

Faculty of Electrical Engineering Department of Cybernetics

Expectation-Maximization Algorithm.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

Maximum likelihood estimation

Likelihood maximization

Let's have a random variable *X* with probability distribution $p_X(x|\theta)$.

This emphasizes that the distribution is parameterized by $\theta \in \Theta$, i.e. the distribution comes from certain parametric family. Θ is the space of possible parameter values.

Likelihood maximization

Let's have a random variable *X* with probability distribution $p_X(x|\theta)$.

This emphasizes that the distribution is parameterized by $\theta \in \Theta$, i.e. the distribution comes from certain parametric family. Θ is the space of possible parameter values.

Learning task: assume the parameters θ are unknown, but we have an i.i.d. training dataset $T = \{x_1, \ldots, x_n\}$ which can be used to estimate the unknown parameters.

The probability of observing dataset *T* given some parameter values θ is

$$p(X|\theta) = \prod_{j=1}^{n} p_X(x_j|\theta) \stackrel{\text{def}}{=} L(\theta;T).$$

- This probability can be interpretted as a degree with which the model parameters θ conform to the data *T*. It is thus called the **likelihood of parameters** θ w.r.t. data *T*.
- The optimal θ^* is obtained by maximizing the likelihood

$$\theta^* = \arg \max_{\theta \in \Theta} L(\theta; T) = \arg \max_{\theta \in \Theta} \prod_{j=1}^n p_X(x_j | \theta)$$

Since $\arg \max_x f(x) = \arg \max_x \log f(x)$, we often maximize the **log-likelihood** $l(\theta; T) = \log L(\theta; T)$

$$\theta^* = \arg \max_{\theta \in \Theta} l(\theta; T) = \arg \max_{\theta \in \Theta} \log \prod_{j=1}^n p_X(x_j | \theta) = \arg \max_{\theta \in \Theta} \sum_{j=1}^n \log p_X(x_j | \theta),$$

which is often easier than maximization of *L*.

Incomplete data

Assume we cannot observe the objects completely:

- **r**.v. *X* describes the observable part, r.v. *K* describes the unobservable, hidden part.
- We assume there is an underlying distribution $p_{XK}(x, k|\theta)$ of objects (x, k).

MLE

- Likelihood
- Incomplete data
- General EM

K-means

EM for Mixtures

EM for HMM

Incomplete data

Assume we cannot observe the objects completely:

- **r**.v. *X* describes the observable part, r.v. *K* describes the unobservable, hidden part.
- We assume there is an underlying distribution $p_{XK}(x, k|\theta)$ of objects (x, k).

Learning task: we want to estimate the model parameters θ , but the training set contains i.i.d. samples for the observable part only, i.e. $T_X = \{x_1, \ldots, x_n\}$. (Still, there also exists a hidden, unobservable dataset $T_K = \{k_1, \ldots, k_n\}$.)

- If we had a complete data (T_X, T_K) , we could directly optimize $l(\theta; T_X, T_K) = \log p(T_X, T_K | \theta)$. But we do not have access to T_K .
- If we would like to maximize

$$l(\theta; T_X) = \log p(T_X|\theta) = \log \sum_{T_K} p(T_X, T_K|\theta),$$

the summation inside log() results in complicated expressions, or we would have to use numerical methods.

- Our state of knowledge about T_K is given by $p(T_K | T_X, \theta)$.
- The complete-data likelihood $L(\theta; T_X, T_K) = P(T_X, T_K|\theta)$ is a random variable since T_K is unknown, random, but governed by the underlying distribution.
- Instead of optimizing it directly, consider its expected value under the posterior distribution over latent variables (E-step), and then maximize this expectation (M-step).

MLE

- Likelihood
- Incomplete data
- General EM
- K-means
- EM for Mixtures

EM for HMM

Expectation-Maximization algorithm

EM algorithm:

- A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or missing values).
 - Hidden variables: mixture models, Hidden Markov models, ...
 - It is a family of algorithms, or a recipe to derive a ML estimation algorithm for various kinds of probabilistic models.

