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The goals of this exercise:

• learn about decision trees and ensemble models (adaboost, random forest)

• use cross-validation for hyper-parameters tuning and model evaluation

• reiterate validation curves

1 Decision trees and ensemble models

1.1 Classification

The goal of this section is to get some intuition about Decision Trees and to work with
the state of the art models: Adaboost and Random Forest. You should already know
how a tree is build and what criterion is used for splitting nodes. Note that we will use
the auto-mpg.csv with two features (disp and hp) and a class label (origin: US vs rest).
This dataset is relatively easy to classify and the benefits of ensemble models are not
spectacular over the simple Decision Trees or Logistic Regression. Remember that we
are using complex models for this dataset for educational purposes only. You should
have an intuition about Occam’s razor (parsimony) from lectures.

Task 1: In ML05-1.py use Decision tree classifier and find optimal hyper-parameter/s
using grid search. Also plot a validation curve and discuss areas of underfitting and
overfitting.

Hints:

• Consult documentation of sklearn.trees.DecisionTreeClassifier, and param-
eter: max_depth.

• Use only training data for the grid search and do not touch the test data that are
intended for performance estimation!

The decision tree is used as a base classifier (base learner) in ensemble models. A
simple intuition behind the ensembles is that a smart combination of different classi-
fiers would provide better generalization performance than individual classifiers. Ad-
aboost targets to learn different weak learners using adaptive boosting. The AdaBoost
focuses on training samples that are hard to classify correctly and lets the weak learn-
ers to subsequently learn from misclassified training samples to improve performance
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of the ensemble and create a strong learner. In contrast, Random Forest uses bagging
(bootstrap aggregation), where bootstrap samples (random samples with replacement)
are drawn from the training data. These samples together with random feature subsets
are used to fit individual trees, which are then aggregated.

Task 2: In ML05-1.py use the Adaboost algorithm and find optimal hyper-parameter/s
using grid search. Plot a validation curve and discuss differences to the Decision Tree
Classifier.

Hints:

• Consult documentation of sklearn.ensemble.AdaBoostClassifier.

• Use a decision stump (tree with one node) as a base estimator (weak learner).

• Start by optimizing only n_estimators and make sure you understand the other
hyper-parameters as well.

Task 3: In ML05-1.py use the Random Forest algorithm and find optimal hyper-parameter/s
using grid search. Plot a validation curve and discuss the results.

Hints:

• Consult documentation of sklearn.ensemble.RandomForestClassifier and pa-
rameters max_depth and n_estimators.

• Make sure you understand the other hyper-parameters as well.

Task 4: Compare classification performance of Decision tree, Adaboost, and Random
Forest on the test set.

Task 5: Plot a decision boundary of each classifier and try to discuss differences be-
tween them.

Hints:

• Use functions plot_xy_classified_data and plot_2D_class_model.

1.1.1 Model ensemble via majority voting

In this section we explore model ensemble via majority voting. Lets suppose that we
have already created several independent models of any kind (e.g. Decision Tree,
SVM, Adaboost, Random Forest, etc.). The goal here is to combine these models using
majority voting to further improve generalization ability. Classically this is the very
last step to be performed in modeling. Again we note here that with our simple dataset
we will not observe remarkable improvements but, in general, model ensembles works
quite well.

Task 6: In ML05-2.py set up three models and combine them using majority voting.
Compare accuracy and decision boundaries.

Hints:

• For each model use optimal hyper-parameters from the previous tasks.
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• Consult documentation of sklearn.ensemble.VotingClassifier.

• You can use different models such as Logistic Regression, SVM etc. Diversity
counts!

• Remember, do not use the test data for model tuning or ensemble selection!

• If you attempt to combine prediction probabilities make sure that these proba-
bilities are calibrated, cf. e.g. sklearn.calibration. Different models provide
different probability distributions.

• Most probably, for this simple dataset, you will not get better results than using
Random Forest alone.

1.2 Regression

Conceptually, the approach to regression is similar to the approach that we have al-
ready done for classification.

Task 7: Make sure you understand how the regression is performed using Decision
Trees.

Task 8: You are welcome to perform similar study for regression as we did for the
classification. This is optional.

2 Conclusion

In this section we have used very complex models for a simple classification task for
educational purposes only. Remember that simple is usually better then complex (Oc-
cam’s razor) and that you should always put effort in model understanding and inter-
pretation (How a model behave under a change of hyper-parameters? Which features
are used in the model? etc.).

3 Have fun!

Complete the exercise as a homework, ask questions on the forum, and upload the
solution via Upload system!
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