
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

P. Pošík c© 2017 Artificial Intelligence – 1 / 32

Neural Networks.

Petr Pošík

Czech Technical University in Prague

Faculty of Electrical Engineering

Dept. of Cybernetics

Introduction and Rehearsal

P. Pošík c© 2017 Artificial Intelligence – 2 / 32

Notation

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 32

In supervised learning, we work with

■ an observation described by a vector x = (x1, . . . , xD),

■ the corresponding true value of the dependent variable y, and

■ the prediction of a model ŷ = fw(x), where the model parameters are in vector w.

Notation

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 32

In supervised learning, we work with

■ an observation described by a vector x = (x1, . . . , xD),

■ the corresponding true value of the dependent variable y, and

■ the prediction of a model ŷ = fw(x), where the model parameters are in vector w.

■ Very often, we use homogeneous coordinates and matrix notation, and represent the
whole training data set as T = (X, y), where

X =

1 x(1)

...
...

1 x(|T|)

 , and y =

y(1)

...

y(|T|)

 .

Notation

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 32

In supervised learning, we work with

■ an observation described by a vector x = (x1, . . . , xD),

■ the corresponding true value of the dependent variable y, and

■ the prediction of a model ŷ = fw(x), where the model parameters are in vector w.

■ Very often, we use homogeneous coordinates and matrix notation, and represent the
whole training data set as T = (X, y), where

X =

1 x(1)

...
...

1 x(|T|)

 , and y =

y(1)

...

y(|T|)

 .

Learning then amounts to finding such model parameters w∗ which minimize certain loss
(or energy) function:

w∗ = arg min
w

J(w, T)

Multiple linear regression

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 4 / 32

Multiple linear regression model:

ŷ = fw(x) = w1x1 + w2x2 + . . . + wDxD = xwT

The minimum of

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
,

is given by

w∗ = (XT X)−1XTy,

or found by numerical optimization.

Multiple linear regression

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 4 / 32

Multiple linear regression model:

ŷ = fw(x) = w1x1 + w2x2 + . . . + wDxD = xwT

The minimum of

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
,

is given by

w∗ = (XT X)−1XTy,

or found by numerical optimization.

Multiple regression as a linear neuron:

3

3

3

x1

x2

x3

wi

ŷ

Logistic regression

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 32

Logistic regression model:

ŷ = f (w, x) = g(xwT),

where

g(z) =
1

1 + e−z

is the sigmoid (a.k.a logistic) function.

■ No explicit equation for the optimal weights.

■ The only option is to find the optimum numerically, usually by some form of gradient
descent.

Logistic regression

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 32

Logistic regression model:

ŷ = f (w, x) = g(xwT),

where

g(z) =
1

1 + e−z

is the sigmoid (a.k.a logistic) function.

■ No explicit equation for the optimal weights.

■ The only option is to find the optimum numerically, usually by some form of gradient
descent.

Logistic regression as a non-linear neuron:

3

3

3

x1

x2

x3

wi

ŷ

g(xwT)

Gradient descent algorithm

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 6 / 32

■ Given a function J(w) that should be minimized,

■ start with a guess of w, and change it so that J(w) decreases, i.e.

■ update our current guess of w by taking a step in the direction opposite to the
gradient:

w← w− η∇J(w), i.e.

wd ← wd − η
∂

∂wd
J(w),

where all wds are updated simultaneously and η is a learning rate (step size).

■ For cost functions given as the sum across the training examples

J(w) =
|T|

∑
i=1

E(w, x(i), y(i)),

we can concentrate on a single training example because

∂

∂wd
J(w) =

|T|

∑
i=1

∂

∂wd
E(w, x(i), y(i)),

and we can drop the indices over training data set:

E = E(w, x, y).

Example: Gradient for multiple regression and squared loss

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 32

3

3

3

x1

x2

x3

wi

ŷ

Assuming the squared error loss

E(w, x, y) =
1

2
(y− ŷ)2 =

1

2
(y− xwT)2,

we can compute the derivatives using the chain rule as

∂E

∂wd
=

∂E

∂ŷ

∂ŷ

∂wd
, where

∂E

∂ŷ
=

∂

∂ŷ

1

2
(y− ŷ)2 = −(y− ŷ), and

∂ŷ

∂wd
=

∂

∂wd
xwT = xd,

and thus

∂E

∂wd
=

∂E

∂ŷ

∂ŷ

∂wd
= −(y− ŷ)xd.

