Scheduling

Radek Mařík

FEE CTU, K13132

April 25, 2017

Outline

(9) Introduction to Scheduling

- Methodology Overview
(2) Classification of Scheduling Problems
- Machine environment
- Job Characteristics
- Optimization
(3) Local Search Methods
- General
- Tabu Search
- Flow Shop Scheduling
- Job Shop Scheduling

4) Project Scheduling

- Critical Path Method

Time, schedules, and resources

- Classical planning representation
- What to do
- What order
- Extensions
- How long an action takes
- When it occurs
- Scheduling
- Temporal constraints,
- Resource contraints.
- Examples
- Airline scheduling,
- Which aircraft is assigned to which flights
- Departure and arrival time,
- A number of employees is limited.
- An aircraft crew, that serves during one flight, cannot be assigned to another flight.

General Approach

Introduction

- Graham's classification of scheduling problems

General solving methods

- Exact solving method
- Branch and bound methods
- Heuristics
- dispatching rules
- beam search
- local search: simulated annealing, tabu search, genetic algorithms
- Mathematical programming: formulation
- linear programming
- integer programming
- Constraint satisfaction programming

Schedule

Schedule:

- determined by tasks assignments to given times slots using given resources, where the tasks should be performed

Complete schedule:

- all tasks of a given problem are covered by the schedule

Partial schedule:

- some tasks of a given problem are not resolved/assigned

Consistent schedule:

- a schedule in which all constraints are satisfied w.r.t. resource and tasks, e.g.
- at most one tasks is performed on a single machine with a unit capacity Consistent complete schedule vs. consistent partial schedule Optimal schedule:
- the assigments of tasks to machines is optimal w.r.t. to a given optimization criterion, e.g..
- min $C_{\text {max }}$: makespan (completion time of the last task) is minimum

Terminology of Scheduling ${ }^{[\text {[ructs] }}$

Scheduling

concerns optimal allocation or assignment of resources, to a set of tasks or activities over time

- limited amount of resources,
- gain maximization given constraints
- Machines $M_{i}, i=1, \ldots, m$
- Jobs $J_{j}, j=1, \ldots, n$
- (i, j) an operation or processing of job j on machine i
- a job can be composed from several operations,
- example: job 4 has three operations with non-zero processing time $(2,4),(3,4),(6,4)$, i.e. it is performed on machines 2,3,6

Machine oriented Gantt chart

Static and dynamic parameters of jobs ${ }^{\text {[nowla] }}$

- Static parameters of job
- processing time $p_{i j}, p_{j}$: processing time of job j on machine i
- release date of $j r_{j}$:
earliest starting time of jobs j
- due date d_{j} : committed completion time of job j (preference)
- vs. deadline:
time, when job j must be finished at latest (requirement)
- weight w_{j} :
importance of job j relatively to other jobs in the system
- Dynamic parameters of job
- start time $S_{i j}, S_{j}$: time when job j is started on machine i
- completion time $C_{i j}, C_{j}$: time when job j execution on machine i is finished

Graham's classification naman wero

Graham's classification $\alpha|\beta| \gamma$

(Many) Scheduling problems can be described by a three field notation

- α : the machine environment
- describes a way of job assingments to machines
- β : the job characteristics,
- describes constraints applied to jobs
- γ : the objective criterion to be minimized
- complexity for combinations of scheduling problems

Examples

- P3|prec| $C_{m a x}$: bike assembly
- $P m\left|r_{j}\right| \sum w_{j} C_{j}$: parallel machines

Machine Environment α rucla, weol

- Single machine ($\alpha=1$): $1|\ldots| \ldots$
- Identical parallel machines Pm
- m identical machines working in parallel with the same speed
- each job consist of a single operation,
- each job processed by any of the machines m for p_{j} time units
- Uniform parallel machines $Q m$
- processing time of job j on machine i propotional to its speed v_{i}
- $p_{i j}=p_{j} / v_{i}$
- ex. several computers with processors having different speeds
- Unrelated parallel machines $R m$
- each machine has a different speed for different jobs
- machine i processes job j with speed $v_{i j}$
- $p_{i j}=p_{j} / v_{i j}$
- eg. a vector computer computes vector tasks faster than a classical PC

Shop Problems

- Shop Problems
- each task is executed sequentially on several machines
- job j consists of several operations (i, j)
- operation (i, j) of $j o b j$ is performed on machine i within time $p_{i j}$
- eg: job j with 4 operations $(1, j),(2, j),(3, j),(4, j)$ Machine $1 \quad$ Machine 3

