

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical EngineeringDepartment of Cybernetics

Neural Networks.

Petr Pošík

Czech Technical University in PragueFaculty of Electrical EngineeringDept. of Cybernetics

Introduction and Rehearsal

Notation

In *supervised learning*, we work with

- ■an observation described by a vector $x = (x_1, \ldots, x_D)$,
- the corresponding true value of the dependent variable *^y*, and
- \blacksquare the prediction of a model $\widehat{y} = f_w(x)$, where the model parameters are in vector *w*.

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Notation

In *supervised learning*, we work with

- an observation described by a vector $\mathbf{x} = (x_1, \dots, x_D)$,
- the corresponding true value of the dependent variable *^y*, and
- \blacksquare the prediction of a model $\widehat{y} = f_w(x)$, where the model parameters are in vector *w*.
- Very often, we use *homogeneous coordinates* and matrix notation, and represen^t the whole training data set as $T = (\mathbf{X}, \mathbf{y})$, where

$$
\boldsymbol{X} = \left(\begin{array}{ccc} 1 & \boldsymbol{x}^{(1)} \\ \vdots & \vdots \\ 1 & \boldsymbol{x}^{(|\boldsymbol{T}|)} \end{array}\right),
$$

and $y = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(|T|)} \end{pmatrix}$.

[Intro](#page-1-0)

• [Notation](#page-2-0)

- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

• [Multiple](#page-5-0) regression • [Logistic](#page-7-0) regression • [Gradient](#page-9-0) descent • Ex: [Grad.](#page-10-0) for MR • Ex: [Grad.](#page-11-0) for LR• [Relations](#page-13-0) to NN

[Intro](#page-1-0)

• [Notation](#page-2-0)

Notation

In *supervised learning*, we work with

- an observation described by a vector $\mathbf{x} = (x_1, \dots, x_D)$,
- the corresponding true value of the dependent variable *^y*, and
- \blacksquare the prediction of a model $\widehat{y} = f_w(x)$, where the model parameters are in vector *w*.
- Very often, we use *homogeneous coordinates* and matrix notation, and represen^t the whole training data set as $T = (\mathbf{X}, \mathbf{y})$, where

$$
\mathbf{X} = \left(\begin{array}{ccc} 1 & \mathbf{x}^{(1)} \\ \vdots & \vdots \\ 1 & \mathbf{x}^{(|T|)} \end{array} \right), \quad \text{and} \quad \mathbf{y} = \left(\begin{array}{c} y^{(1)} \\ \vdots \\ y^{(|T|)} \end{array} \right).
$$

[Other](#page-48-0) NNs[Summary](#page-52-0)

[Multilayer](#page-15-0) FFN

[Regularization](#page-44-0)

[Gradient](#page-32-0) Descent

Learning then amounts to finding such model parameters *^w*[∗] which minimize certain loss (or energy) function:

 $w^* = \arg\min_w J(w, T)$

Multiple linear regression

Multiple linear regression model:

 $w^* = (X^T X)^{-1} X^T y$,

or found by numerical optimization.

[Intro](#page-1-0)

• [Notation](#page-2-0)

The minimum of

 $\widehat{y}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\left\vert \varphi_{\alpha}\right\rangle$

- [Multiple](#page-5-0) regression• [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

is given by

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Multilayer](#page-15-0) FFN

[Other](#page-48-0) NNs

[Summary](#page-52-0)

 $f_w(x) = w_1x_1 + w_2x_2 + \ldots + w_Dx_D = xw^T$

Multiple linear regression

Multiple linear regression model:

[Intro](#page-1-0)

• [Notation](#page-2-0)

The minimum of

 $\widehat{y}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\left\vert \varphi_{\alpha}\right\rangle$

- [Multiple](#page-5-0) regression• [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

is given by

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Multilayer](#page-15-0) FFN

[Other](#page-48-0) NNs

[Summary](#page-52-0)

 $J_{MSE}(\boldsymbol{w}) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - \widehat{y}^{(i)}\right)^2$,

 $f_w(x) = w_1x_1 + w_2x_2 + \ldots + w_Dx_D = xw^T$

 $w^* = (X^T X)^{-1} X^T y$,

or found by numerical optimization.

Multiple regression as ^a **linear neuron**:

Logistic regression

Logistic regression model:

 $\widehat{y}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\left\vert \varphi_{\alpha}\right\rangle$

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN
- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs

[Summary](#page-52-0)

where

- $g(z) = \frac{1}{1 + e^{-z}}$
- is the **sigmoid** (a.k.a **logistic**) function.

 $f(w, x) = g(xw^T)$,

- No explicit equation for the optimal weights.
- The only option is to find the optimum numerically, usually by some form of gradient descent.

Logistic regression

Logistic regression model:

 $\widehat{y}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon\left\vert \varphi_{\alpha}\right\rangle$

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN
- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs
- [Summary](#page-52-0)

where

- $g(z) = \frac{1}{1 + e^{-z}}$
- is the **sigmoid** (a.k.a **logistic**) function.