Example: Gradient for logistic regression and crossentropy loss

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 8 / 32

3

3

3

x1

x2

x3

wi

ŷ
a

g(a)

Nonlinear activation function:

g(a) =
1

1 + e−a

Note that

g′(a) = g(a) (1− g(a)) .

Example: Gradient for logistic regression and crossentropy loss

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 8 / 32

3

3

3

x1

x2

x3

wi

ŷ
a

g(a)

Nonlinear activation function:

g(a) =
1

1 + e−a

Note that

g′(a) = g(a) (1− g(a)) .

Assuming the crossentropy loss

E(w, x, y) = −y log ŷ− (1− y) log(1− ŷ), where ŷ = g(a) = g(xwT),

we can compute the derivatives using the chain rule as

∂E

∂wd
=

∂E

∂ŷ

∂ŷ

∂a

∂a

∂wd
, where

∂E

∂ŷ
= −

y

ŷ
+

1− y

1− ŷ
= −

y− ŷ

ŷ(1− ŷ)
,

∂ŷ

∂a
= ŷ(1− ŷ), and

∂a

∂wd
=

∂

∂wd
xwT = xd,

and thus

∂E

∂wd
=

∂E

∂ŷ

∂ŷ

∂a

∂a

∂wd
= −(y− ŷ)xd.

Relations to neural networks

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 32

■ Above, we derived training algorithms (based on gradient descent) for linear
regression model and linear classification model.

■ Note the similarity with the perceptron algorithm (“just add certain part of a
misclassified training example to the weight vector”).

■ Units like those above are used as building blocks for more complex/flexible
models!

Relations to neural networks

Intro

• Notation

•Multiple regression

• Logistic regression

• Gradient descent

• Ex: Grad. for MR

• Ex: Grad. for LR

• Relations to NN

Multilayer FFN

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 32

■ Above, we derived training algorithms (based on gradient descent) for linear
regression model and linear classification model.

■ Note the similarity with the perceptron algorithm (“just add certain part of a
misclassified training example to the weight vector”).

■ Units like those above are used as building blocks for more complex/flexible
models!

A more complex/flexible model:

ŷ = gOUT

(
K

∑
k=1

wHID
k gHID

k

(
D

∑
d=1

wIN
kd xd

))
,

which is

■ a nonlinear function of

■ a linear combination of

■ nonlinear functions of

■ linear combinations of inputs.

Multilayer Feedforward Networks

P. Pošík c© 2017 Artificial Intelligence – 10 / 32

MLP

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 11 / 32

Multilayer perceptron (MLP)

■ Multilayer feedforward network:

■ the „signal“ is propagated from inputs towards outputs; no feedback
connections exist.

■ It realizes mapping fromRD −→ RC , where D is the number of object features, and
C is the number of output variables.

■ For binary classification and regression, a single output is sufficient.

■ For classification into multiple classes, 1-of-N encoding is usually used.

■ Universal approximation theorem: A MLP with a single hidden layer with sufficient
(but finite) number of neurons can approximate any continuous function arbitrarily
well (under mild assumptions on the activation functions).

3

3

3

x1

x2

x3

ŷ1

ŷ2

MLP: A look inside

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 12 / 32

3

3

3

x1

x2

x3

ŷ1

ŷ2

wji
wkj

aj

ak
zi

zj

zk

Forward propagation:

■ Given all the weights w and activation functions g, we can for a single input vector x
easilly compute the estimate of the output vector ŷ by iteratively evaluating in
individual layers:

aj = ∑
i∈Src(j)

wjizi (1)

zj = g(aj) (2)

■ Note that

■ zi in (1) may be the outputs of hidden layers neurons or the inputs xi , and

■ zj in (2) may be the the outputs of hidden layers neurons or the outputs ŷk .

Activation functions

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 13 / 32

■ Identity: g(a) = a

■ Binary step: g(a) =

{
0 for a < 0,
1 for a ≥ 0

■ Logistic (sigmoid): g(a) = σ(a) = 1
1+e−a

■ Hyperbolic tangent: g(a) = tanh(a) = 2σ(a)− 1

■ Rectified Linear unit (ReLU): g(a) = max(0, a) =

{
0 for a < 0,
a for a ≥ 0

■ Leaky ReLU: g(a) =

{
0.01a for a < 0,

a for a ≥ 0

■ . . .