MLE

- Likelihood
- Incomplete data
- General EM

K-means

EM for Mixtures

EM for HMM

MLE

K-means

Likelihood

EM for Mixtures

EM for HMM

Summary

Incomplete dataGeneral EM

Expectation-Maximization algorithm

EM algorithm:

- A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or missing values).
- Hidden variables: mixture models, Hidden Markov models, ...
- It is a family of algorithms, or a recipe to derive a ML estimation algorithm for various kinds of probabilistic models.
- 1. Pretend that you know θ . (Use some initial guess $\theta^{(0)}$.) Set iteration counter i = 1.
 - 2. **E-step:** Use the current parameter values $\theta^{(i-1)}$ to find the posterior distribution of the latent variables $P(T_K | T_X, \theta^{(i-1)})$. Use this posterior distribution to find the expectation of the complete-data log-likelihood evaluated for some general parameter values θ :

$$Q(\theta, \theta^{(i-1)}) = \sum_{T_K} p(T_K | T_X, \theta^{(i-1)}) \log p(T_X, T_K | \theta).$$

3. **M-step:** maximize the expectation, i.e. compute an updated estimate of θ as

$$\theta^{(i)} = \arg \max_{\theta \in \Theta} Q(\theta, \theta^{(i-1)}).$$

4. Check for convergence: finish, or advance the iteration counter $i \iff i + 1$, and repeat from 2.

EM algorithm features

Pros:

- Among the possible optimization methods, EM exploits the structure of the model.
 - For $p_{X|K}$ from exponential family:
 - M-step can be done analytically and there is a unique optimizer.
 - The expected value in the E-step can be expressed as a function of θ without solving it explicitly for each θ .
 - $p_X(T_X|\theta^{(i+1)}) \ge p_X(T_X|\theta^{(i)})$, i.e. the process finds a local optimum.
 - Works well in practice.

MLE

• General EM

K-means

EM for Mixtures

EM for HMM

EM algorithm features

Pros:

- Among the possible optimization methods, EM exploits the structure of the model.
- For $p_{X|K}$ from exponential family:
 - M-step can be done analytically and there is a unique optimizer.
 - The expected value in the E-step can be expressed as a function of θ without solving it explicitly for each θ .
- $p_X(T_X|\theta^{(i+1)}) \ge p_X(T_X|\theta^{(i)})$, i.e. the process finds a local optimum. Works well in practice.

Cons:

- Not guaranteed to get globally optimal estimate.
- MLE can overfit; use MAP instead (EM can be used as well).
- Convergence may be slow.

MLE

K-means

EM for Mixtures

LikelihoodIncomplete data

EM for HMM

K-means

K-means algorithm

Clustering is one of the tasks of *unsupervised learning*.

MLE

K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

K-means algorithm

Clustering is one of the tasks of *unsupervised learning*.

MLE

- K-means
- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

- **K-means** algorithm for clustering [Mac67]:
- *K* is the apriori given number of clusters.
 - Algorithm:
 - 1. Choose *K* centroids μ_k (in almost any way, but every cluster should have at least one example.)
 - 2. For all *x*, assign *x* to its closest μ_k .
 - 3. Compute the new position of centroids μ_k based on all examples $x_i, i \in I_k$, in cluster k.
 - 4. If the positions of centroids changed, repeat from 2.

K-means algorithm

Clustering is one of the tasks of *unsupervised learning*.

MLE

- K-means
- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

Summary

- K-means algorithm for clustering [Mac67]:
- *K* is the apriori given number of clusters.
 - Algorithm:
 - 1. Choose *K* centroids μ_k (in almost any way, but every cluster should have at least one example.)
 - 2. For all *x*, assign *x* to its closest μ_k .
 - 3. Compute the new position of centroids μ_k based on all examples $x_i, i \in I_k$, in cluster k.
 - 4. If the positions of centroids changed, repeat from 2.