 $f(w, x) = g(xw^T)$,

- No explicit equation for the optimal weights.
	- The only option is to find the optimum numerically, usually by some form of gradient descent.

Logistic regression as ^a **non-linear neuron**:

Gradient descent algorithm

- Given a function $J(w)$ that should be minimized,
- start with a guess of w , and change it so that $J(w)$ decreases, i.e.
- update our current guess of *w* by taking a step in the direction opposite to the credient. gradient:

$$
w \leftarrow w - \eta \nabla J(w), \text{ i.e.}
$$

$$
w_d \leftarrow w_d - \eta \frac{\partial}{\partial w_d} J(w),
$$

where all *^wd*^s are updated simultaneously and *^η* is ^a **learning rate** (step size). For cost functions ^given as the sum across the training examples

$$
J(\boldsymbol{w}) = \sum_{i=1}^{|T|} E(\boldsymbol{w}, \boldsymbol{x}^{(i)}, y^{(i)}),
$$

we can concentrate on ^a single training example because

$$
\frac{\partial}{\partial w_d} J(\boldsymbol{w}) = \sum_{i=1}^{|T|} \frac{\partial}{\partial w_d} E(\boldsymbol{w}, \boldsymbol{x}^{(i)}, y^{(i)}),
$$

and we can drop the indices over training data set:

$$
E=E(w,x,y).
$$

• [Notation](#page-2-0)

[Intro](#page-1-0)

- [Multiple](#page-5-0) regression• [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

```
Gradient Descent
```
[Regularization](#page-44-0)

[Other](#page-48-0) NNs

 x_1

wi

Assuming the squared error loss

1 $\frac{1}{2}(y)$

 $E(w, x, y) =$

*x*2

*x*3

Example: Gradient for multiple regression and squared loss

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

we can compute the derivatives using the chain rule as

−*y*b)

 $^{2} =$

1 $rac{1}{2}(y$

 $-xw^T$

 $\left(\begin{array}{c} 1 \end{array} \right)$ 2 ,

 \widehat{y}

[Summary](#page-52-0)

$$
\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_d}, \text{ where}
$$

$$
\frac{\partial E}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} \frac{1}{2} (y - \hat{y})^2 = -(y - \hat{y}), \text{ and}
$$

$$
\frac{\partial \hat{y}}{\partial w_d} = \frac{\partial}{\partial w_d} x w^T = x_d,
$$

and thus

$$
\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial w_d} = -(y - \widehat{y})x_d.
$$

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Nonlinear *activation* function:

$$
g(a) = \frac{1}{1+e^{-a}}
$$

Note that

$$
g'(a) = g(a) (1 - g(a)).
$$

*x*1

*x*2

*x*3

Example: Gradient for logistic regression and crossentropy loss

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Assuming the crossentropy loss

a

g(*a*)

wi

Nonlinear *activation* function:

$$
g(a) = \frac{1}{1 + e^{-a}}
$$

Note that

$$
g'(a) = g(a) (1 - g(a)).
$$

$$
E(w, x, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y}), \quad \text{where } \hat{y} = g(a) = g(xw^{T}),
$$

we can compute the derivatives using the chain rule as

[Summary](#page-52-0)

$$
\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a} \frac{\partial a}{\partial w_d}, \text{ where}
$$

$$
\frac{\partial E}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} = -\frac{y-\hat{y}}{\hat{y}(1-\hat{y})},
$$

$$
\frac{\partial \hat{y}}{\partial a} = \hat{y}(1-\hat{y}), \text{ and } \frac{\partial a}{\partial w_d} = \frac{\partial}{\partial w_d} x w^T = x_d,
$$

 \widehat{y}

and thus

$$
\frac{\partial E}{\partial w_d} = \frac{\partial E}{\partial \widehat{y}} \frac{\partial \widehat{y}}{\partial a} \frac{\partial a}{\partial w_d} = -(y - \widehat{y})x_d
$$

Relations to neural networks

- Above, we derived training algorithms (based on gradient descent) for linear regression model and linear classification model.
- Note the similarity with the *perceptron algorithm* ("just add certain part of a
misclessified training example to the weight yester") misclassified training example to the weight vector").
- Units like those above are used as **building blocks** for more complex/flexible models!

[Intro](#page-1-0)

- [Notation](#page-2-0)
- [Multiple](#page-5-0) regression
- [Logistic](#page-7-0) regression
- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR
- [Relations](#page-13-0) to NN

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Relations to neural networks

- Above, we derived training algorithms (based on gradient descent) for linear regression model and linear classification model.
- Note the similarity with the *perceptron algorithm* ("just add certain part of a
misclessified training example to the weight yester") misclassified training example to the weight vector").
- Units like those above are used as **building blocks** for more complex/flexible models!
- ^A more complex/flexible model:

$$
\widehat{y} = g^{OUT} \left(\sum_{k=1}^{K} w_k^{HID} g_k^{HID} \left(\sum_{d=1}^{D} w_{kd}^{IN} x_d \right) \right),
$$

which is

- ^a nonlinear function of
	- ■ ^a linear combination of
		- ■ nonlinear functions of
			- ■linear combinations of inputs.

