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Introduction to Scheduling Methodology Overview

Time, schedules, and resources [RN10]

Classical planning representation
What to do
What order

Extensions
How long an action takes
When it occurs

Scheduling
Temporal constraints,
Resource contraints.

Examples
Airline scheduling,
Which aircraft is assigned to which flights
Departure and arrival time,
A number of employees is limited.
An aircraft crew, that serves during one flight, cannot be assigned
to another flight.
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Introduction to Scheduling Methodology Overview

General Approach [Rud13]

Introduction
Graham’s classification of scheduling problems

General solving methods
Exact solving method

Branch and bound methods
Heuristics

dispatching rules
beam search
local search:
simulated annealing, tabu search, genetic algorithms

Mathematical programming: formulation
linear programming
integer programming

Constraint satisfaction programming
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Introduction to Scheduling Methodology Overview

Schedule [Rud13]

Schedule:
determined by tasks assignments to given times slots using given
resources, where the tasks should be performed

Complete schedule:
all tasks of a given problem are covered by the schedule

Partial schedule:
some tasks of a given problem are not resolved/assigned

Consistent schedule:
a schedule in which all constraints are satisfied w.r.t. resource and tasks,
e.g.

at most one tasks is performed on a single machine with a unit capacity

Consistent complete schedule vs. consistent partial schedule
Optimal schedule:

the assigments of tasks to machines is optimal w.r.t. to a given
optimization criterion, e.g..

min Cmax: makespan (completion time of the last task) is minimum
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Introduction to Scheduling Methodology Overview

Terminology of Scheduling [Rud13]

Scheduling

concerns optimal allocation or assignment of resources, to a set of tasks or
activities over time

limited amount of resources,
gain maximization given constraints

Machines Mi, i = 1, . . . , m
Jobs Jj, j = 1, . . . , n
(i, j) an operation or processing of job j on machine i

a job can be composed from several operations,
example: job 4 has three operations with non-zero processing time
(2,4),(3,4),(6,4), i.e. it is performed on machines 2,3,6

Machine oriented Gantt chart
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Introduction to Scheduling Methodology Overview

Static and dynamic parameters of jobs [Rud13]

Static parameters of job
processing time pij, pj:
processing time of job j on machine i
release date of j rj:
earliest starting time of jobs j
due date dj:
committed completion time of job j (preference)
vs. deadline:
time, when job j must be finished at latest (requirement)
weight wj:
importance of job j relatively to other jobs in the system

Dynamic parameters of job
start time Sij, Sj:
time when job j is started on machine i
completion time Cij, Cj:
time when job j execution on machine i is finished
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Classification of Scheduling Problems Machine environment

Graham’s classification [Rud13, Nie10]

Graham’s classification α|β|γ
(Many) Scheduling problems can be described by a three field notation

α: the machine environment
describes a way of job assingments to machines

β: the job characteristics,
describes constraints applied to jobs

γ: the objective criterion to be minimized
complexity for combinations of scheduling problems

Examples

P3|prec|Cmax: bike assembly
Pm|rj|∑ wjCj: parallel machines
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Classification of Scheduling Problems Machine environment

Machine Environment α
[Rud13, Nie10]

Single machine (α = 1): 1| . . . | . . .
Identical parallel machines Pm

m identical machines working in parallel with the same speed
each job consist of a single operation,
each job processed by any of the machines m for pj time units

Uniform parallel machines Qm
processing time of job j on machine i propotional to its speed vi
pij = pj/vi
ex. several computers with processors having different speeds

Unrelated parallel machines Rm
each machine has a different speed for different jobs
machine i processes job j with speed vij
pij = pj/vij
eg. a vector computer computes vector tasks faster than a classical
PC
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Classification of Scheduling Problems Machine environment

Shop Problems [Rud13, Nie10]

Shop Problems
each task is executed sequentially on several machines

job j consists of several operations (i, j)
operation (i, j) of job j is performed on machine i within time pij
eg: job j with 4 operations (1, j), (2, j), (3, j), (4, j)

Shop problems are classical
studied in details in operations research
Real problems are ofter more complicated

utilization of knowledge on subproblems or simplified problems in
solutions
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Classification of Scheduling Problems Machine environment

Flow shop α
[Rud13, Nie10]