MLP: Learning

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 14 / 32

How to train a NN (i.e. find suitable w) given the training data set (X, y)?

MLP: Learning

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 14 / 32

How to train a NN (i.e. find suitable w) given the training data set (X, y)?

In principle, MLP can be trained in the same way as a single-layer NN using a gradient
descent algorithm:

■ Define the loss function to be minimized, e.g. squared error loss:

J(w) =
|T|

∑
i=1

E(w, x(i), y(i)) =
1

2

|T|

∑
i=1

C

∑
k=1

(yik − ŷik)
2, where

E(w, x, y) =
1

2

C

∑
k=1

(yk − ŷk)
2.

|T| is the size of the training set, and C is the number of outputs of NN.

■ Compute the gradient of the loss function w.r.t. individual weights:

∇E(w) =

(
∂E

∂w1
,

∂E

∂w2
, . . . ,

∂E

∂wW

)
.

■ Make a step in the direction opposite to the gradient to update the weights:

wd ←− wd − η
∂E

∂wd
for d = 1, . . . , W.

How to compute the individual derivatives?

Error backpropagation

P. Pošík c© 2017 Artificial Intelligence – 15 / 32

Error backpropagation (BP) is the algorithm for computing
∂E

∂wd
.

Error backpropagation

P. Pošík c© 2017 Artificial Intelligence – 15 / 32

Error backpropagation (BP) is the algorithm for computing
∂E

∂wd
.

Consider only
∂E

∂wd
because

∂J

∂wd
= ∑

n

∂

∂wd
E(w, x(n), y(n)).

wji wkj
aj

ak

δj

δk

zi

zj

zk

Src(j) Dest(j)

E depends on wji only via aj:

∂E

∂wji
=

∂E

∂aj

∂aj

∂wji
(3)

Let’s introduce the so called error δj:

δj =
∂E

∂aj
(4)

From (1) we can derive:

∂aj

∂wji
= zi (5)

Substituting (4) and (5) into (3):

∂E

∂wji
= δjzi , (6)

where
δj is the error of the neuron on the output of the edge
zi is the input of the edge i→ j.

“The more we excite edge i→ j (big zi) and the
larger is the error of the neuron on its output
(large δj), the more sensitive is the loss function E
to the change of wji .”

■ All values zi are known from forward pass,

■ to compute the gradient, we need to
compute all δj.

Error backpropagation (cont.)

P. Pošík c© 2017 Artificial Intelligence – 16 / 32

We need to compute the errors δj.

wji wkj
aj

ak

δj

δk

zi

zj

zk

Src(j) Dest(j)

For the output layer:

δk =
∂E

∂ak

E depends on ak only via ŷk = g(ak):

δk =
∂E

∂ak
=

∂E

∂ŷk

∂ŷk

∂ak
= g′(ak)

∂E

∂ŷk
(7)

For the hidden layers:

δj =
∂E

∂aj

E depends on aj via all ak ,
k ∈ Dest(j):

δj =
∂E

∂aj
= ∑

k∈Dest(j)

∂E

∂ak

∂ak

∂aj
=

= ∑
k∈Dest(j)

δk
∂ak

∂aj
=

= g′(aj) ∑
k∈Dest(j)

wkjδk , (8)

because
ak = ∑

j∈Src(k)

wkjzj = ∑
j∈Src(k)

wkjg(aj),

and thus
∂ak

∂aj
= wkjg

′(aj)

“The error δk is distributed to δj in the lower layer according to the weight wkj (which is the speed of

growth of the linear combination ak) and according to the size of g′(aj) (which is the speed of growth of
the activation function).”

Error backpropagation algorithm

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 17 / 32

Algorithm 1: Error Backpropagation: the computation of derivatives ∂E
∂wd

.