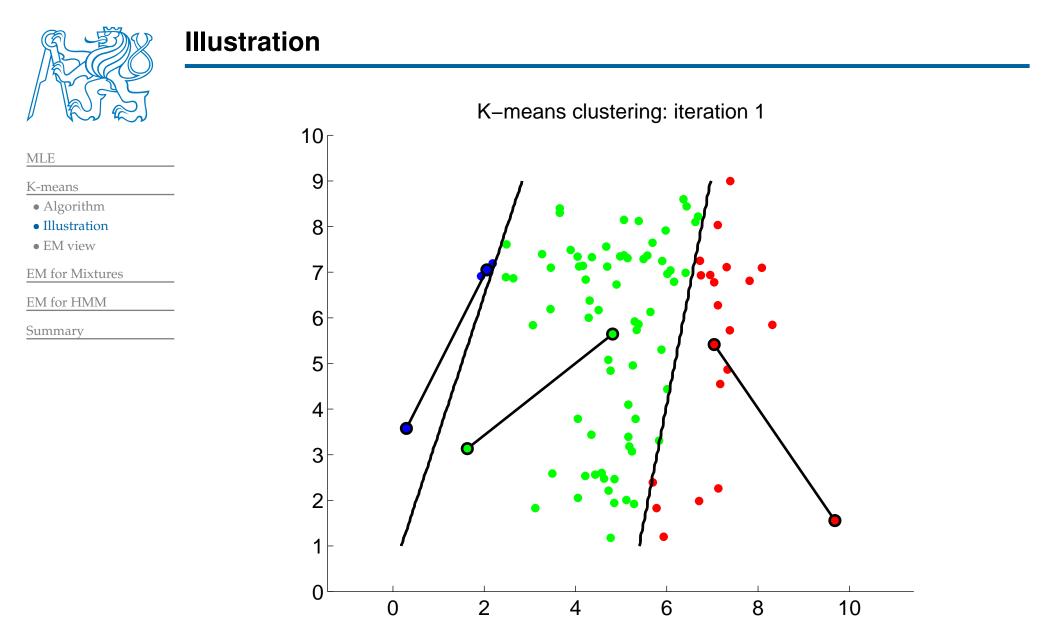
Algorithm features:

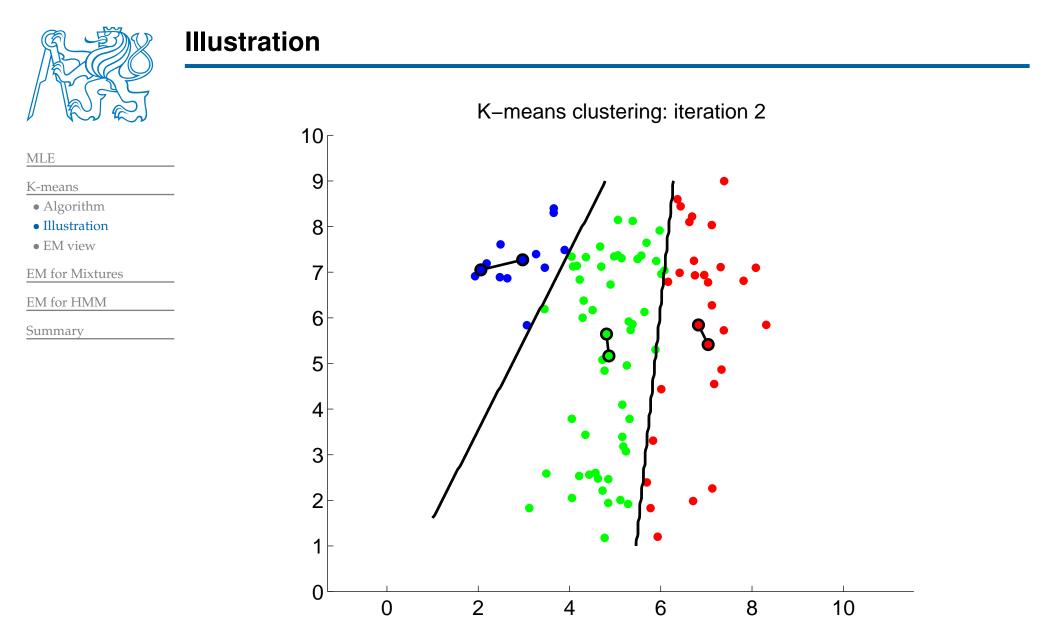
Algorithm minimizes the function (intracluster variance):