Flow shop Fm
m machines in series
each job has to be processed on each machine
all jobs follow the same route:

first machine 1, then machine 2, . . .

if the jobs have to be processed in the same order on all machines,
we have a permutation flow shop

Flexible flow shop FFs
a generalizatin of flow shop problem
s phases, a set of parallel machines is assigned to each phase
i.e. flow shop with s parallel machines
each job has to be processed by all phases in the same order

first on a machine of phase 1, then on a machine of phase 2, . . .

the task can be performed on any machine assigned to a given
phase
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Classification of Scheduling Problems Machine environment

Open shop & job shop [Rud13, Nie10]

Job shop Jm
flow shop with m machines
each job has its individual predetermined route to follow

processing time of a given jobs might be zero for some machines

(i, j)→ (k, j) specifies that job j is performed on machine i earlier
than on machine k
example: (2, j)→ (1, j)→ (3, j)→ (4, j)

Open shop Om
flow shop with m machines
processing time of a given jobs might be zero for some machines
no routing restrictions (this is a scheduling decision)
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Classification of Scheduling Problems Machine environment

Shop Models Notation [Nie10]

m machines, n jobs 1, . . . , n
Mj is the set of machines where job j has to be processed on
operations O = {(i, j)|j = 1, . . . , n; i ∈ Mj ⊂ M := {1, . . . , m}}
with processing times pij

PREC specifies the precedence constraints on the operations
Flow shop: Mj = M and
PREC = {(i, j)→ (i + 1, j)|i = 1, . . . m− 1; j = 1, . . . , n}
Job shop: PREC contains a chain (i1, j)→ . . . ,→ (i|Mj|, j) for
each j
Open shop: Mj = M and PREC = ∅
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Classification of Scheduling Problems Job Characteristics

Constraints β
[Rud13, Nie10]

Precedence constraints prec
linear sequence, tree structure
for jobs a, b we write a→ b, with meaning of Sa + pa ≤ Sb
example: bike assembly

Preemptions pmtn
a job with a higher priority interrupts the current job

Machine suitability Mj
a subset of machines Mj, on which job j can be executed
room assignment: appropriate size of the classroom
games: a computer with a HW graphical library

Work force constraints W, W`

another sort of machines is introduced to the problem
machines need to be served by operators and jobs can be
performed only if operators are available, operators W
different groups of operators with a specific qualification can exist,
W` is a number of operators in group `
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Classification of Scheduling Problems Job Characteristics

Constraints (continuation) β
[Rud13, Nie10]

Routing constraints
determine on which machine jobs can be executed,
an order of job execution in shop problems

job shop problem: an operation order is given in advance
open shop problem: a route for the job is specified during scheduling

Setup time and cost sijk, cijk, sjk, cjk
depend on execution sequence
sijk time for execution of job k after job j on machine i
cijk cost of execution of job k after job j on machine i
sjk, cjk time/cost independent on machine
examples

lemonade filling into bottles
travelling salesman problem 1|sjk|Cmax
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Classification of Scheduling Problems Optimization

Optimization: throughput and makespan γ
[Rud13]

Makespan Cmax: maximum completion time

Cmax = max(C1, . . . , Cn)

Example: Cmax = max{1, 3, 4, 5, 8, 7, 9} = 9

Resource 1

Resource 2

1 3 time4 5 7

2 6

Goal: makespan minimization often
maximizes throughput
ensures uniform load of machines (load balancing)
example: Cmax = max{1, 2, 4, 5, 7, 4, 6} = 7

Resource 1

Resource 2

1 3 time4

5

7

2 6

It is a basic criterion that is used very often.
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Classification of Scheduling Problems Optimization

Optimization: Lateness γ
[Rud13]

Lateness of job j: Lmax = Cj − dj
Maximum lateness Lmax

Lmax = max(L1, . . . , Ln)

Goal: maximum lateness minimization
Example:

Lmax = max(L1, L2, L3) =

= max(C1 − d1, C2 − d2, C3 − d3) =

= max(4− 8, 16− 14, 10− 10) =
= max(−4, 2, 0) = 2
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Classification of Scheduling Problems Optimization

Optimization: tardiness γ
[Rud13]