Machine 2
Machine 4

- Shop problems are classical studied in details in operations research
- Real problems are ofter more complicated
- utilization of knowledge on subproblems or simplified problems in solutions

Flow shop $\alpha^{[\text {Puduris, Neevo }}$

- Flow shop Fm
- m machines in series
- each job has to be processed on each machine
- all jobs follow the same route:
- first machine 1 , then machine $2, \ldots$
- if the jobs have to be processed in the same order on all machines, we have a permutation flow shop
- Flexible flow shop FFs
- a generalizatin of flow shop problem
- s phases, a set of parallel machines is assigned to each phase
- i.e. flow shop with s parallel machines
- each job has to be processed by all phases in the same order
- first on a machine of phase 1 , then on a machine of phase $2, \ldots$
- the task can be performed on any machine assigned to a given phase

Open shop \& job shop ${ }^{\text {fucisia Meolo }}$

- Job shop $J m$
- flow shop with m machines
- each job has its individual predetermined route to follow
- processing time of a given jobs might be zero for some machines
- $(i, j) \rightarrow(k, j)$ specifies that job j is performed on machine i earlier than on machine k
- example: $(2, j) \rightarrow(1, j) \rightarrow(3, j) \rightarrow(4, j)$
- Open shop Om
- flow shop with m machines
- processing time of a given jobs might be zero for some machines
- no routing restrictions (this is a scheduling decision)

Shop Models Notation ${ }^{\text {Nover }}$

- m machines, n jobs $1, \ldots, n$
- M^{j} is the set of machines where job j has to be processed on
- operations $O=\left\{(i, j) \mid j=1, \ldots, n ; i \in M^{j} \subset M:=\{1, \ldots, m\}\right\}$ with processing times $p_{i j}$
- PREC specifies the precedence constraints on the operations
- Flow shop: $M^{j}=M$ and PREC $=\{(i, j) \rightarrow(i+1, j) \mid i=1, \ldots m-1 ; j=1, \ldots, n\}$
- Job shop: PREC contains a chain $\left(i_{1}, j\right) \rightarrow \ldots, \rightarrow\left(i_{\left|M^{j}\right|}, j\right)$ for each j
- Open shop: $M^{j}=M$ and $P R E C=\varnothing$

Constraints $\beta^{\text {[nivis , Neolo }}$

- Precedence constraints prec
- linear sequence, tree structure
- for jobs a, b we write $a \rightarrow b$, with meaning of $S_{a}+p_{a} \leq S_{b}$
- example: bike assembly
- Preemptions pmtn
- a job with a higher priority interrupts the current job
- Machine suitability M_{j}
- a subset of machines M_{j}, on which job j can be executed
- room assignment: appropriate size of the classroom
- games: a computer with a HW graphical library
- Work force constraints W, W_{ℓ}
- another sort of machines is introduced to the problem
- machines need to be served by operators and jobs can be performed only if operators are available, operators W
- different groups of operators with a specific qualification can exist, W_{ℓ} is a number of operators in group ℓ

Constraints (continuation) $\beta^{\text {Fiwara, Nelol }}$

- Routing constraints
- determine on which machine jobs can be executed,
- an order of job execution in shop problems
- job shop problem: an operation order is given in advance
- open shop problem: a route for the job is specified during scheduling
- Setup time and cost $s_{i j k}, c_{i j k}, s_{j k}, c_{j k}$
- depend on execution sequence
- $s_{i j k}$ time for execution of job k after job j on machine i
- $c_{i j k}$ cost of execution of job k after job j on machine i
- $s_{j k}, c_{j k}$ time/cost independent on machine
- examples
- lemonade filling into bottles
- travelling salesman problem $1\left|s_{j k}\right| C_{\text {max }}$

Optimization: throughput and makespan γ

- Makespan $C_{\max }$: maximum completion time

$$
C_{\max }=\max \left(C_{1}, \ldots, C_{n}\right)
$$

- Example: $C_{\max }=\max \{1,3,4,5,8,7,9\}=9$ Resource 2

- Goal: makespan minimization often
- maximizes throughput
- ensures uniform load of machines (load balancing)
- example: $C_{\max }=\max \{1,2,4,5,7,4,6\}=7$ Resource 2

| 2 | 6 | 5 |
| :--- | :--- | :--- | Resource 1 | 1 | 3 | 4 | 7 |
| :--- | :--- | :--- | :--- |

- It is a basic criterion that is used very often.