1 begin
2 Perform a forward pass for observation x. This will result in values of all aj and zj

for the vector x.
3 Evaluate the error δk for the output layer (using Eq. 7):

δk = g′(ak)
∂E

∂ŷk

4 Using Eq. 8, propagate the errors δk back to get all the remaining δj:

δj = g′(aj) ∑
k∈Dest(j)

wkjδk

5 Using Eq. 6, evaluate all the derivatives to get the whole gradient:

∂E

∂wji
= δjzi

Error backpropagation: Example

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 32

NN with a single hidden layer:

■ Squared error loss: E =
1

2

C

∑
k=1

(yk − ŷk)
2

■ Activation func. in the output layer: identity gk(ak) = ak , g′k(ak) = 1

■ Activation func. in the hidden layer: sigmoidal gj(aj) =
1

1 + e−aj
, g′j(aj) = zj(1− zj)

Error backpropagation: Example

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 32

NN with a single hidden layer:

■ Squared error loss: E =
1

2

C

∑
k=1

(yk − ŷk)
2

■ Activation func. in the output layer: identity gk(ak) = ak , g′k(ak) = 1

■ Activation func. in the hidden layer: sigmoidal gj(aj) =
1

1 + e−aj
, g′j(aj) = zj(1− zj)

Computing the errors δ:

■ Output layer: δk = g′k(ak)
∂E

∂ŷk
= −(yk − ŷk)

Error backpropagation: Example

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 32

NN with a single hidden layer:

■ Squared error loss: E =
1

2

C

∑
k=1

(yk − ŷk)
2

■ Activation func. in the output layer: identity gk(ak) = ak , g′k(ak) = 1

■ Activation func. in the hidden layer: sigmoidal gj(aj) =
1

1 + e−aj
, g′j(aj) = zj(1− zj)

Computing the errors δ:

■ Output layer: δk = g′k(ak)
∂E

∂ŷk
= −(yk − ŷk)

■ Hidden layer: δj = g′j(aj) ∑
k∈Dest(j)

wkjδk = zj(1− zj) ∑
k∈Dest(j)

wkjδk

Error backpropagation: Example

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 32

NN with a single hidden layer:

■ Squared error loss: E =
1

2

C

∑
k=1

(yk − ŷk)
2

■ Activation func. in the output layer: identity gk(ak) = ak , g′k(ak) = 1

■ Activation func. in the hidden layer: sigmoidal gj(aj) =
1

1 + e−aj
, g′j(aj) = zj(1− zj)

Computing the errors δ:

■ Output layer: δk = g′k(ak)
∂E

∂ŷk
= −(yk − ŷk)

■ Hidden layer: δj = g′j(aj) ∑
k∈Dest(j)

wkjδk = zj(1− zj) ∑
k∈Dest(j)

wkjδk

Computation of all the partial derivatives:

∂E

∂wji
= δjxi

∂E

∂wkj
= δkzj

Error backpropagation: Example

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 32

NN with a single hidden layer:

■ Squared error loss: E =
1

2

C

∑
k=1

(yk − ŷk)
2

■ Activation func. in the output layer: identity gk(ak) = ak , g′k(ak) = 1

■ Activation func. in the hidden layer: sigmoidal gj(aj) =
1

1 + e−aj
, g′j(aj) = zj(1− zj)

Computing the errors δ:

■ Output layer: δk = g′k(ak)
∂E

∂ŷk
= −(yk − ŷk)

■ Hidden layer: δj = g′j(aj) ∑
k∈Dest(j)

wkjδk = zj(1− zj) ∑
k∈Dest(j)

wkjδk

Computation of all the partial derivatives:

∂E

∂wji
= δjxi

∂E

∂wkj
= δkzj

Online learning:

wji ←− wji − ηδjxi

wkj ←− wkj − ηδkzj

Batch learning:

wji ←− wji − η
|T|

∑
n=1

δ
(n)
j x

(n)
i

wkj ←− wkj − η
|T|

∑
n=1

δ
(n)
k z

(n)
j

Error backpropagation efficiency

Intro

Multilayer FFN

•MLP

•MLP: A look inside

• Activation functions

•MLP: Learning

• BP

• BP algorithm

• BP: Example

• BP Efficiency

• Loss functions

Gradient Descent

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 19 / 32

Let W be the number of weights in the network (the number of parameters being
optimized).

■ The evaluation of E for a single observation requires O(W) operations (evaluation of
wjizi dominates, evaluation of g(aj) is neglected).

We need to compute W derivatives for each observation:

■ Classical approach:

■ Find explicit equations for ∂E
∂wji

.

■ To compute each of them O(W) steps are required.

■ In total, O(W2) steps for a single training example.

■ Backpropagation:

■ Requires only O(W) steps for a single training example.

