate and Test:
1 Generate possible worlds one at a time
2 Test constraints for each one.

Example 5

3 variables A, B, C
for a ∈ dom(A)

for b ∈ dom(B)
for c ∈ dom(C)

if {A = a, B = b, C = c} satisfies all constraints
return {A = a, B = b, C = c}

fail

Radek Mařík (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 20 / 56



Algorithms Generate and Test

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far

1 Initial state: the empty assignment, ∅
2 Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

3 Goal test: the current assignment is complete

1 This is the same for all CSPs!
2 Every solution appears at depth n with n variables
⇒ use depth-first search

3 Path is irrelevant, so can also use complete-state formulation

4 b= (n− `)d at depth `, hence n!dn leaves!!!!
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Algorithms Backtracking search

Backtracking search

Variable assignments are commutative, i.e.,

[WA= red then NT = green] same as [NT = green then WA= red]
Only need to consider assignments to a single variable at each node

⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n ≈ 25
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Algorithms Backtracking search

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result←RECURSIVE-BACKTRACKING(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Backtracking example
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Algorithms Backtracking search

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?
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Algorithms Variable and value ordering heuristics

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values
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Algorithms Variable and value ordering heuristics

Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:

choose the variable with the most constraints on remaining variables
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Algorithms Variable and value ordering heuristics

Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible
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Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Radek Mařík (marikr@fel.cvut.cz) Constraint Satisfaction Problem May 9, 2017 35 / 56



Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Algorithms Forward checking

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Algorithms Node consistency, arc consistency, path consistency

Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency

Simplest form of propagation makes each arc consistent
X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
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Algorithms Node consistency, arc consistency, path consistency

Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)←REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi] do
add (Xk, Xi) to queue

function REMOVE-INCONSISTENT-VALUES( Xi, Xj) returns true iff succeeds
removed← false
for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj

then delete x from DOMAIN[Xi]; removed← true
return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)
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Algorithms Local search for CSPs: min-conflict heuristic

Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph
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Algorithms Local search for CSPs: min-conflict heuristic

Problem structure contd.

Suppose each independent subproblem has c variables out of n
total
n/c subproblems, each of which takes at most dc work to solve
Worst-case solution cost is n/c · dc, linear in n

n= 80, d= 2, c= 20
1 280 = 4 billion years at 10 million nodes/sec
2 4 · 220 = 0.4 seconds at 10 million nodes/sec
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Algorithms Local search for CSPs: min-conflict heuristic

Tree-structured CSPs

A

B

C

D

E

F

Any try with n nodes has n− 1 arcs.
The graph made directed arc-consistent in O(n) steps.
Each step must compare up to O(d) possible domain values
for 2 variables.

Theorem 6
Theorem: If the constraint graph has no loops, the CSP can be solved
in O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)
This property also applies to logical and probabilistic reasoning:

an important example of the relation between syntactic restrictions
and the complexity of reasoning.
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Algorithms Local search for CSPs: min-conflict heuristic

Algorithm for tree-structured CSPs

Algorithm
1 Topological sort:

Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2 For j from n down to 2, apply
REMOVEINCONSISTENT(Parent(Xj), Xj)

3 For j from 1 to n, assign Xj consistently with Parent(Xj)
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Algorithms Local search for CSPs: min-conflict heuristic

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT

Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree
Cutset size c ⇒ runtime O(dc · (n− c)d2), very fast for small c
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Algorithms Local search for CSPs: min-conflict heuristic

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned
To apply to CSPs:

1 allow states with unsatisfied constraints
2 operators reassign variable values

Variable selection
randomly select any conflicted variable
min-conflicts heuristic:

choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Algorithms Local search for CSPs: min-conflict heuristic

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0
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Algorithms Local search for CSPs: min-conflict heuristic

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability

e.g. queens n = 10,000,000 in ≈ 50 steps

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio.

R =
number of constraints
number of variables

R

CPU

time

critical

   ratio
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Algorithms Local search for CSPs: min-conflict heuristic

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values.

Basic solution:
Backtracking = depth-first search with one variable assigned per
node

Speed-ups:
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies
The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice
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Algorithms Local search for CSPs: min-conflict heuristic

References I

Stuart J. Russell and Peter Norvig.
Artificial Intelligence, A Modern Approach.
Pre, third edition, 2010.
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