Optimization: Lateness $\gamma^{\text {[Rucis] }}$

- Lateness of job $j: L_{\text {max }}=C_{j}-d_{j}$
- Maximum lateness $L_{\max }$

$$
L_{\max }=\max \left(L_{1}, \ldots, L_{n}\right)
$$

- Goal: maximum lateness minimization
- Example:

$$
\begin{aligned}
& L_{\text {max }}=\max \left(L_{1}, L_{2}, L_{3}\right)= \\
& =\max \left(C_{1}-d_{1}, C_{2}-d_{2}, C_{3}-d_{3}\right)= \\
& =\max (4-8,16-14,10-10)= \\
& =\max (-4,2,0)=2
\end{aligned}
$$

Optimization: tardiness $\gamma^{\text {[Rucris] }}$

- Job tardiness $j: T_{j}=\max \left(C_{j}-d_{j}, 0\right)$
- Total tardiness

- Goal: total tardiness minimization
- Example: $T_{1}+T_{2}+T_{3}=$

$$
\begin{aligned}
& =\quad \max \left(C_{1}-d_{1}, 0\right)+\max \left(C_{2}-d_{2}, 0\right)+\max \left(C_{3}-d_{3}, 0\right)= \\
& =\quad \max (4-8,0)+\max (16-14,0)+\max (10-10,0)= \\
& =\quad 0+2+0=2
\end{aligned}
$$

- Total weighted tardiness

$$
\sum_{j=1}^{n} w_{j} T_{j}
$$

- Goal: total weighted tardiness minimization

Criteria Comparison $\gamma{ }^{[\text {[ucisis }}$

Constructive vs. local methods

- Constructive methods
- Start with the empty schedule
- Add step by step other jobs to the schedule so that the schedule remains consistent
- Local search
- Start with a complete non-consistent schedule
- trivial: random generated
- Try to find a better "similar" schedule by local modifications.
- Schedule quality is evaluated using optimization criteria
- ex. makespan
- optimization criteria assess also schedule consistency
- ex. a number of vialoted precedence constraints
- Hybrid approaches
- combinations of both methods

Local Search Algorithm

(1) Initialization

- $k=0$
- Select an initial schedule S_{0}
- Record the current best schedule:

$$
S_{\text {best }}=S_{0} \text { a cost } t_{\text {best }}=F\left(S_{0}\right)
$$

(2) Select and update

- Select a schedule from neighborhood: $S_{k+1} \in N\left(S_{k}\right)$
- if no element $N\left(S_{k}\right)$ satisfies schedule acceptance criterion then the algorithms finishes
- if $F\left(S_{k+1}\right)<\operatorname{cost}_{\text {best }}$ then
$S_{\text {best }}=S_{k+1}$ a cost $t_{\text {best }}=F\left(S_{k+1}\right)$

(3) Finish

- if the stop constraints are satisfied then the algorithms finishes
- otherwise $k=k+1$ and continue with step 2.

Single machine + nonpreemptive jobs

- Schedule representation
- permutations n jobs
- example with six jobs: 1,4,2,6,3,5
- Neighborhood definition
- pairwise exchange of neighboring jobs
- $n-1$ possible schedules in the neighborhood
- example: $1,4,2,6,3,5$ is modified to $1,4,2,6,5,3$
- or select an arbitrary job from the schedule and place it to an arbitrary position
- $\leq n(n-1)$ possible schedules in the neighborhood
- example: from $1,4,2,6,3,5$ we select randomly 4 and place it somewhere else: $1,2,6,3,4,5$

Criteria for Schedule Selection ${ }^{\text {Ruwis] }}$

- Criteria for schedule selection
- Criterion for schedule acceptance/refuse
- The main difference among a majority of methods
- to accept a better schedule all the time?
- to accept even worse schedule sometimes?
- methods
- probabilistic
- random walk: with a small probability (eg. 0.01) a worse schedule is accepted
- simulated annealing
- deterministic
- tabu search: a tabu list of several last state/modifications that are not allowed for the following selection is maintained

Tabu Search ${ }^{\text {[Puise }}$

- Deterministic criterion for schedule acceptance/refuse
- Tabu list of several last schedule modifications is maintained
- each new modification is stored on the top of the tabu list
- eg. of a store modification: exchange of jobs j and k
- tabu list = a list of forbidden modifications
- the neighborhood is constrained over schedules, that do not require a change in the tabu list
- a protection against cycling
- example of a trivial cycling: the first step: exchange jobs 3 and 4, the second step: exchange jobs 4 and 3
- a fixed length of the list (often: 5-9)
- the oldest modifications of the tabu list are removed
- too small length: cycling risk increases
- too high length: search can be too constrained
- Aspiration criterion
- determines when it is possible to make changes in the tabu list
- eg. a change in the tabu list is allowed if $F\left(S_{\text {best }}\right)$ is improved.