Loss functions

P. Pošík c© 2017 Artificial Intelligence – 20 / 32

Task Suggested loss function

Binary classification Cross-entropy: J = −
|T|

∑
i=1

[
y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

]

Multinomial classification Multinomial cross-entropy: J = −
|T|

∑
i=1

C

∑
k=1

I(y(i) = k) log ŷ
(i)
k

Regression Squared error: J =
|T|

∑
i=1

(y(i) − ŷ(i))2

Multi-output regression Squared error: J =
|T|

∑
i=1

C

∑
k=1

(y
(i)
k − ŷ

(i)
k)2

Note: often, mean errors are used.

■ Computed as the average w.r.t. the number of training examples |T|.

■ The optimum is in the same point, of course.

Gradient Descent

P. Pošík c© 2017 Artificial Intelligence – 21 / 32

Learning rate annealing

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 22 / 32

Task: find such parameters w∗ which minimize the model cost over the training set, i.e.

w∗ = arg min
w

J(w; X, y)

Learning rate annealing

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 22 / 32

Task: find such parameters w∗ which minimize the model cost over the training set, i.e.

w∗ = arg min
w

J(w; X, y)

Gradient descent: w(t+1) = w(t) − η(t)∇J(w(t)),

where η(t)
> 0 is the learning rate or step size at iteration t.

Learning rate annealing

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 22 / 32

Task: find such parameters w∗ which minimize the model cost over the training set, i.e.

w∗ = arg min
w

J(w; X, y)

Gradient descent: w(t+1) = w(t) − η(t)∇J(w(t)),

where η(t)
> 0 is the learning rate or step size at iteration t.

Learning rate decay:

■ Decrease the learning rate in time.

■ Step decay: reduce the learning rate every few iterations by certain factor, e.g. 1
2 .

■ Exponential decay: η(t) = η0e−kt

■ Hyperbolic decay: η(t) = η0
1+kt

Weights update

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 23 / 32

When should we update the weights?

■ Batch learning:

■ Compute the gradient w.r.t. all the training examples (epoch).

■ Several epochs are required to train the network.

■ Inefficient for redundant datasets.

■ Online learning:

■ Compute the gradient w.r.t. a single training example only.

■ Stochastic Gradient Descent (SGD)

■ Converges almost surely to local minimum when η(t) decreases appropriately in
time.

■ Mini-batch learning:

■ Compute the gradient w.r.t. a small subset of the training examples.

■ A compromise between the above 2 extremes.

Momentum

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 24 / 32

Momentum

■ Perform the update in an analogy to physical systems: a particle with certain mass
and velocity gets acceleration from the gradient (“force”) of the loss function:

v(t+1) = µv(t) + η(t)∇J(w(t))

w(t+1) = w(t) + v(t+1)

■ SGD with momentum tends to keep traveling in the same direction, preventing
oscillations.

■ It builds the velocity in directions with consistent (but possibly small) gradient.

Momentum

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 24 / 32

Momentum

■ Perform the update in an analogy to physical systems: a particle with certain mass
and velocity gets acceleration from the gradient (“force”) of the loss function:

v(t+1) = µv(t) + η(t)∇J(w(t))

w(t+1) = w(t) + v(t+1)

■ SGD with momentum tends to keep traveling in the same direction, preventing
oscillations.

■ It builds the velocity in directions with consistent (but possibly small) gradient.

Nesterov’s Momentum

■ Slightly different update equations:

v(t+1) = µv(t) + η(t)∇J(w(t) + µv(t))

w(t+1) = w(t) + v(t+1)

■ Classic momentum corrects the velocity using gradient at w(t); Nesterov uses

gradient at w(t) + µv(t) which is more similar to w(t+1).

■ Stronger theoretical convergence guarantees; slightly better in practice.

Further gradient descent improvements

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 32

Resilient Propagation (Rprop)

■
∂J

∂wd
may differ a lot for different parameters wd.

■ Rprop does not use the value, only its sign to adapt the step size for each weight
separately.

■ Often, an order of magnitude faster than basic GD.

■ Does not work well for mini-batches.

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Further gradient descent improvements

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 32

Resilient Propagation (Rprop)

■
∂J

∂wd
may differ a lot for different parameters wd.

■ Rprop does not use the value, only its sign to adapt the step size for each weight
separately.