Job tardiness j: Tj = max(Cj − dj, 0)
Total tardiness
n

∑
j=1

Tj

Goal: total tardiness minimization
Example: T1 + T2 + T3 =

= max(C1 − d1, 0) + max(C2 − d2, 0) + max(C3 − d3, 0) =
= max(4− 8, 0) + max(16− 14, 0) + max(10− 10, 0) =
= 0 + 2 + 0 = 2

Total weighted tardiness
n

∑
j=1

wjTj

Goal: total weighted tardiness minimization
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Classification of Scheduling Problems Optimization

Criteria Comparison γ
[Rud13]

Cj

dj

Cj

dj

Cj

dj

Cj

dj

Lateness Tardiness

In practiceLate or not

Radek Mařík (marikr@fel.cvut.cz) Scheduling April 25, 2017 23 / 52



Local Search Methods General

Constructive vs. local methods [Rud13]

Constructive methods
Start with the empty schedule
Add step by step other jobs to the schedule so that
the schedule remains consistent

Local search
Start with a complete non-consistent schedule

trivial: random generated

Try to find a better "similar" schedule by local modifications.
Schedule quality is evaluated using optimization criteria

ex. makespan
optimization criteria assess also schedule consistency

ex. a number of vialoted precedence constraints
Hybrid approaches

combinations of both methods
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Local Search Methods General

Local Search Algorithm [Rud13]

x

F(S)

local optimum

global optimum

1 Initialization
k = 0
Select an initial schedule S0
Record the current best schedule:
Sbest = S0 a costbest = F(S0)

2 Select and update
Select a schedule from neighborhood: Sk+1 ∈ N(Sk)
if no element N(Sk) satisfies schedule acceptance criterion
then the algorithms finishes
if F(Sk+1) < costbest then
Sbest = Sk+1 a costbest = F(Sk+1)

3 Finish
if the stop constraints are satisfied then the algorithms finishes
otherwise k = k + 1 and continue with step 2.
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Local Search Methods General

Single machine + nonpreemptive jobs [Rud13]

Schedule representation
permutations n jobs
example with six jobs: 1, 4, 2, 6, 3, 5

Neighborhood definition
pairwise exchange of neighboring jobs

n− 1 possible schedules in the neighborhood
example: 1, 4, 2, 6, 3, 5 is modified to 1, 4, 2, 6, 5, 3

or select an arbitrary job from the schedule and place it to an
arbitrary position

≤ n(n− 1) possible schedules in the neighborhood
example: from 1, 4, 2, 6, 3, 5 we select randomly 4 and place it
somewhere else: 1, 2, 6, 3, 4, 5
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Local Search Methods General

Criteria for Schedule Selection [Rud13]

Criteria for schedule selection
Criterion for schedule acceptance/refuse

The main difference among a majority of methods
to accept a better schedule all the time?
to accept even worse schedule sometimes?

methods
probabilistic

random walk: with a small probability (eg. 0.01)
a worse schedule is accepted
simulated annealing

deterministic
tabu search: a tabu list of several last state/modifications that are not
allowed for the following selection is maintained
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Local Search Methods Tabu Search

Tabu Search [Rud13]

Deterministic criterion for schedule acceptance/refuse
Tabu list of several last schedule modifications is maintained

each new modification is stored on the top of the tabu list
eg. of a store modification: exchange of jobs j and k

tabu list = a list of forbidden modifications
the neighborhood is constrained over schedules, that do not require
a change in the tabu list

a protection against cycling
example of a trivial cycling:
the first step: exchange jobs 3 and 4, the second step: exchange jobs
4 and 3

a fixed length of the list (often: 5-9)
the oldest modifications of the tabu list are removed
too small length: cycling risk increases
too high length: search can be too constrained

Aspiration criterion
determines when it is possible to make changes in the tabu list
eg. a change in the tabu list is allowed if F(Sbest) is improved.
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Local Search Methods Tabu Search

Tabu Search Algorithm [Rud13]

1 k = 1
Select an initial schedule S1 using a heuristics,
Sbest = S1

2 Choose Sc ∈ N(Sk)
If the modification Sk → Sc is forbidden because it is in the tabu list
then continue with step 2

3 If the modification Sk → Sc is not forbidden by the tabu list
then Sk+1 = Sc,
store the reverse change to the top of the tabu list
move other positions in the tabu list one position lower
remove the last item of the tabu list
if F(Sc) < F(Sbest) then Sbest = Sc

4 k = k + 1
if a stopping condition is satisfied then finish
otherwise continue with step 2.
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Local Search Methods Tabu Search

Example: tabu list [Rud13]

A schedule problem with 1|dj|∑ wjTj

remind: Tj = max(Cj − dj, 0)
jobs 1 2 3 4

pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

Neighborhood: all schedules obtained by pair exchange of
neighbor jobs
Schedule selection from the neighborhood: select the best
schedule
Tabu list: pairs of jobs (j, k) that were exchanged in the last two
modifications
Apply tabu search for the initial solution (2, 1, 4, 3)
Perform four iterations
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Local Search Methods Tabu Search

Example: tabu list - solution I [Rud13]

jobs 1 2 3 4
pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

S1 = (2, 1, 4, 3)
F(S1) = ∑ wjTj = 12 · 8 + 14 · 16 + 12 · 12 + 1 · 36 = 500 = F(Sbest)
F(1, 2, 4, 3) = 480
F(2, 4, 1, 3) = 436 = F(Sbest)
F(2, 1, 3, 4) = 652
Tabu list: {(1, 4)}

S2 = (2, 4, 1, 3), F(S2) = 436
F(4, 2, 1, 3) = 460
F(2, 1, 4, 3)(= 500) tabu!
F(2, 4, 3, 1) = 608
Tabu list: {(2, 4), (1, 4)}

S3 = (4, 2, 1, 3), F(S3) = 460
F(2, 4, 1, 3)(= 436) tabu!
F(4, 1, 2, 3) = 440
F(4, 2, 3, 1) = 632
Tabu list: {(2, 1), (2, 4)}

Radek Mařík (marikr@fel.cvut.cz) Scheduling April 25, 2017 33 / 52



Local Search Methods Tabu Search

Example: tabu list - solution II [Rud13]

jobs 1 2 3 4
pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

S3 = (4, 2, 1, 3), F(S3) = 460
F(2, 4, 1, 3)(= 436) tabu!
F(4, 1, 2, 3) = 440
F(4, 2, 3, 1) = 632
Tabu list: {(2, 1), (2, 4)}

S4 = (4, 1, 2, 3), F(S4) = 440
F(1, 4, 2, 3) = 408 = F(Sbest)
F(4, 2, 1, 3)(= 460) tabu!
F(4, 1, 3, 2) = 586
Tabu list: {(4, 1), (2, 1)}

F(Sbest) = 408
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Local Search Methods Flow Shop Scheduling

Problem Statement [Pin09]

F2||Cmax

Flow shop environment:
2 machines, n jobs
objective function: makespan
arrival times of jobs rj = 0

solution can be described by a sequence π

the problem was solved by Johnson in 1954
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Local Search Methods Flow Shop Scheduling

Johnson’s Algorithm [Pin09]

1 Step 1. Schedule the group of jobs U that are shorter on the first
machine than the second.

U = {j|p1j < p2j}

2 Step 2. Schedule the group of jobs V that are shorter on the
second machine than the first.

V = {j|p1j ≥ p2j}

3 Step 3. Arrange jobs in U in non-decreasing order by their
processing times on the first machine.

4 Step 4. Arrange jobs in V in non-increasing order by their
processing times on the second machine.

5 Step 5. Concatenate U and V and that is the processing order for
both machines.
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Local Search Methods Flow Shop Scheduling

Johnson’s Algorithm - sequence [Pin09]
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Local Search Methods Flow Shop Scheduling

Johnson’s Algorithm - Example [Pin09]
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Local Search Methods Job Shop Scheduling

Disjunctive Formulation of the constraints [Nie10]

Cij denotes completion time of operation (i, j)
PREC have to be respected:
Cij − pij ≥ Ckl for all (k, l)→ (i, j) ∈ PREC
no two operations of the same job are processed at the same time:
Cij − pij ≥ Ckj or Ckj − pkj ≥ Cij for all i, k ∈ Mj; i 6= k
no two operations are processed jointly on the same machine:
Cij − pij ≥ Cil or Cil − pil ≥ Cij for all (i, j), (i, l) ∈ O; j 6= l
Cij − pij ≥ 0
the ’or’ constraints are called disjunctive constraints
some of the disjunctive constraints are ’overruled’ by the PREC
constraints
⇒ Disjunctive Graph Formulation
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Local Search Methods Job Shop Scheduling

Disjunctive Graph - Example of Job Shops [Nie10]
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Project Scheduling Critical Path Method

Problem Statement [Pin09]

Environment:
parallel-machines,
jobs are subject to precedence constraints,
Objective: to minimize the makespan

P|prec|Cmax m ≥ n Critical Path Method
Pm|prec|Cmax 2 ≤ m < n NP hard

slack job: the start of its processing time can be postponed
without increasing the makespan,
critical job: the job that can not be postponed,
critical path: the set of critical jobs.
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Project Scheduling Critical Path Method

Critical Path Method [Pin09]

Forward procedure that yields a schedule with minimum
makespan.
Notation

pj . . . processing time of jobs j
S ′j . . . the earliest possible starting time of job j
C ′j . . . the earliest possible completion time of job j
C ′j = S ′j + pj

{all k→ j} . . . jobs that are predecessors of job j
Steps:

1 Step 1 For each job j that has no predecessors S ′j = 0 and C ′j = pj
2 Step 2 Compute inductively for each remaining job j

S ′j = max
{all k→j}

C ′k

C ′j = S ′j + pj

3 Step 3 Cmax = max(C ′1, . . . , C ′n)
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Project Scheduling Critical Path Method

Critical Path Method II [Pin09]

Backward procedure determines the latest possible starting and
completion times.
Notation

S ′′j . . . the latest possible starting time of job j
C ′′j . . . the latest possible completion time of job j
{j→ all k} . . . jobs that are successors of job j

Steps:
1 Step 1

For each job j that has no successors C ′′j = Cmax and
S ′′j = Cmax − pj

2 Step 2 Compute inductively for each remaining job j

C ′′j = min
{j→all k}

S ′′k

S ′′j = C ′′j − pj

3 Step 3 Verify that 0 = min(S ′′1 , . . . , S ′′n )
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Project Scheduling Critical Path Method

Critical Path Method III [Pin09]

The jobs whose earliest possible starting times are earlier than
latest possible starting times are referred to as slack jobs.
The jobs whose earliest possible starting times are equal to their
latest possible starting times are critical jobs.
A critical path is a chain of jobs which begin at time 0 and ends at
Cmax.
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Project Scheduling Critical Path Method

Critical Path Method - Example I [Pin09]

jobs 1 2 3 4 5 6 7 8 9
pj 4 9 3 3 6 8 8 12 6
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Project Scheduling Critical Path Method

Critical Path Method - Example II [Pin09]

jobs 1 2 3 4 5 6 7 8 9

S ′j 0 4 0 3 6
max
{13, 12}
=13

max
{21, 24}
=24

12 24

C ′j 4 4+9
=13 3 3+3

=6
6+6
=12

13+8
=21

24+8
=32

12+12
=24

24+6
=30

C ′′j 7 16 3 6
min
{16, 12}
=12

24 32
min
{24, 26}
=24

32

S ′′j
7-4
=3

16-9
=7

3-3
=0

6-3
=3

12-6
=6

24-8
=16

32-8
=24

24-12
=12

32-6
=26
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Project Scheduling Critical Path Method

Critical Path Method - Example III [Pin09]

jobs 1 2 3 4 5 6 7 8 9

S ′j 0 4 0 3 6
max
{13, 12}
=13

max
{21, 24}
=24

12 24

C ′j 4 4+9
=13 3 3+3

=6
6+6
=12

13+8
=21

24+8
=32

12+12
=24

24+6
=30

C ′′j 7 16 3 6
min
{16, 12}
=12

24 32
min
{24, 26}
=24

32

S ′′j
7-4
=3

16-9
=7

3-3
=0

6-3
=3

12-6
=6

24-8
=16

32-8
=24

24-12
=12

32-6
=26
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Project Scheduling Critical Path Method

Critical Path Method - Extensions [Pin09]

Stochastic activity (job) durations
Nonavailability of resources
Multiple resource types
Preemption of activities
Multiple projects with individual project due-dates

Objectives
common one: minimising overall project duration
resource leveling . . . minimise resource loading peaks without
increasing project duration
maximise resource utilisation factors
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Project Scheduling Critical Path Method
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