Tabu Search Algorithm

(1) $\quad k=1$

- Select an initial schedule S_{1} using a heuristics, $S_{\text {best }}=S_{1}$
(2) Choose $S_{c} \in N\left(S_{k}\right)$
- If the modification $S_{k} \rightarrow S_{c}$ is forbidden because it is in the tabu list then continue with step 2
(3) If the modification $S_{k} \rightarrow S_{c}$ is not forbidden by the tabu list then $S_{k+1}=S_{c}$, store the reverse change to the top of the tabu list move other positions in the tabu list one position lower remove the last item of the tabu list
- if $F\left(S_{c}\right)<F\left(S_{\text {best }}\right)$ then $S_{\text {best }}=S_{c}$
(4) $\quad k=k+1$
- if a stopping condition is satisfied then finish otherwise continue with step 2.

Example: tabu list ${ }^{\text {[Pudis] }}$

A schedule problem with $1\left|d_{j}\right| \sum w_{j} T_{j}$

- remind: $T_{j}=\max \left(C_{j}-d_{j}, 0\right)$

jobs	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

- Neighborhood: all schedules obtained by pair exchange of neighbor jobs
- Schedule selection from the neighborhood: select the best schedule
- Tabu list: pairs of jobs (j, k) that were exchanged in the last two modifications
- Apply tabu search for the initial solution (2,1,4,3)
- Perform four iterations

Example: tabu list - solution | ${ }^{\text {[Rudis] }}$

jobs	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

$$
\begin{aligned}
& S_{1}=(2,1,4,3) \\
& F\left(S_{1}\right)=\sum w_{j} T_{j}=12 \cdot 8+14 \cdot 16+12 \cdot 12+1 \cdot 36=500=F\left(S_{\text {best }}\right) \\
& F(1,2,4,3)=480 \\
& F(2,4,1,3)=436=F\left(S_{\text {best }}\right) \\
& F(2,1,3,4)=652
\end{aligned}
$$

Tabu list: $\{(1,4)\}$

$S_{2}=(2,4,1,3), F\left(S_{2}\right)=436$	$S_{3}=(4,2,1,3), F\left(S_{3}\right)=460$
$F(\underline{4}, \underline{2}, 1,3)=460$	$F(2,4,1,3)(=436)$ tabu!
$F(2,1,4,3)(=500)$ tabu!	$F(4, \underline{1}, \underline{2}, 3)=440$
$F(2,4,3,1)=608$	$F(4,2,3,1)=632$
Tabu list: $\{(2,4),(1,4)\}$	Tabu list: $\{(2,1),(2,4)\}$

Example: tabu list - solution II ${ }^{\text {[Pudis] }}$

jobs	1	2	3	4
p_{j}	10	10	13	4
d_{j}	4	2	1	12
w_{j}	14	12	1	12

$$
S_{3}=(4,2,1,3), F\left(S_{3}\right)=460
$$

$$
F(2,4,1,3)(=436) \text { tabu! }
$$

$$
F(4,1,2,3)=440
$$

$$
F(4,2,3,1)=632
$$

$$
\begin{aligned}
& S_{4}=(4,1,2,3), F\left(S_{4}\right)=440 \\
& F(1,4,2,3)=408=F\left(S_{\text {best }}\right) \\
& F(4,2,1,3)(=460) \text { tabu! } \\
& F(4,1,3,2)=586 \\
& \text { Tabu list: }\{(4,1),(2,1)\}
\end{aligned}
$$

Tabu list: $\{(2,1),(2,4)\}$

$$
F\left(S_{\text {best }}\right)=408
$$

Problem Statement ${ }^{\text {pemp }}$

$$
F 2 \| C_{\max }
$$

Flow shop environment:

- 2 machines, n jobs
- objective function: makespan
- arrival times of jobs $r_{j}=0$
- solution can be described by a sequence π
- the problem was solved by Johnson in 1954

Johnson's Algorithm

(1) Step 1. Schedule the group of jobs U that are shorter on the first machine than the second.

$$
U=\left\{j \mid p_{1 j}<p_{2 j}\right\}
$$

(2) Step 2. Schedule the group of jobs V that are shorter on the second machine than the first.

$$
V=\left\{j \mid p_{1 j} \geq p_{2 j}\right\}
$$

(3) Step 3. Arrange jobs in U in non-decreasing order by their processing times on the first machine.
4 Step 4. Arrange jobs in V in non-increasing order by their processing times on the second machine.
(5) Step 5. Concatenate U and V and that is the processing order for both machines.

Johnson's Algorithm - sequence ${ }^{[\text {Pinos] }}$

Johnson's Algorithm - Example ${ }^{\text {PPinas }}$

Example.

jobs	1	2	3	4	5	6	7	8
$p_{l j}$	5	2	1	7	6	3	7	5
$p_{2 j}$	2	6	2	5	6	7	2	1

$$
\begin{aligned}
& U=\{2,3,6\} \\
& V=\{1,4,5,7,8\}
\end{aligned}
$$

jobs	3	2	6	5	4	7	1	8
$p_{l j}$	1	2	3	6	7	7	5	5
$p_{2 j}$	2	6	7	6	5	2	2	1
$C_{2 j}$	1	3	6	12	19	26	31	36
$C_{2 j}$	3	9	16	22	27	29	33	37

$$
C_{\max }=37
$$

Disjunctive Formulation of the constraints

- $C_{i j}$ denotes completion time of operation (i, j)
- PREC have to be respected:
$C_{i j}-p_{i j} \geq C_{k l}$ for all $(k, l) \rightarrow(i, j) \in$ PREC
- no two operations of the same job are processed at the same time: $C_{i j}-p_{i j} \geq C_{k j}$ or $C_{k j}-p_{k j} \geq C_{i j}$ for all $i, k \in M^{j} ; i \neq k$
- no two operations are processed jointly on the same machine:

$$
C_{i j}-p_{i j} \geq C_{i l} \text { or } C_{i l}-p_{i l} \geq C_{i j} \text { for all }(i, j),(i, l) \in O ; j \neq l
$$

- $C_{i j}-p_{i j} \geq 0$
- the 'or' constraints are called disjunctive constraints
- some of the disjunctive constraints are 'overruled' by the PREC constraints
- \Rightarrow Disjunctive Graph Formulation

Disjunctive Graph - Example of Job Shops ${ }^{\text {Wiolo }}$

Disjunctive Graph - Example Job Shop

Jobs: 1
$(3,1) \rightarrow(2,1) \rightarrow(1,1) \quad p_{31}=4, p_{21}=2, p_{11}=1$
$2 \square$
$(1,2) \rightarrow(3,2) \quad p_{12}=3, p_{32}=3$
$3 \square$
$(2,3) \rightarrow(1,3) \rightarrow(3,3) \quad p_{23}=2, p_{13}=4, p_{33}=1$

- Graph:

\equiv Conjunctive arcs
-Disjunctive arcs

Problem Statement ${ }^{\text {Ppom }}$

- Environment:
- parallel-machines,
- jobs are subject to precedence constraints,
- Objective: to minimize the makespan

$$
\begin{array}{lll}
P \mid \text { prec } \mid C_{\max } & m \geq n & \text { Critical Path Method } \\
\text { Pm } \mid \text { prec } \mid C_{\max } & 2 \leq m<n & \text { NP hard }
\end{array}
$$

- slack job: the start of its processing time can be postponed without increasing the makespan,
- critical job: the job that can not be postponed,
- critical path: the set of critical jobs.

Critical Path Method ${ }^{\text {Primea }}$

- Forward procedure that yields a schedule with minimum makespan.
- Notation
- $p_{j} \ldots$ processing time of jobs j
- $S_{j}^{\prime} \ldots$ the earliest possible starting time of job j
- C_{j}^{\prime}... the earliest possible completion time of job j
- $C_{j}^{\prime}=S_{j}^{\prime}+p_{j}$
- $\{$ all $k \rightarrow j\} \ldots$ jobs that are predecessors of job j
- Steps:
(1) Step 1 For each job j that has no predecessors $S_{j}^{\prime}=0$ and $C_{j}^{\prime}=p_{j}$
(2) Step 2 Compute inductively for each remaining job j

$$
\begin{gathered}
S_{j}^{\prime}=\max _{\{\text {all } k \rightarrow j\}} C_{k}^{\prime} \\
C_{j}^{\prime}=S_{j}^{\prime}+p_{j}
\end{gathered}
$$