■ Often, an order of magnitude faster than basic GD.

■ Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

■ Idea: Reduce learning rates for parameters having high values of gradient.

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Further gradient descent improvements

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 32

Resilient Propagation (Rprop)

■
∂J

∂wd
may differ a lot for different parameters wd.

■ Rprop does not use the value, only its sign to adapt the step size for each weight
separately.

■ Often, an order of magnitude faster than basic GD.

■ Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

■ Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

■ Similar to AdaGrad, but employs a moving average of the gradient values.

■ Can be seen as a generalization of Rprop, can work also with mini-batches.

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Further gradient descent improvements

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 32

Resilient Propagation (Rprop)

■
∂J

∂wd
may differ a lot for different parameters wd.

■ Rprop does not use the value, only its sign to adapt the step size for each weight
separately.

■ Often, an order of magnitude faster than basic GD.

■ Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

■ Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

■ Similar to AdaGrad, but employs a moving average of the gradient values.

■ Can be seen as a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

■ Improvement of RMSprop.

■ Uses moving averages of gradients and their second moments.

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Further gradient descent improvements

Intro

Multilayer FFN

Gradient Descent

• Learning rate

•Weights update

•Momentum

• GD improvements

Regularization

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 32

Resilient Propagation (Rprop)

■
∂J

∂wd
may differ a lot for different parameters wd.

■ Rprop does not use the value, only its sign to adapt the step size for each weight
separately.

■ Often, an order of magnitude faster than basic GD.

■ Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

■ Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

■ Similar to AdaGrad, but employs a moving average of the gradient values.

■ Can be seen as a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

■ Improvement of RMSprop.

■ Uses moving averages of gradients and their second moments.

See also:

■ http://sebastianruder.com/optimizing-gradient-descent/

■ http://cs231n.github.io/neural-networks-3/

■ http://cs231n.github.io/assets/nn3/opt2.gif, http://cs231n.github.io/assets/nn3/opt1.gif

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/assets/nn3/opt2.gif
http://cs231n.github.io/assets/nn3/opt1.gif

Regularization

P. Pošík c© 2017 Artificial Intelligence – 26 / 32

Overfitting and regularization

Intro

Multilayer FFN

Gradient Descent

Regularization

• Ridge

• Dropout

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 27 / 32

Overfitting in NN is often characterized by weight values that are very large in magnitude.
How to deal with it?

■ Get more data.

■ Use a simpler model (less hidden layers, less neurons, different activation functions).

■ Use regularization (penalize the model complexity).

Overfitting and regularization

Intro

Multilayer FFN

Gradient Descent

Regularization

• Ridge

• Dropout

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 27 / 32

Overfitting in NN is often characterized by weight values that are very large in magnitude.
How to deal with it?

■ Get more data.

■ Use a simpler model (less hidden layers, less neurons, different activation functions).

■ Use regularization (penalize the model complexity).

Ridge regularization:

■ Modified loss function, e.g. for squared error:

J′(w) = J(w) + penalty =
1

2m

m

∑
i=1

(
y(i) − x(i)wT

)2
+

α

m

D

∑
d=1

w2
d.

■ Modified weight update in GD:

wd ← wd − η
∂J′

∂wd
=
(

1−
ηα

m

)
wd

︸ ︷︷ ︸
weight decay

−η
∂J

∂wd
,

where η is the learning rate, α is the regularization strength, m is the number of
examples in the batch.

■ The biases (weights connected to constant 1) should not be regularized!

Dropout

Intro

Multilayer FFN

Gradient Descent

Regularization

• Ridge

• Dropout

Other NNs

Summary

P. Pošík c© 2017 Artificial Intelligence – 28 / 32

■ Idea: Average many NNs, share weights to make it computationally feasible.

■ For each training example, omit each neuron with certain probability (often p = 0.5).

■ This is like sampling from 2N networks where N is the number of units.

■ Only a small part of the 2N networks is actually sampled.

■ Prevents coadaptation of feature vectors.

Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014

Other types of Neural Networks

P. Pošík c© 2017 Artificial Intelligence – 29 / 32

Beyond MLPs

Intro

Multilayer FFN

Gradient Descent

Regularization

Other NNs

• Beyond MLPs

Summary

P. Pošík c© 2017 Artificial Intelligence – 30 / 32

MLPs are only one type of neural networks. Other types of FFNNs include:

■ Radial basis functions (RBF) nets. Neurons contain prototypes, forward propagation
resembles a (smoothed) nearest neighbors method.