• [Notation](#page-2-0)

[Intro](#page-1-0)

- [Gradient](#page-9-0) descent
- Ex: [Grad.](#page-10-0) for MR
- Ex: [Grad.](#page-11-0) for LR

• [Relations](#page-13-0) to NN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Multilayer](#page-15-0) FFN

[Other](#page-48-0) NNs

Multilayer Feedforward Networks

[Intro](#page-1-0)

• [MLP](#page-16-0)

• [BP](#page-21-0)

[Multilayer](#page-15-0) FFN

 • MLP: ^A look [inside](#page-17-0) • [Activation](#page-18-0) functions • MLP: [Learning](#page-19-0)

MLP

Multilayer perceptron (MLP)

- Multilayer feedforward network:
	- ■the "signal" is propagated from inputs towards outputs; no feedback connections exist.
- It realizes mapping from $\mathcal{R}^D \longrightarrow \mathcal{R}^C$, where *D* is the number of object features, and *C* is the number of output variables *C* is the number of output variables.
	- ■For binary classification and regression, ^a single output is sufficient.
	- For classification into multiple classes, 1-of-N encoding is usually used.

 Universal approximation theorem: ^A MLP with ^a single hidden layer with sufficient (but finite) number of neurons can approximate any continuous function arbitrarilywell (under mild assumptions on the activation functions).

 • BP [algorithm](#page-24-0) • BP: [Example](#page-25-0) • BP [Efficiency](#page-30-0)■

• Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

MLP: A look inside

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Forward propagation:

Given all the weights *w* and activation functions *g*, we can for a single input vector *x* and \hat{x} and \hat{y} are *x* and \hat{y} are *x* and \hat{y} are *x* and *x* a easilly compute the estimate of the output vector \widehat{y} by iteratively evaluating in individual layers:

$$
a_j = \sum_{i \in \text{Src}(j)} w_{ji} z_i \tag{1}
$$

$$
z_j = g(a_j) \tag{2}
$$

Note that

- ■ z_i in [\(1\)](#page-17-1) may be the *outputs* of *hidden layers neurons* or the *inputs* x_i , and
- ■*z*_{*j*} in [\(2\)](#page-17-2) may be the the *outputs of hidden layers neurons* or the *outputs* \hat{y}_k .

Activation functions

 \blacksquare Identity: $g(a) = a$

 \blacksquare ...

- **•** Binary step: $g(a) = \begin{cases} 0 & \text{for } a < 0, \\ 1 & \text{for } a \ge 0 \end{cases}$
- **■** Logistic (sigmoid): $g(a) = \sigma(a) = \frac{1}{1+e^{-a}}$
- Hyperbolic tangent: $g(a) = \tanh(a) = 2\sigma(a) 1$
- Rectified Linear unit (ReLU): $g(a) = \max(0, a) = \begin{cases} 0 & \text{for } a < 0, \\ a & \text{for } a \ge 0 \end{cases}$

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

MLP: Learning

How to train ^a NN (i.e. find suitable *^w*) ^given the training data set (*^X*, *^y*)?

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

MLP: Learning

How to train ^a NN (i.e. find suitable *^w*) ^given the training data set (*^X*, *^y*)?

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

In principle, MLP can be trained in the same way as ^a single-layer NN using ^a gradientdescent algorithm:

Define the loss function to be minimized, e.g. square^d error loss:

$$
J(\boldsymbol{w}) = \sum_{i=1}^{|T|} E(\boldsymbol{w}, \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) = \frac{1}{2} \sum_{i=1}^{|T|} \sum_{k=1}^{C} (y_{ik} - \widehat{y}_{ik})^2, \text{ where}
$$

$$
E(\boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2.
$$

|*T*| is the size of the training set, and *^C* is the number of outputs of NN. Compute the gradient of the loss function w.r.t. individual weights:

$$
\nabla E(\boldsymbol{w}) = \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_W}\right).
$$

Make ^a step in the direction opposite to the gradient to update the weights:

$$
w_d \longleftarrow w_d - \eta \frac{\partial E}{\partial w_d} \quad \text{for } d = 1, \dots, W.
$$

How to compute the individual derivatives?

Error backpropagation (BP) is the algorithm for computing $g \frac{\partial E}{\partial w_d}$. **Error backpropagation (BP)** is the algorithm for computing $g \frac{\partial E}{\partial w_d}$.

Consider only
$$
\frac{\partial E}{\partial w_d}
$$
 because

$$
\frac{\partial J}{\partial w_d} = \sum_n \frac{\partial}{\partial w_d} E(w, x^{(n)}, y^{(n)}).
$$

E depends on *^wji* only via *^aj*:

$$
\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}}
$$
(3)

Let's introduce the so called *error ^δj*:

$$
\delta_j = \frac{\partial E}{\partial a_j} \tag{4}
$$

From [\(1\)](#page-17-1) we can derive:

$$
\frac{\partial a_j}{\partial w_{ji}} = z_i \tag{5}
$$

Substituting [\(4\)](#page-22-0) and [\(5\)](#page-22-1) into [\(3\)](#page-22-2):

$$
\frac{\partial E}{\partial w_{ji}} = \delta_j z_i, \tag{6}
$$

where

- *δj*is the error of the neuron on the output of the
- *zi*is the input of the edge $i \rightarrow j$.

"The more we excite edge $i \rightarrow j$ (big z_i) and the
larger is the error of the neuron on its output larger is the error of the neuron on its output(large *^δj*), the more sensitive is the loss function *^E*to the change of *^wji*."

- ■All values *^zⁱ* are known from forward pass,
- ■ to compute the gradient, we need to compute all *^δj*.

We need to compute the *errors ^δj*.

For the output layer:

$$
\delta_k = \frac{\partial E}{\partial a_k}
$$

E depends on a_k only via $\widehat{y}_k = g(a_k)$:

$$
\delta_k = \frac{\partial E}{\partial a_k} = \frac{\partial E}{\partial \widehat{y}_k} \frac{\partial \widehat{y}_k}{\partial a_k} = g'(a_k) \frac{\partial E}{\partial \widehat{y}_k}
$$
(7)

For the hidden layers:

$$
\delta_j = \frac{\partial E}{\partial a_j}
$$

E depends on *^a^j* via all *^ak*, $k \in Dest(j)$:

$$
\delta_j = \frac{\partial E}{\partial a_j} = \sum_{k \in Dest(j)} \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j} =
$$

=
$$
\sum_{k \in Dest(j)} \delta_k \frac{\partial a_k}{\partial a_j} =
$$

=
$$
g'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k,
$$
 (8)

because

$$
a_k = \sum_{j \in \text{Src}(k)} w_{kj} z_j = \sum_{j \in \text{Src}(k)} w_{kj} g(a_j),
$$

and thus
$$
\frac{\partial a_k}{\partial a_j} = w_{kj} g'(a_j)
$$

"The error *^δ^k* is distributed to *^δ^j* in the lower layer according to the weight *^wkj* (which is the spee^d of growth of the linear combination a_k) and according to the size of $g'(a_j)$ (which is the speed of growth of the activation function)."

Error backpropagation algorithm

Algorithm 1: Error Backpropagation: the computation of derivatives*∂ E∂wd*.

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions

2

3

4

- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

1 begin Perform ^a forward pass for observation*^x*. This will result in values of all*aj* and*zj*for the vector*x*.

 $\mathbf{E} = \mathbf{E} = \mathbf{E} \mathbf{E}$ is the error δ_k for the output layer (using Eq. [7\)](#page-23-0):

$$
\delta_k = g'(a_k) \frac{\partial E}{\partial \widehat{y}_k}
$$

 \mathcal{A} \parallel Using Eq. [8,](#page-23-1) propagate the errors δ_k back to get all the remaining δ_j :

$$
\delta_j = g'(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k
$$

5Using Eq. [6,](#page-22-3) evaluate all the derivatives to ge^t the whole gradient:

$$
\frac{\partial E}{\partial w_{ji}} = \delta_j z_i
$$

NN with ^a single hidden layer:

■ Squared error loss:
$$
E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2
$$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$ ■

the contract of Activation func. in the hidden layer: sigmoidal $g_j(a_j)$ = 1 $1+e^{-a_j}$, *g* $\int_{j}^{'}(a_{j}) = z_{j}(1)$ −*zj*)

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

NN with ^a single hidden layer:

■ Squared error loss:
$$
E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2
$$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$

Activation func. in the hidden layer: sigmoidal $g_j(a_j)$ = 1 $\frac{1}{1+e^{-a_j}}$, *g* $\int_{j}^{'}(a_{j}) = z_{j}(1)$ −*zj*)

> − \widehat{y}_k)

the contract of the contract of the contract of the contract of the contract of

• [BP](#page-21-0)• BP [algorithm](#page-24-0)

[Intro](#page-1-0)

• [MLP](#page-16-0)

• BP: [Example](#page-25-0)

[Multilayer](#page-15-0) FFN

 • MLP: ^A look [inside](#page-17-0) • [Activation](#page-18-0) functions • MLP: [Learning](#page-19-0)

- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)
- [Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Computing the errors*δ*:■ Output layer: *δ k* =*g* $\binom{l}{k}(a_k)$ *∂E* $\overline{\partial \widehat{y}_k} =$ −(*y k*

NN with ^a single hidden layer:

■ Squared error loss:
$$
E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2
$$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$

Activation func. in the hidden layer: sigmoidal $g_j(a_j)$ = 1 $\frac{1}{1+e^{-a_j}}$, *g* $\int_{j}^{'}(a_{j}) = z_{j}(1)$ −*zj*)

the contract of the contract of the contract of the contract of the contract of

• [BP](#page-21-0)

[Intro](#page-1-0)

• [MLP](#page-16-0)

 • BP [algorithm](#page-24-0)• BP: [Example](#page-25-0)

[Multilayer](#page-15-0) FFN

 • MLP: ^A look [inside](#page-17-0) • [Activation](#page-18-0) functions • MLP: [Learning](#page-19-0)

- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs
- [Summary](#page-52-0)

Computing the errors*δ*: Output layer: *δ k* =*g* $\binom{l}{k}(a_k)$ *∂E* $\frac{\partial E}{\partial \widehat{y}_k}=- (y_k)$ $-\widehat{y}_k$

4 Hidden layer:
$$
\delta_j = g'_j(a_j) \sum_{k \in Dest(j)} w_{kj} \delta_k = z_j(1 - z_j) \sum_{k \in Dest(j)} w_{kj} \delta_k
$$

NN with ^a single hidden layer:

■ Squared error loss:
$$
E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2
$$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$ ■

■Activation func. in the hidden layer: sigmoidal $g_j(a_j)$ = 1 $\frac{1}{1+e^{-a_j}}$, $g'_j(a_j) = z_j(1-z_j)$

the contract of the contract of

k∈*Dest*(*j*)

• [BP](#page-21-0)• BP [algorithm](#page-24-0)

 • MLP: ^A look [inside](#page-17-0) • [Activation](#page-18-0) functions • MLP: [Learning](#page-19-0)

• BP: [Example](#page-25-0)

[Multilayer](#page-15-0) FFN

[Intro](#page-1-0)

• [MLP](#page-16-0)

- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Computing the errors *δ*:

\nOutput layer:
$$
δ_k = g'_k(a_k) \frac{\partial E}{\partial \hat{y}_k} = -(y_k - \hat{y}_k)
$$

\nHidden layer: $δ_j = g'_j(a_j) \sum_{k=1}^{\infty} w_{kj} δ_k = z_j(1 - z_j) \sum_{k=1}^{\infty} w_{kj} δ_k$

k∈*Dest*(*j*)

Computation of all the partial derivatives:

$$
\frac{\partial E}{\partial w_{ji}} = \delta_j x_i \qquad \qquad \frac{\partial E}{\partial w_{kj}} = \delta_k z_j
$$

[Intro](#page-1-0)

• [MLP](#page-16-0)

• [BP](#page-21-0)

[Multilayer](#page-15-0) FFN

 • BP [algorithm](#page-24-0) • BP: [Example](#page-25-0) • BP [Efficiency](#page-30-0)• Loss [functions](#page-31-0) [Gradient](#page-32-0) Descent

 • MLP: ^A look [inside](#page-17-0) • [Activation](#page-18-0) functions • MLP: [Learning](#page-19-0)

Error backpropagation: Example

NN with ^a single hidden layer:

■ Squared error loss:
$$
E = \frac{1}{2} \sum_{k=1}^{C} (y_k - \widehat{y}_k)^2
$$

Activation func. in the output layer: identity $g_k(a_k) = a_k$, $g'_k(a_k) = 1$

- the contract of Activation func. in the hidden layer: sigmoidal $g_j(a_j)$ = 1 $\frac{1}{1+e^{-a_j}}$, *g* $\int_{j}^{'}(a_{j}) = z_{j}(1)$ −*zj*)
- Computing the errors*δ*:

■

■ Output layer: *δ k* =*g* $'_{k}(a_{k})$ *∂E* $\frac{\partial E}{\partial \widehat{y}_k}=- (y_k)$ **•** Hidden layer: $\delta_j = g'_j(a_j)$ $-\widehat{y}_k$ *g* $'_{j}(a_{j})$ \sum *k*∈*Dest*(*j*)*^wkj δ k* = $= z_j(1)$ − $-z_j$ ^{$\sum_{k \in \text{Dec}}$} *k*∈*Dest*(*j*)*^wkj δk*

Computation of all the partial derivatives:

$$
\frac{\partial E}{\partial w_{ji}} = \delta_j x_i \qquad \qquad \frac{\partial E}{\partial w_{kj}} = \delta_k z_j
$$

Online learning:

∂

$$
w_{ji} \longleftarrow w_{ji} - \eta \delta_j x_i
$$

$$
w_{kj} \longleftarrow w_{kj} - \eta \delta_k z_j
$$

$$
w_{ji} \longleftarrow w_{ji} - \eta \sum_{n=1}^{|T|} \delta_j^{(n)} x_i^{(n)}
$$

$$
w_{kj} \longleftarrow w_{kj} - \eta \sum_{n=1}^{|T|} \delta_k^{(n)} z_j^{(n)}
$$

Batch learning:

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Error backpropagation efficiency

Let*W* be the number of weights in the network (the number of parameters being optimized).

- The evaluation of *E* for a single observation requires $\mathcal{O}(W)$ operations (evaluation of $w_{ji}z_i$ dominates*,* evaluation of $g(a_j)$ is neglected).
- We need to compute*W* derivatives for each observation:
	- Classical approach:
		- ■**■** Find explicit equations for $\frac{\partial E}{\partial w_j}$ *∂^wji*.
		- ■ \blacksquare To compute each of them $\mathcal{O}(W)$ steps are required.
		- In total, $\mathcal{O}(W^2)$ steps for a single training example. ■
		- Backpropagation:
			- ■Requires only $\mathcal{O}(W)$ steps for a single training example.

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

- [MLP](#page-16-0)
- MLP: ^A look [inside](#page-17-0)
- [Activation](#page-18-0) functions
- MLP: [Learning](#page-19-0)
- [BP](#page-21-0)
- BP [algorithm](#page-24-0)
- BP: [Example](#page-25-0)
- BP [Efficiency](#page-30-0)
- Loss [functions](#page-31-0)

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Loss functions

Note: often, mean errors are used.

- ■Computed as the average w.r.t. the number of training examples |*T*|.
- ■The optimum is in the same point, of course.

Gradient Descent

Learning rate annealing

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

- [Learning](#page-33-0) rate
- [Weights](#page-36-0) update
- [Momentum](#page-37-0)
- GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Task: find such parameters *^w*[∗] which minimize the model cost over the training set, i.e.

$$
w^* = \arg\min_w J(w; X, y)
$$

Learning rate annealing

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

• [Learning](#page-33-0) rate

• [Weights](#page-36-0) update

• [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Task: find such parameters *^w*[∗] which minimize the model cost over the training set, i.e.

 $w^* = \arg\min_w J(w; X, y)$

Gradient descent: $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta^{(t)} \nabla J(\boldsymbol{w}^{(t)}),$

where $\eta^{(t)} > 0$ is the **learning rate** or **step size** at iteration *t*.

Learning rate annealing

Task: find such parameters *^w*[∗] which minimize the model cost over the training set, i.e.

 $w^* = \arg\min_w J(w; X, y)$

Gradient descent: $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta^{(t)} \nabla J(\boldsymbol{w}^{(t)}),$ where $\eta^{(t)} > 0$ is the **learning rate** or **step size** at iteration *t*.

Learning rate decay:

Decrease the learning rate in time.

[Summary](#page-52-0)

[Other](#page-48-0) NNs

[Regularization](#page-44-0)

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent• [Learning](#page-33-0) rate • [Weights](#page-36-0) update • [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

Step decay: reduce the learning rate every few iterations by certain factor, e.g. $\frac{1}{2}$.

Exponential decay:
$$
\eta^{(t)} = \eta_0 e^{-kt}
$$

$$
\blacksquare \quad \textbf{Hyperbolic decay: } \eta^{(t)} = \frac{\eta_0}{1+kt}
$$

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent• [Learning](#page-33-0) rate • [Weights](#page-36-0) update • [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Weights update

When should we update the weights?

- **Batch learning:**
	- ■Compute the gradient w.r.t. all the training examples (epoch).
	- ■Several epochs are required to train the network.
	- ■Inefficient for redundant datasets.

Online learning:

- ■Compute the gradient w.r.t. ^a single training example only.
- ■**Stochastic Gradient Descent (SGD)**
- ■Converges almost surely to local minimum when $\eta^{(t)}$ decreases appropriately in time.

Mini-batch learning:

- ■Compute the gradient w.r.t. ^a small subset of the training examples.
- ■^A compromise between the above ² extremes.

Momentum

Momentum

Perform the update in an analogy to physical systems: a particle with certain mass and velocity gets acceleration from the gradient ("force") of the loss function:

$$
\mathbf{v}^{(t+1)} = \mu \mathbf{v}^{(t)} + \eta^{(t)} \nabla J(\mathbf{w}^{(t)})
$$

$$
\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{v}^{(t+1)}
$$

- SGD with momentum tends to keep traveling in the same direction, preventing oscillations.
	- It builds the velocity in directions with consistent (but possibly small) gradient.

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

• [Learning](#page-33-0) rate

• [Weights](#page-36-0) update

• [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Momentum

Momentum

Perform the update in an analogy to physical systems: a particle with certain mass and velocity gets acceleration from the gradient ("force") of the loss function:

$$
\mathbf{v}^{(t+1)} = \mu \mathbf{v}^{(t)} + \eta^{(t)} \nabla J(\mathbf{w}^{(t)})
$$

$$
\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{v}^{(t+1)}
$$

- SGD with momentum tends to keep traveling in the same direction, preventing oscillations.
- It builds the velocity in directions with consistent (but possibly small) gradient.

Nesterov's Momentum

Blightly different update equations:

$$
\mathbf{v}^{(t+1)} = \mu \mathbf{v}^{(t)} + \eta^{(t)} \nabla J(\mathbf{w}^{(t)} + \mu \mathbf{v}^{(t)})
$$

$$
\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \mathbf{v}^{(t+1)}
$$

- Classic momentum corrects the velocity using gradient at $w^{(t)}$; Nesterov uses gradient at $\boldsymbol{w}^{(t)} + \mu \boldsymbol{v}^{(t)}$ which is more similar to $\boldsymbol{w}^{(t+1)}$.
- Stronger theoretical convergence guarantees; slightly better in practice.

[Intro](#page-1-0)

• [Weights](#page-36-0) update

• [Momentum](#page-37-0)

[Multilayer](#page-15-0) FFN

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Further gradient descent improvements

Resilient Propagation (Rprop)

■ $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .

[Intro](#page-1-0)

- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Learning](#page-33-0) rate
- [Weights](#page-36-0) update
- [Momentum](#page-37-0)
- GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Further gradient descent improvements

Resilient Propagation (Rprop)

- *∂ J ∂wd* may differ ^a lot for different parameters *wd*.
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

- [Learning](#page-33-0) rate
- [Weights](#page-36-0) update
- [Momentum](#page-37-0)
- GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent• [Learning](#page-33-0) rate • [Weights](#page-36-0) update • [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Further gradient descent improvements

Resilient Propagation (Rprop)

- *∂ J ∂wd* may differ ^a lot for different parameters *wd*.
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs ^a moving average of the gradient values.
- Can be seen as ^a generalization of Rprop, can work also with mini-batches.

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent• [Learning](#page-33-0) rate • [Weights](#page-36-0) update • [Momentum](#page-37-0)

• GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

[Summary](#page-52-0)

Further gradient descent improvements

Resilient Propagation (Rprop)

- $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs ^a moving average of the gradient values.
- Can be seen as ^a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

- Improvement of RMSprop.
- Uses moving averages of gradients and their second moments.

Further gradient descent improvements

Resilient Propagation (Rprop)

- $\frac{\partial J}{\partial w_d}$ may differ a lot for different parameters w_d .
- Rprop does not use the value, only its *sign* to adapt the step size for each weight separately.
- Often, an order of magnitude faster than basic GD.
- Does not work well for mini-batches.

Adaptive Gradient (Adagrad)

Idea: Reduce learning rates for parameters having high values of gradient.

Root Mean Square Propagation (RMSprop)

- Similar to AdaGrad, but employs ^a moving average of the gradient values.
- Can be seen as ^a generalization of Rprop, can work also with mini-batches.

Adaptive Moment Estimation (Adam)

- Improvement of RMSprop.
- Uses moving averages of gradients and their second moments.

See also:

- <http://sebastianruder.com/optimizing-gradient-descent/>
- ■<http://cs231n.github.io/neural-networks-3/>
- <http://cs231n.github.io/assets/nn3/opt2.gif>, <http://cs231n.github.io/assets/nn3/opt1.gif>

[Multilayer](#page-15-0) FFN

- [Gradient](#page-32-0) Descent
- [Learning](#page-33-0) rate
- [Weights](#page-36-0) update
- [Momentum](#page-37-0)
- GD [improvements](#page-39-0)

[Regularization](#page-44-0)

[Other](#page-48-0) NNs

Regularization

Overfitting and regularization

Overfitting in NN is often characterized by weight values that are very large in magnitude.
Uses to deal with it? How to deal with it?

Get more data.

Use ^a simpler model (less hidden layers, less neurons, different activation functions).

Use *regularization* (penalize the model complexity).

[Intro](#page-1-0)

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

• [Ridge](#page-45-0)

• [Dropout](#page-47-0)

[Other](#page-48-0) NNs

Overfitting and regularization

Overfitting in NN is often characterized by weight values that are very large in magnitude.
Uses to deal with it? How to deal with it?

Get more data.

Use ^a simpler model (less hidden layers, less neurons, different activation functions).

Use *regularization* (penalize the model complexity).

Ridge regularization:

Modified loss function, e.g. for square^d error:

$$
J'(\boldsymbol{w}) = J(\boldsymbol{w}) + \text{penalty} = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - x^{(i)} \boldsymbol{w}^T)^2 + \frac{\alpha}{m} \sum_{d=1}^{D} w_d^2.
$$

Modified weight update in GD:

$$
w_d \leftarrow w_d - \eta \frac{\partial J'}{\partial w_d} = \underbrace{\left(1 - \frac{\eta \alpha}{m}\right) w_d - \eta \frac{\partial J}{\partial w_d}}_{\text{weight decay}},
$$

where *η* is the learning rate, *^α* is the regularization strength, *^m* is the number of examples in the batch.

The biases (weights connected to constant 1) should not be regularized!

[Multilayer](#page-15-0) FFN

[Gradient](#page-32-0) Descent

[Regularization](#page-44-0)

• [Ridge](#page-45-0)

[Other](#page-48-0) NNs

Dropout

- [Intro](#page-1-0)
- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Ridge](#page-45-0)
- [Dropout](#page-47-0)
- [Other](#page-48-0) NNs

[Summary](#page-52-0)

- Idea: Average many NNs, share weights to make it computationally feasible.
- For each training example, omit each neuron with certain probability (often $p = 0.5$).
- **This is like sampling from** 2^N **networks where** *N* **is the number of units.**
	- Only a small part of the 2^N networks is actually sampled.
	- Prevents coadaptation of feature vectors.

Srivastava et al.: ^A Simple Way to Prevent Neural Networks from Overfitting, 2014

Other types of Neural Networks

Beyond MLPs

 \blacksquare ...

[Intro](#page-1-0)

- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs
- [Beyond](#page-49-0) MLPs

[Summary](#page-52-0)

MLPs are only one type of neural networks. Other types of FFNNs include:

- **Radial basis functions (RBF) nets.** Neurons contain prototypes, forward propagation resembles ^a (smoothed) nearest neighbors method.
- **Autoencoders.** Learn ^a compac^t representation of the input data.
- **Convolutional nets.** Replace the fully-connected layer with ^a convolutional layer that has smaller number of weights and reuses them for many input variables. Aimed atimage processing.

Beyond MLPs

[Intro](#page-1-0)

- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs
- [Beyond](#page-49-0) MLPs

[Summary](#page-52-0)

MLPs are only one type of neural networks. Other types of FFNNs include:

- **Radial basis functions (RBF) nets.** Neurons contain prototypes, forward propagation resembles ^a (smoothed) nearest neighbors method.
- **Autoencoders.** Learn ^a compac^t representation of the input data.
- **Convolutional nets.** Replace the fully-connected layer with ^a convolutional layer that has smaller number of weights and reuses them for many input variables. Aimed atimage processing.

Recurrent nets contain also *feedback connections*.

- They preserve ^a kind of *state* of the network.
- Simple recurrent architectures: **Jordan**, **Elman**. Network output or state used together with input in the next iteration.
- **Hopfield net.** Used as associative memory.
- **Long short-term memory (LSTM).** Suitable for processing data sequences in time.
- . . .

 \blacksquare ...

Beyond MLPs

[Intro](#page-1-0)

- [Multilayer](#page-15-0) FFN
- [Gradient](#page-32-0) Descent
- [Regularization](#page-44-0)
- [Other](#page-48-0) NNs
- [Beyond](#page-49-0) MLPs

[Summary](#page-52-0)

MLPs are only one type of neural networks. Other types of FFNNs include:

- **Radial basis functions (RBF) nets.** Neurons contain prototypes, forward propagation resembles ^a (smoothed) nearest neighbors method.
- **Autoencoders.** Learn ^a compac^t representation of the input data.
- **Convolutional nets.** Replace the fully-connected layer with ^a convolutional layer that has smaller number of weights and reuses them for many input variables. Aimed atimage processing.

Recurrent nets contain also *feedback connections*.

- They preserve ^a kind of *state* of the network.
- Simple recurrent architectures: **Jordan**, **Elman**. Network output or state used together with input in the next iteration.
- **Hopfield net.** Used as associative memory.
- **Long short-term memory (LSTM).** Suitable for processing data sequences in time.
- \blacksquare ...

 \blacksquare ...

Other architectures:

- **Kohonen's self-organizing maps (SOM).** Used for unsupervised learning.
- **Neural gas.** Used e.g. to approximately solve the traveling salesperson problem.
- \blacksquare ...

Competencies

After this lecture, a student shall be able to ...

- describe the model of ^a simple neuron, and explain its relation to multivariate regression and logistic regression;
- explain how to find weights of ^a single neuron using gradient descent (GD) algorithm;
- derive the update equations used in GD to optimize the weights of ^a single neuron for various loss functions and various activation functions;
- describe ^a multilayer feedforward network and discuss its usage and characteristics;
- compare the use of GD in case of ^a single neuron and in case of NN, discuss similarities and differences;
- explain the error backpropagation (BP) algorithm its purpose and principle;
- implement BP algorithm for ^a simple NN, and sugges^t how the implementation should be modified to allow application for complex networks;
- discuss the purpose of various modifications of GD algorithm (learning rate decay, weight update schedule, momentum, . . .);
- discuss the regularization options for NN (weight decay, dropout);
- be aware of other types of NNs, not only feedforward nets.