(3) Step $3 C_{\text {max }}=\max \left(C_{1}^{\prime}, \ldots, C_{n}^{\prime}\right)$

Critical Path Method II ${ }^{\text {Pmona }}$

- Backward procedure determines the latest possible starting and completion times.
- Notation
- $S_{j}^{\prime \prime}$. . . the latest possible starting time of job j
- $C_{j}^{\prime \prime} \ldots$ the latest possible completion time of job j
- $\{j \rightarrow$ all $k\} \ldots$. jobs that are successors of job j
- Steps:
(1) Step 1

For each job j that has no successors $C_{j}^{\prime \prime}=C_{\max }$ and
$S_{j}^{\prime \prime}=C_{\max }-p_{j}$
(2) Step 2 Compute inductively for each remaining job j

$$
\begin{gathered}
C_{j}^{\prime \prime}=\min _{\{j \rightarrow \mathrm{all} k\}} S_{k}^{\prime \prime} \\
S_{j}^{\prime \prime}=C_{j}^{\prime \prime}-p_{j}
\end{gathered}
$$

(3) Step 3 Verify that $0=\min \left(S_{1}^{\prime \prime}, \ldots, S_{n}^{\prime \prime}\right)$

Critical Path Method IIII Pinos)

- The jobs whose earliest possible starting times are earlier than latest possible starting times are referred to as slack jobs.
- The jobs whose earliest possible starting times are equal to their latest possible starting times are critical jobs.
- A critical path is a chain of jobs which begin at time 0 and ends at $C_{\text {max }}$.

Critical Path Method - Example $\left.\right|^{\text {[Pinoo] }}$

jobs	1	2	3	4	5	6	7	8	9
p_{j}	4	9	3	3	6	8	8	12	6

Critical Path Method - Example II ${ }^{\text {PPinoo] }}$

jobs	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
S_{j}^{\prime}	0	4	0	3	6	\max $\{13,12\}$ $=13$	\max $\{21,24\}$ $=24$	12	24
C_{j}^{\prime}	4	$4+9$ $=13$	3	$3+3$ $=6$	$6+6$ $=12$	$13+8$ $=21$	$24+8$ $=32$	$12+12$ $=24$	$24+6$ $=30$
$C_{j}^{\prime \prime}$	7	16	3	6	\min $\{16,12\}$ $=12$	24	32	min $\{24,26\}$ $=24$	32
$S_{j}^{\prime \prime}$	$7-4$ $=3$	$16-9$ $=7$	$3-3$ $=0$	$6-3$ $=3$	$12-6$ $=6$	$24-8$ $=16$	$32-8$ $=24$	$24-12$ $=12$	$32-6$ $=26$

Critical Path Method - Example III ${ }^{\text {Pione }}$

jobs	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
S_{j}^{\prime}	0	4	0	3	6	max $\{13,12\}$ $=13$	\max $\{21,24\}$ $=24$	12	24
C_{j}^{\prime}	4	$4+9$ $=13$	3	$3+3$ $=6$	$6+6$ $=12$	$13+8$ $=21$	$24+8$ $=32$	$12+12$ $=24$	$24+6$ $=30$
$C_{j}^{\prime \prime}$	7	16	3	6	\min $\{16,12\}$ $=12$	24	32	\min $\{24,26\}$ $=24$	32
$S_{j}^{\prime \prime}$	$7-4$ $=3$	$16-9$ $=7$	$3-3$ $=0$	$6-3$ $=3$	$12-6$ $=6$	$24-8$ $=16$	$32-8$ $=24$	$24-12$ $=12$	$32-6$ $=26$

Critical Path Method - Extensions ${ }^{\text {Ppmo }}$

- Stochastic activity (job) durations
- Nonavailability of resources
- Multiple resource types
- Preemption of activities
- Multiple projects with individual project due-dates

Objectives

- common one: minimising overall project duration
- resource leveling ... minimise resource loading peaks without increasing project duration
- maximise resource utilisation factors

Literatura I

Tim Nieberg.
Lecture course "scheduling".
http://www.or.uni-bonn.de/lectures/ss10/sched10.html, July 2010.
Michael L. Pinedo.
Planning and Scheduling in Manufacturing and Services.
Springer-Verlag New York, 2 edition, 2009.
Stuart J. Russell and Peter Norvig.
Artificial Intelligence, A Modern Approach.
Pre, third edition, 2010.
Hana Rudová.
PA167 Rozvrhování, lecture notes, in Czech.
http://www.fi.muni.cz/ hanka/rozvrhovani/, March 2013.