■ Autoencoders. Learn a compact representation of the input data.

■ Convolutional nets. Replace the fully-connected layer with a convolutional layer that
has smaller number of weights and reuses them for many input variables. Aimed at
image processing.

■ . . .

Beyond MLPs

Intro

Multilayer FFN

Gradient Descent

Regularization

Other NNs

• Beyond MLPs

Summary

P. Pošík c© 2017 Artificial Intelligence – 30 / 32

MLPs are only one type of neural networks. Other types of FFNNs include:

■ Radial basis functions (RBF) nets. Neurons contain prototypes, forward propagation
resembles a (smoothed) nearest neighbors method.

■ Autoencoders. Learn a compact representation of the input data.

■ Convolutional nets. Replace the fully-connected layer with a convolutional layer that
has smaller number of weights and reuses them for many input variables. Aimed at
image processing.

■ . . .

Recurrent nets contain also feedback connections.

■ They preserve a kind of state of the network.

■ Simple recurrent architectures: Jordan, Elman. Network output or state used together
with input in the next iteration.

■ Hopfield net. Used as associative memory.

■ Long short-term memory (LSTM). Suitable for processing data sequences in time.

■ . . .

Beyond MLPs

Intro

Multilayer FFN

Gradient Descent

Regularization

Other NNs

• Beyond MLPs

Summary

P. Pošík c© 2017 Artificial Intelligence – 30 / 32

MLPs are only one type of neural networks. Other types of FFNNs include:

■ Radial basis functions (RBF) nets. Neurons contain prototypes, forward propagation
resembles a (smoothed) nearest neighbors method.

■ Autoencoders. Learn a compact representation of the input data.

■ Convolutional nets. Replace the fully-connected layer with a convolutional layer that
has smaller number of weights and reuses them for many input variables. Aimed at
image processing.

■ . . .

Recurrent nets contain also feedback connections.

■ They preserve a kind of state of the network.

■ Simple recurrent architectures: Jordan, Elman. Network output or state used together
with input in the next iteration.

■ Hopfield net. Used as associative memory.

■ Long short-term memory (LSTM). Suitable for processing data sequences in time.

■ . . .

Other architectures:

■ Kohonen’s self-organizing maps (SOM). Used for unsupervised learning.

■ Neural gas. Used e.g. to approximately solve the traveling salesperson problem.

■ . . .

Summary

P. Pošík c© 2017 Artificial Intelligence – 31 / 32

Competencies

P. Pošík c© 2017 Artificial Intelligence – 32 / 32

After this lecture, a student shall be able to . . .

■ describe the model of a simple neuron, and explain its relation to multivariate regression and logistic
regression;

■ explain how to find weights of a single neuron using gradient descent (GD) algorithm;

■ derive the update equations used in GD to optimize the weights of a single neuron for various loss
functions and various activation functions;

■ describe a multilayer feedforward network and discuss its usage and characteristics;

■ compare the use of GD in case of a single neuron and in case of NN, discuss similarities and
differences;

■ explain the error backpropagation (BP) algorithm — its purpose and principle;

■ implement BP algorithm for a simple NN, and suggest how the implementation should be modified
to allow application for complex networks;

■ discuss the purpose of various modifications of GD algorithm (learning rate decay, weight update
schedule, momentum, . . .);

■ discuss the regularization options for NN (weight decay, dropout);

■ be aware of other types of NNs, not only feedforward nets.

	Introduction and Rehearsal
	Notation
	Multiple linear regression
	Logistic regression
	Gradient descent algorithm
	Example: Gradient for multiple regression and squared loss
	Example: Gradient for logistic regression and crossentropy loss
	Relations to neural networks

	Multilayer Feedforward Networks
	MLP
	MLP: A look inside
	Activation functions
	MLP: Learning
	BP
	Error backpropagation algorithm
	Error backpropagation: Example
	Error backpropagation efficiency
	Loss functions

	Gradient Descent
	Learning rate annealing
	Weights update
	Momentum
	Further gradient descent improvements

	Regularization
	Overfitting and regularization
	Dropout

	Other NNs
	Beyond MLPs

	Summary
	Competencies

	pdstartclock:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:

