CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Cybernetics

Expectation-Maximization Algorithm.

Petr Pošík
Czech Technical University in Prague
Faculty of Electrical Engineering
Dept. of Cybernetics

Maximum likelihood estimation

Likelihood maximization

Let's have a random variable X with probability distribution $p_{X}(x \mid \theta)$.

- This emphasizes that the distribution is parameterized by $\theta \in \Theta$, i.e. the distribution comes from certain parametric family. Θ is the space of possible parameter values.

Likelihood maximization

Let's have a random variable X with probability distribution $p_{X}(x \mid \theta)$.

- This emphasizes that the distribution is parameterized by $\theta \in \Theta$, i.e. the distribution comes from certain parametric family. Θ is the space of possible parameter values.
Learning task: assume the parameters θ are unknown, but we have an i.i.d. training dataset $T=\left\{x_{1}, \ldots, x_{n}\right\}$ which can be used to estimate the unknown parameters.
- The probability of observing dataset T given some parameter values θ is

$$
p(X \mid \theta)=\prod_{j=1}^{n} p_{X}\left(x_{j} \mid \theta\right) \stackrel{\text { def }}{=} L(\theta ; T)
$$

- This probability can be interpretted as a degree with which the model parameters θ conform to the data T. It is thus called the likelihood of parameters θ w.r.t. data T.
- The optimal θ^{*} is obtained by maximizing the likelihood

$$
\theta^{*}=\arg \max _{\theta \in \Theta} L(\theta ; T)=\arg \max _{\theta \in \Theta} \prod_{j=1}^{n} p_{X}\left(x_{j} \mid \theta\right)
$$

- Since $\arg \max _{x} f(x)=\arg \max _{x} \log f(x)$, we often maximize the \log-likelihood $l(\theta ; T)=\log L(\theta ; T)$

$$
\theta^{*}=\arg \max _{\theta \in \Theta} l(\theta ; T)=\arg \max _{\theta \in \Theta} \log \prod_{j=1}^{n} p_{X}\left(x_{j} \mid \theta\right)=\arg \max _{\theta \in \Theta} \sum_{j=1}^{n} \log p_{X}\left(x_{j} \mid \theta\right)
$$

which is often easier than maximization of L.

Incomplete data

Assume we cannot observe the objects completely:

- r.v. X describes the observable part, r.v. K describes the unobservable, hidden part.

MLE

- Likelihood
- Incomplete data
- General EM

K-means
EM for Mixtures
EM for HMM
Summary

- We assume there is an underlying distribution $p_{X K}(x, k \mid \theta)$ of objects (x, k).

Incomplete data

Assume we cannot observe the objects completely:
r.v. X describes the observable part, r.v. K describes the unobservable, hidden part.

MLE

- We assume there is an underlying distribution $p_{X K}(x, k \mid \theta)$ of objects (x, k).
- Incomplete data
- General EM

Learning task: we want to estimate the model parameters θ, but the training set contains

EM for Mixtures EM for HMM

Summary
i.i.d. samples for the observable part only, i.e. $T_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. (Still, there also exists a hidden, unobservable dataset $T_{K}=\left\{k_{1}, \ldots, k_{n}\right\}$.)

- If we had a complete data $\left(T_{X}, T_{K}\right)$, we could directly optimize $l\left(\theta ; T_{X}, T_{K}\right)=\log p\left(T_{X}, T_{K} \mid \theta\right)$. But we do not have access to T_{K}.
■ If we would like to maximize

$$
l\left(\theta ; T_{X}\right)=\log p\left(T_{X} \mid \theta\right)=\log \sum_{T_{K}} p\left(T_{X}, T_{K} \mid \theta\right)
$$

the summation inside $\log ()$ results in complicated expressions, or we would have to use numerical methods.

- Our state of knowledge about T_{K} is given by $p\left(T_{K} \mid T_{X}, \theta\right)$.
- The complete-data likelihood $L\left(\theta ; T_{X}, T_{K}\right)=P\left(T_{X}, T_{K} \mid \theta\right)$ is a random variable since T_{K} is unknown, random, but governed by the underlying distribution.
- Instead of optimizing it directly, consider its expected value under the posterior distribution over latent variables (E-step), and then maximize this expectation (M-step).

Expectation-Maximization algorithm

EM algorithm:

- A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or missing values).
- Likelihood
- Incomplete data
- General EM

K-means
EM for Mixtures
EM for HMM
Summary

Expectation-Maximization algorithm

EM algorithm:

- A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or missing values).
- Likelihood
- Incomplete data
- General EM

K-means
EM for Mixtures
EM for HMM
Summary

- Hidden variables: mixture models, Hidden Markov models, ...
- It is a family of algorithms, or a recipe to derive a ML estimation algorithm for various kinds of probabilistic models.

1. Pretend that you know θ. (Use some initial guess $\theta^{(0)}$.) Set iteration counter $i=1$.
2. E-step: Use the current parameter values $\theta^{(i-1)}$ to find the posterior distribution of the latent variables $P\left(T_{K} \mid T_{X}, \theta^{(i-1)}\right)$. Use this posterior distribution to find the expectation of the complete-data log-likelihood evaluated for some general parameter values θ :

$$
Q\left(\theta, \theta^{(i-1)}\right)=\sum_{T_{K}} p\left(T_{K} \mid T_{X}, \theta^{(i-1)}\right) \log p\left(T_{X}, T_{K} \mid \theta\right)
$$

3. M-step: maximize the expectation, i.e. compute an updated estimate of θ as

$$
\theta^{(i)}=\arg \max _{\theta \in \Theta} Q\left(\theta, \theta^{(i-1)}\right)
$$

4. Check for convergence: finish, or advance the iteration counter $i \Longleftarrow i+1$, and repeat from 2.

EM algorithm features

- Likelihood
- Incomplete data
- General EM

K-means
EM for Mixtures
EM for HMM
Summary

Pros:

- Among the possible optimization methods, EM exploits the structure of the model.
- For $p_{X \mid K}$ from exponential family:
- M-step can be done analytically and there is a unique optimizer.
- The expected value in the E-step can be expressed as a function of θ without solving it explicitly for each θ.
- $p_{X}\left(T_{X} \mid \theta^{(i+1)}\right) \geq p_{X}\left(T_{X} \mid \theta^{(i)}\right)$, i.e. the process finds a local optimum.
- Works well in practice.

EM algorithm features

Pros:

- Among the possible optimization methods, EM exploits the structure of the model.

MLE

- Likelihood
- Incomplete data
- General EM

K-means
EM for Mixtures
EM for HMM
Summary

- For $p_{X \mid K}$ from exponential family:
- M-step can be done analytically and there is a unique optimizer.
- The expected value in the E-step can be expressed as a function of θ without solving it explicitly for each θ.
- $p_{X}\left(T_{X} \mid \theta^{(i+1)}\right) \geq p_{X}\left(T_{X} \mid \theta^{(i)}\right)$, i.e. the process finds a local optimum.
- Works well in practice.

Cons:

- Not guaranteed to get globally optimal estimate.
- MLE can overfit; use MAP instead (EM can be used as well).
- Convergence may be slow.

K-means

K-means algorithm

Clustering is one of the tasks of unsupervised learning.

MLE
K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures
EM for HMM
Summary

K-means algorithm

Clustering is one of the tasks of unsupervised learning.

K-means algorithm for clustering [Mac67]:

K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures
EM for HMM
Summary

- K is the apriori given number of clusters.
- Algorithm:

1. Choose K centroids μ_{k} (in almost any way, but every cluster should have at least one example.)
2. For all x, assign x to its closest μ_{k}.
3. Compute the new position of centroids μ_{k} based on all examples $x_{i}, i \in I_{k}$, in cluster k.
4. If the positions of centroids changed, repeat from 2.

K-means algorithm

Clustering is one of the tasks of unsupervised learning.

MLE

K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures
EM for HMM
Summary

K-means algorithm for clustering [Mac67]:

- K is the apriori given number of clusters.
- Algorithm:

1. Choose K centroids μ_{k} (in almost any way, but every cluster should have at least one example.)
2. For all x, assign x to its closest μ_{k}.
3. Compute the new position of centroids μ_{k} based on all examples $x_{i}, i \in I_{k}$, in cluster k.
4. If the positions of centroids changed, repeat from 2.

Algorithm features:

- Algorithm minimizes the function (intracluster variance):

$$
\begin{equation*}
J=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left|x_{i, j}-c_{j}\right|^{2} \tag{1}
\end{equation*}
$$

- Algorithm is fast, but each time it can converge to a different local optimum of J.
[DLR77] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.

Illustration

K-means clustering: iteration 1

Illustration

K-means clustering: iteration 2

Illustration

K-means clustering: iteration 3

Illustration

K-means clustering: iteration 4

Illustration

K-means clustering: iteration 5

Illustration

K-means clustering: iteration 6

MLE K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures
EM for HMM
Summary

K-means: EM view

Assume:

- An object can be in one of the $|K|$ states with equal probabilities.
- All $p_{X \mid K}(x \mid k)$ are isotropic Gaussians: $p_{X \mid K}(x \mid k)=\mathcal{N}\left(\boldsymbol{x} \mid \mu_{k}, \sigma \mathbf{I}\right)$.
- Algorithm
- Illustration
- EM view

EM for Mixtures
EM for HMM
Summary \qquad

Recognition (Part of E-step):

- The task is to decide the state k for each \boldsymbol{x}, assuming all μ_{k} are known.
- The Bayesian strategy (minimizes the probability of error) chooses the cluster which center is the closest to observation x :

$$
q^{*}(x)=\arg \min _{k \in K}\left(x-\mu_{k}\right)^{2}
$$

■ If $\mu_{k}, k \in K$, are not known, it is a parametrized strategy $q_{\Theta}(\boldsymbol{x})$, where $\Theta=\left(\mu_{k}\right)_{k=1}^{K}$.

- Deciding state k for each x assuming known μ_{k} is actually the computation of a degenerate probability distribution $p\left(T_{K} \mid T_{X}, \theta^{(i-1)}\right)$, i.e. the first part of E-step.

K-means: EM view

Assume:

- An object can be in one of the $|K|$ states with equal probabilities.

MLE

- All $p_{X \mid K}(x \mid k)$ are isotropic Gaussians: $p_{X \mid K}(x \mid k)=\mathcal{N}\left(\boldsymbol{x} \mid \mu_{k}, \sigma \mathbf{I}\right)$.
- Algorithm
- Illustration
- EM view

EM for Mixtures EM for HMM Summary

$$
q^{*}(x)=\arg \min _{k \in K}\left(x-\mu_{k}\right)^{2}
$$

■ If $\mu_{k}, k \in K$, are not known, it is a parametrized strategy $q_{\Theta}(\boldsymbol{x})$, where $\Theta=\left(\mu_{k}\right)_{k=1}^{K}$.

- Deciding state k for each x assuming known μ_{k} is actually the computation of a degenerate probability distribution $p\left(T_{K} \mid T_{X}, \theta^{(i-1)}\right)$, i.e. the first part of E-step.

Learning (The rest of E-step and M-step):

- Find the maximum-likelihood estimates of μ_{k} based on known $\left(x_{1}, k_{1}\right), \ldots,\left(x_{l}, k_{l}\right)$:

$$
\mu_{k}^{*}=\frac{1}{\left|I_{k}\right|} \sum_{i \in I_{k}} \boldsymbol{x}_{i}
$$

where I_{k} is a set of indices of training examples (currently) belonging to state k.

- This completes the E-step and implements the M-step.

EM for Mixture Models

MLE
K-means
EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary

MLE
K-means
EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary

General mixture distributions

Assume the data are samples from a distribution factorized as

$$
\begin{aligned}
p_{X K}(x, k) & =p_{K}(k) p_{X \mid K}(x \mid k), \text { i.e. } \\
p_{X}(x) & =\sum_{k \in K} p_{K}(k) p_{X \mid K}(x \mid k)
\end{aligned}
$$

and that the distribution is known (except the distribution parameters).
Recognition (Part of E-step):

- Let's define the result of recognition not as a single decision for some state k (as done in K-means), but rather as
- a set of posterior probabilities (sometimes called responsibilities) for all k given x_{i}

$$
\gamma_{k}\left(x_{i}\right)=p_{K \mid X}\left(k \mid x_{i}, \theta^{(t)}\right)=\frac{p_{X \mid K}\left(x_{i} \mid k\right) p_{K}(k)}{\sum_{k \in K} p_{X \mid K}\left(x_{i} \mid k\right) p_{K}(k)}
$$

that an object was in state k when observation x_{i} was made.
■ The $\gamma_{k}(x)$ functions can be viewed as discriminant functions.

General mixture distributions (cont.)

Learning (The rest of E-step and M-step):

- Given the training multiset $T=\left(x_{i}, k_{i}\right)_{i=1}^{n}$ (or the respective $\gamma_{k}\left(x_{i}\right)$ instead of k_{i}),
- assume $\gamma_{k}(x)$ is known, $p_{K}(k)$ are not known, and $p_{X \mid K}(x \mid k)$ are known except the

K-means
EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary parameter values Θ_{k}, i.e. we shall write $p_{X \mid K}\left(x \mid k, \Theta_{k}\right)$.
■ Let the object model m be a "set" of all unknown parameters $m=\left(p_{K}(k), \Theta_{k}\right)_{k \in K}$.

EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary

General mixture distributions (cont.)

Learning (The rest of E-step and M-step):
■ Given the training multiset $T=\left(x_{i}, k_{i}\right)_{i=1}^{n}$ (or the respective $\gamma_{k}\left(x_{i}\right)$ instead of k_{i}),

- assume $\gamma_{k}(x)$ is known, $p_{K}(k)$ are not known, and $p_{X \mid K}(x \mid k)$ are known except the parameter values Θ_{k}, i.e. we shall write $p_{X \mid K}\left(x \mid k, \Theta_{k}\right)$.
■ Let the object model m be a "set" of all unknown parameters $m=\left(p_{K}(k), \Theta_{k}\right)_{k \in K}$.
- The log-likelihood of model m if we assume k_{i} is known:

$$
\log L(m)=\log \prod_{i=1}^{n} p_{X K}\left(x_{i}, k_{i}\right)=\sum_{i=1}^{n} \log p_{K}\left(k_{i}\right)+\sum_{i=1}^{n} \log p_{X \mid K}\left(x_{i} \mid k_{i}, \Theta_{k_{i}}\right)
$$

- The log-likelihood of model m if we assume a distribution (γ) over k is known:

$$
\log L(m)=\sum_{i=1}^{n} \sum_{k \in K} \gamma_{k}\left(x_{i}\right) \log p_{K}(k)+\sum_{i=1}^{n} \sum_{k \in K} \gamma_{k}\left(x_{i}\right) \log p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)
$$

■ We search for the optimal model using maximum likelihood:

$$
m^{*}=\left(p_{K}^{*}(k), \Theta_{k}^{*}\right)=\arg \max _{m} \log L(m)
$$

■ i.e. we compute

$$
\begin{aligned}
p_{K}^{*}(k) & =\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \text { and solve } k \text { independent tasks } \\
\Theta_{k}^{*} & =\arg \max _{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \log p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)
\end{aligned}
$$

EM for mixture distribution

Unsupervised learning algorithm [DLR77] for general mixture distributions:

1. Initialize the model parameters $m=\left(\left(p_{K}(k), \Theta_{k}\right) \forall k\right)$.

- General mixture
- EM for Mixtures
- EM for GMM

2. Perform the recognition task, i.e. assuming m is known, compute

$$
\gamma_{k}\left(x_{i}\right)=\hat{p}_{K \mid X}\left(k \mid x_{i}\right)=\frac{p_{K}(k) p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)}{\sum_{j \in K} p_{K}(j) p_{X \mid K}\left(x_{i} \mid j, \Theta_{j}\right)} .
$$

3. Perform the learning task, i.e. assuming $\gamma_{k}\left(x_{i}\right)$ are known, update the ML estimates of the model parameters $p_{K}(k)$ and Θ_{k} for all k :

$$
\begin{aligned}
p_{K}(k) & =\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \\
\Theta_{k} & =\arg \max _{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \log p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)
\end{aligned}
$$

4. Iterate 2 and 3 until the model stabilizes.

EM for mixture distribution

Unsupervised learning algorithm [DLR77] for general mixture distributions:

1. Initialize the model parameters $m=\left(\left(p_{K}(k), \Theta_{k}\right) \forall k\right)$.
2. Perform the recognition task, i.e. assuming m is known, compute

$$
\gamma_{k}\left(x_{i}\right)=\hat{p}_{K \mid X}\left(k \mid x_{i}\right)=\frac{p_{K}(k) p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)}{\sum_{j \in K} p_{K}(j) p_{X \mid K}\left(x_{i} \mid j, \Theta_{j}\right)} .
$$

3. Perform the learning task, i.e. assuming $\gamma_{k}\left(x_{i}\right)$ are known, update the ML estimates of the model parameters $p_{K}(k)$ and Θ_{k} for all k :

$$
\begin{aligned}
p_{K}(k) & =\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \\
\Theta_{k} & =\arg \max _{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \log p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)
\end{aligned}
$$

4. Iterate 2 and 3 until the model stabilizes.

Features:

- The algorithm does not specify how to update Θ_{k} in step 3, it depends on the chosen form of $p_{X \mid K}$.
- The model created in iteration t is always at least as good as the model from iteration $t-1$, i.e. $L(m)=p(T \mid m)$ increases.

MLE
K-means

EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary

Special Case: Gaussian Mixture Model

Each k th component is a Gaussian distribution:

$$
\mathcal{N}\left(x \mid \mu_{k}, \Sigma_{k}\right)=\frac{1}{(2 \pi)^{\frac{D}{2}}\left|\Sigma_{k}\right|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right\}
$$

Gaussian Mixture Model (GMM):

$$
\begin{aligned}
& p(x)=\sum_{k=1}^{K} p_{K}(k) p_{X \mid K}\left(x \mid k, \Theta_{k}\right)=\sum_{k=1}^{K} \alpha_{k} \mathcal{N}\left(x \mid \mu_{k}, \Sigma_{k}\right) \\
& \text { assuming } \sum_{k=1}^{K} \alpha_{k}=1 \text { and } 0 \leq \alpha_{k} \leq 1
\end{aligned}
$$

MLE
K-means
EM for Mixtures

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM
Summary

EM for GMM

1. Initialize the model parameters $m=\left(\left(p_{K}(k), \mu_{k}, \Sigma_{k}\right) \forall k\right)$.
2. Perform the recognition task as in the general case, i.e. assuming m is known, compute

$$
\gamma_{k}\left(x_{i}\right)=\hat{p}_{K \mid X}\left(k \mid x_{i}\right)=\frac{p_{K}(k) p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)}{\sum_{j \in K} p_{K}(j) p_{X \mid K}\left(x_{i} \mid j, \Theta_{j}\right)}=\frac{\alpha_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j \in K} \alpha_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)} .
$$

3. Perform the learning task, i.e. assuming $\gamma_{k}\left(x_{i}\right)$ are known, update the ML estimates of the model parameters α_{k}, μ_{k} and Σ_{k} for all k :

$$
\begin{aligned}
\alpha_{k} & =p_{K}(k)=\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \\
\mu_{k} & =\frac{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) x_{i}}{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)} \\
\Sigma_{k} & =\frac{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}}{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)}
\end{aligned}
$$

4. Iterate 2 and 3 until the model stabilizes.

EM for GMM

1. Initialize the model parameters $m=\left(\left(p_{K}(k), \mu_{k}, \Sigma_{k}\right) \forall k\right)$.
2. Perform the recognition task as in the general case, i.e. assuming m is known, compute

$$
\gamma_{k}\left(x_{i}\right)=\hat{p}_{K \mid X}\left(k \mid x_{i}\right)=\frac{p_{K}(k) p_{X \mid K}\left(x_{i} \mid k, \Theta_{k}\right)}{\sum_{j \in K} p_{K}(j) p_{X \mid K}\left(x_{i} \mid j, \Theta_{j}\right)}=\frac{\alpha_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j \in K} \alpha_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)} .
$$

3. Perform the learning task, i.e. assuming $\gamma_{k}\left(x_{i}\right)$ are known, update the ML estimates of the model parameters α_{k}, μ_{k} and Σ_{k} for all k :

$$
\begin{aligned}
\alpha_{k} & =p_{K}(k)=\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) \\
\mu_{k} & =\frac{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right) x_{i}}{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)} \\
\Sigma_{k} & =\frac{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}}{\sum_{i=1}^{n} \gamma_{k}\left(x_{i}\right)}
\end{aligned}
$$

4. Iterate 2 and 3 until the model stabilizes.

Remarks:

- Each data point belongs to all components to a certain degree $\gamma_{k}\left(x_{i}\right)$.
- The eq. for μ_{k} is just a weighted average of $x_{i} \mathrm{~s}$.
- The eq. for Σ_{k} is just a weighted covariance matrix.

Example: Source data

Source data generated from 3 Gaussians.
\qquad

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM

Summary

Example: Input to EM algorithm

The data were given to the EM algorithm as an unlabeled dataset.

Example: Ground Truth and EM Estimate

The ground truth (left) and the EM estimate (right) are very close because

- we have enough data,
- we know the right number of components, and
- we were lucky that EM converged to the right local optimum of the likelihood function.

Baum-Welch Algorithm:

EM for HMM

Hidden Markov Model

1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_{0}, \ldots, X_{t},
\qquad
MLE
K-means
EM for Mixtures
EM for HMM
- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

Hidden Markov Model

1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_{0}, \ldots, X_{t},

MLE
K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary the domain of all of them is the set of states $\left\{s_{1}, \ldots, s_{N}\right\}$.

- a sequence of observed variables E_{1}, \ldots, E_{t}, the domain of all of them is the set of observations $\left\{v_{1}, \ldots, v_{M}\right\}$.
- an initial distribution over hidden states $P\left(X_{0}\right)$,
- a transition model $P\left(X_{t} \mid X_{t-1}\right)$, and

■ an emission model $P\left(E_{t} \mid X_{t}\right)$.

Simulating HMM:

1. Generate an initial state x_{0} according to $P\left(X_{0}\right)$. Set $t \leftarrow 1$.
2. Generate a new current state x_{t} according to $P\left(X_{t} \mid x_{t-1}\right)$.
3. Generate an observation e_{t} according to $P\left(E_{t} \mid x_{t}\right)$.
4. Advance time $t \leftarrow t+1$.
5. Finish, or repeat from step 2.

Hidden Markov Model

MLE

K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary
1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_{0}, \ldots, X_{t},
the domain of all of them is the set of states $\left\{s_{1}, \ldots, s_{N}\right\}$.
- a sequence of observed variables E_{1}, \ldots, E_{t}, the domain of all of them is the set of observations $\left\{v_{1}, \ldots, v_{M}\right\}$.
- an initial distribution over hidden states $P\left(X_{0}\right)$,
- a transition model $P\left(X_{t} \mid X_{t-1}\right)$, and

■ an emission model $P\left(E_{t} \mid X_{t}\right)$.

Simulating HMM:

1. Generate an initial state x_{0} according to $P\left(X_{0}\right)$. Set $t \leftarrow 1$.
2. Generate a new current state x_{t} according to $P\left(X_{t} \mid x_{t-1}\right)$.
3. Generate an observation e_{t} according to $P\left(E_{t} \mid x_{t}\right)$.
4. Advance time $t \leftarrow t+1$.
5. Finish, or repeat from step 2.

With HMM:

- efficient algorithms exist for solving inference tasks;
- but we have no idea (so far) how to learn HMM parameters from the observation sequence, because we do not have access to the hidden states.

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.

K-means

- No optimal way of estimating the model parameters from the observation sequences.
- We can find model parameters such that the probability of observations is maximized
\longrightarrow Baum-Welch algorithm (a special case of EM).

MLE

K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.
- No optimal way of estimating the model parameters from the observation sequences.
- We can find model parameters such that the probability of observations is maximized \longrightarrow Baum-Welch algorithm (a special case of EM).

Let's use a slightly different notation to emphasize the model parameters:
■ $\pi=\left[\pi_{i}\right]=\left[P\left(X_{1}=s_{i}\right)\right] \ldots$ vector of the initial probabilities of states
■ $A=\left[a_{i, j}\right]=\left[P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right)\right] \ldots$ the matrix of transition probabilities to next state given the current state
■ $B=\left[b_{i, k}\right]=\left[P\left(E_{t}=v_{k} \mid X_{t}=s_{i}\right)\right] \ldots$ the matrix of observation probabilities given the current state

- The whole set of HMM parameters is then $\theta=(\pi, A, B)$

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.

K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary
Sur
\qquad
Let's use a slightly different notation to emphasize the model parameters:
■ $\pi=\left[\pi_{i}\right]=\left[P\left(X_{1}=s_{i}\right)\right] \ldots$ vector of the initial probabilities of states
■ $A=\left[a_{i, j}\right]=\left[P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right)\right] \ldots$ the matrix of transition probabilities to next state given the current state
■ $B=\left[b_{i, k}\right]=\left[P\left(E_{t}=v_{k} \mid X_{t}=s_{i}\right)\right] \ldots$ the matrix of observation probabilities given the current state

- The whole set of HMM parameters is then $\theta=(\pi, A, B)$

The algorithm (presented on the next slides) will

- compute the expected numbers of being in a state or taking a transition given the observations and the current model parameters $\theta=(\pi, A, B)$, and then
\square compute the new estimate of model parameters $\theta^{\prime}=\left(\pi^{\prime}, A^{\prime}, B^{\prime}\right)$,
- such that $P\left(e_{1}^{t} \mid \theta^{\prime}\right) \geq P\left(e_{1}^{t} \mid \theta\right)$.

MLE
K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

Sufficient statistics

Let's define

- the probability of transition from state s_{i} at time t to state s_{j} at time $t+1$, given the model and the observation sequence e_{1}^{t} :

$$
\begin{aligned}
\xi_{t}(i, j) & =P\left(X_{t}=s_{i}, X_{t+1}=s_{j} \mid e_{1}^{t}, \theta\right)=\frac{\alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}{P\left(e_{1}^{t} \mid \theta\right)}= \\
& =\frac{\alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}
\end{aligned}
$$

where α_{t} and β_{t} are the forward and backward messages computed by the forward-backward algorithm, and

- the probability of being in state s_{i} at time t, given the model and the observation sequence:

$$
\gamma_{t}(i)=\sum_{j=1}^{N} \xi_{t}(i, j)
$$

MLE
K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

Sufficient statistics

Let's define

- the probability of transition from state s_{i} at time t to state s_{j} at time $t+1$, given the model and the observation sequence e_{1}^{t} :

$$
\begin{aligned}
\xi_{t}(i, j) & =P\left(X_{t}=s_{i}, X_{t+1}=s_{j} \mid e_{1}^{t}, \theta\right)=\frac{\alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}{P\left(e_{1}^{t} \mid \theta\right)}= \\
& =\frac{\alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}\left(s_{i}\right) a_{i j} b_{j k} \beta_{t+1}\left(s_{j}\right)}
\end{aligned}
$$

where α_{t} and β_{t} are the forward and backward messages computed by the forward-backward algorithm, and

- the probability of being in state s_{i} at time t, given the model and the observation sequence:

$$
\gamma_{t}(i)=\sum_{j=1}^{N} \xi_{t}(i, j)
$$

Then we can interpret

- $\sum_{k=1}^{T-1} \gamma_{k}(i)$ as the expected number of transitions from state s_{i}, and
- $\sum_{k=1}^{T-1} \xi_{k}(i, j)$ as the expected number of transitions from s_{i} to s_{j}.

- HMM learning
- Sufficient statistics
- Baum-Welch

Summary \qquad

Baum-Welch algorithm

The re-estimation formulas are
$\pi_{i}^{\prime}=$ expected frequency of being in state s_{i} at time $(t=1)=$ $=\gamma_{1}(i)$
$a_{i j}^{\prime}=\frac{\text { expected number of transitions from } s_{i} \text { to } s_{j}}{\text { expected number of transitions from } s_{i}}=$
$=\frac{\sum_{k=1}^{T-1} \xi_{k}(i, j)}{\sum_{k=1}^{T-1} \gamma_{k}(i)}$
$b_{j k}^{\prime}=\frac{\text { expected number of times being in state } s_{j} \text { and observing } v_{k}}{\text { expected number of times being in state } s_{j}}=$
$=\frac{\sum_{t=1}^{T} I\left(e_{t}=v_{k}\right) \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$

MLE
K-means
EM for Mixtures
EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

Baum-Welch algorithm

The re-estimation formulas are
$\pi_{i}^{\prime}=$ expected frequency of being in state s_{i} at time $(t=1)=$ $=\gamma_{1}(i)$
$a_{i j}^{\prime}=\frac{\text { expected number of transitions from } s_{i} \text { to } s_{j}}{\text { expected number of transitions from } s_{i}}=$
$=\frac{\sum_{k=1}^{T-1} \xi_{k}(i, j)}{\sum_{k=1}^{T-1} \gamma_{k}(i)}$
$b_{j k}^{\prime}=\frac{\text { expected number of times being in state } s_{j} \text { and observing } v_{k}}{\text { expected number of times being in state } s_{j}}=$

$$
=\frac{\sum_{t=1}^{T} I\left(e_{t}=v_{k}\right) \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}
$$

As with other EM variants, with the old model parameters $\theta=(\pi, A, B)$ and new, re-estimated parameters $\theta^{\prime}=\left(\pi^{\prime}, A^{\prime}, B^{\prime}\right)$, the new model is at least as likely as the old one:

$$
P\left(e_{1}^{t} \mid \theta^{\prime}\right) \geq P\left(e_{1}^{t} \mid \theta\right)
$$

The above equations are used iteratively with θ^{\prime} taking place of θ.

Summary

Competencies

After this lecture, a student shall be able to ...

- define and explain the task of maximum likelihood estimation;

■ explain why we can maximize log-likelihood instead of likelihood, describe the advantages;

- describe the issues we face when trying to maximize the likelihood in case of incomplete data;
- explain the general high-level principle of Expectation-Maximization algorithm;
- describe the pros and cons of the EM algorithm, especially what happens with the likelihood in one EM iteration;
- describe the EM algorithm for mixture distributions, including the notion of responsibilities;
- explain the Baum-Welch algorithm, i.e. the application of EM to HMM; what parameters are learned and how (conceptually).