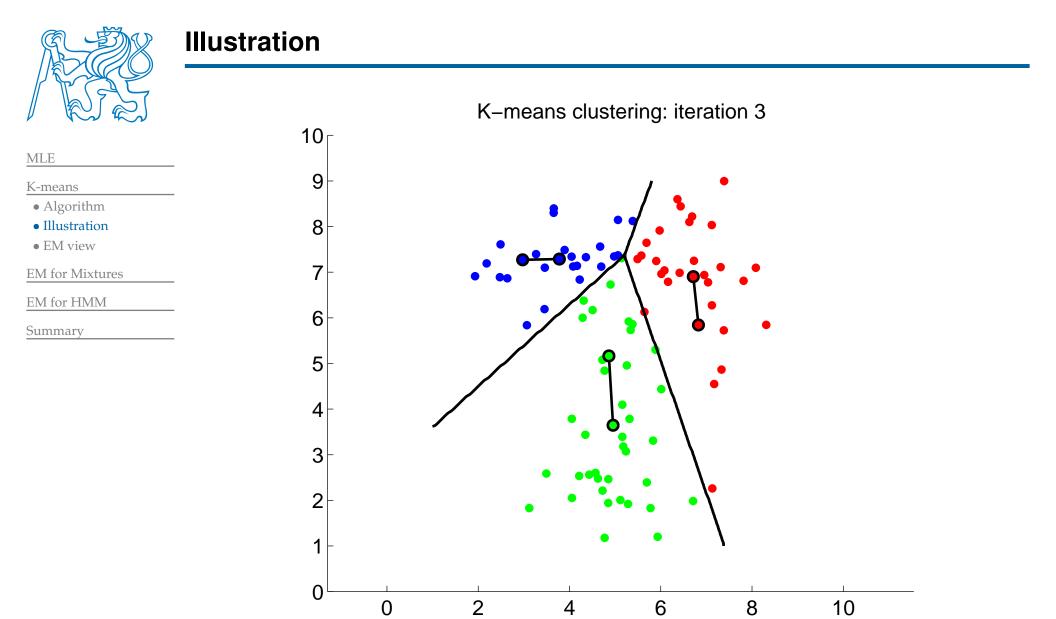
$$J = \sum_{j=1}^{k} \sum_{i=1}^{n_j} |x_{i,j} - c_j|^2$$
(1)

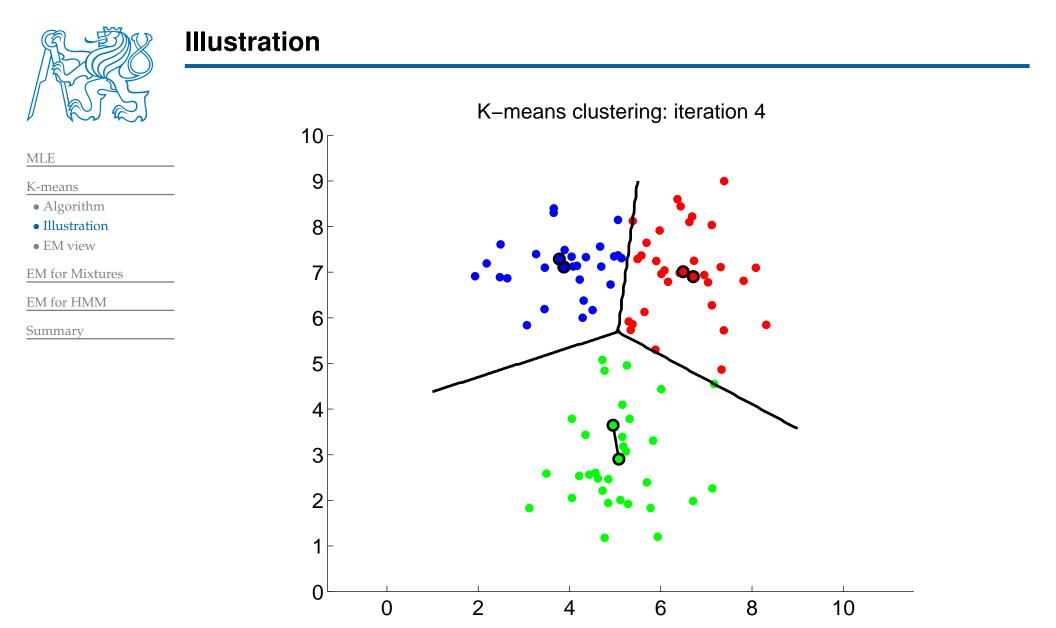
Algorithm is fast, but each time it can converge to a different local optimum of *J*.

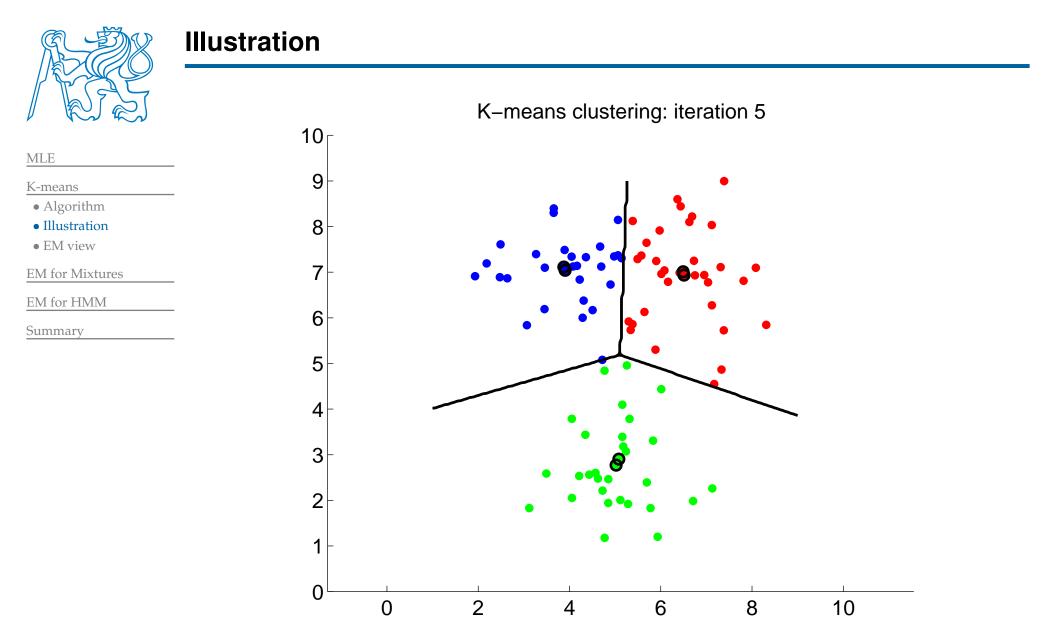
[DLR77] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society*, 39(1):1–38, 1977.

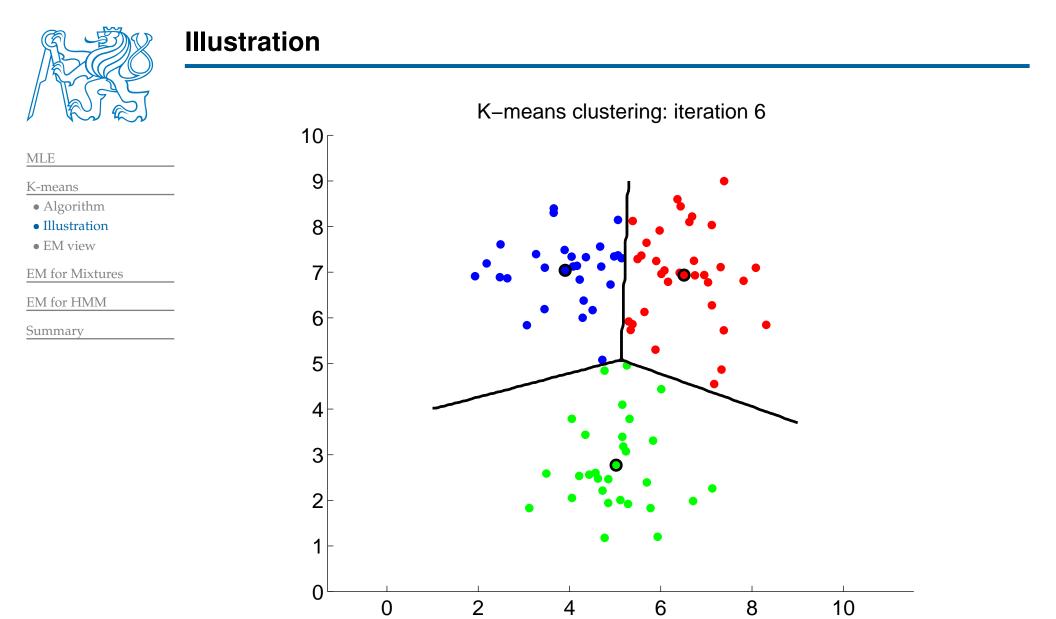












K-means: EM view

Assume:

- An object can be in one of the |K| states with equal probabilities.
 - All $p_{X|K}(x|k)$ are isotropic Gaussians: $p_{X|K}(x|k) = \mathcal{N}(x|\mu_k, \sigma \mathbf{I})$.

MLE K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

K-means: EM view

Assume:

- An object can be in one of the |K| states with equal probabilities.
- All $p_{X|K}(x|k)$ are isotropic Gaussians: $p_{X|K}(x|k) = \mathcal{N}(x|\mu_k, \sigma \mathbf{I})$.

Recognition (Part of E-step):

- The task is to decide the state *k* for each *x*, assuming all μ_k are known.
 - The Bayesian strategy (minimizes the probability of error) chooses the cluster which center is the closest to observation *x*:

 $q^*(\mathbf{x}) = \arg\min_{k \in K} (\mathbf{x} - \mu_k)^2$

- If $\mu_k, k \in K$, are not known, it is a parametrized strategy $q_{\Theta}(\mathbf{x})$, where $\Theta = (\mu_k)_{k=1}^K$.
 - Deciding state *k* for each *x* assuming known μ_k is actually the computation of a degenerate probability distribution $p(T_K|T_X, \theta^{(i-1)})$, i.e. the first part of E-step.

MLE

K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

K-means: EM view

Assume:

- An object can be in one of the |K| states with equal probabilities.
- All $p_{X|K}(x|k)$ are isotropic Gaussians: $p_{X|K}(x|k) = \mathcal{N}(x|\mu_k, \sigma \mathbf{I})$.

Recognition (Part of E-step):

- The task is to decide the state *k* for each *x*, assuming all μ_k are known.
 - The Bayesian strategy (minimizes the probability of error) chooses the cluster which center is the closest to observation *x*:

 $q^*(\mathbf{x}) = \arg\min_{k\in K} (\mathbf{x} - \mu_k)^2$

If μ_k, k ∈ K, are not known, it is a parametrized strategy q_Θ(x), where Θ = (μ_k)^K_{k=1}.
 Deciding state k for each x assuming known μ_k is actually the computation of a degenerate probability distribution p(T_K|T_X, θ⁽ⁱ⁻¹⁾), i.e. the first part of E-step.

Learning (The rest of E-step and M-step):

Find the maximum-likelihood estimates of μ_k based on known $(x_1, k_1), \ldots, (x_l, k_l)$:

$$\mu_k^* = rac{1}{|I_k|}\sum_{i\in I_k} x_i$$
,

where I_k is a set of indices of training examples (currently) belonging to state k.

This completes the E-step and implements the M-step.

MLE

K-means

- Algorithm
- Illustration
- EM view

EM for Mixtures

EM for HMM

EM for Mixture Models

General mixture distributions

Assume the data are samples from a distribution factorized as

MLE

K-means

EM for Mixtures

• General mixture

• EM for Mixtures

• GMM

• EM for GMM

EM for HMM

Summary

$$p_{XK}(x,k) = p_K(k)p_{X|K}(x|k)$$
, i.e.
 $p_X(x) = \sum_{k \in K} p_K(k)p_{X|K}(x|k)$

and that the distribution is known (except the distribution parameters).

General mixture distributions

Assume the data are samples from a distribution factorized as

$$p_{XK}(x,k) = p_K(k)p_{X|K}(x|k), \text{ i.e.}$$
$$p_X(x) = \sum_{k \in K} p_K(k)p_{X|K}(x|k)$$

MLE

K-means

EM for Mixtures

• General mixture

• EM for Mixtures

• GMM

• EM for GMM

Recognition (Part of E-step):

Let's define the result of recognition not as a single decision for some state *k* (as done in K-means), but rather as

a set of posterior probabilities (sometimes called *responsibilities*) for all k given x_i

$$\gamma_k(x_i) = p_{K|X}(k|x_i, \theta^{(t)}) = \frac{p_{X|K}(x_i|k)p_K(k)}{\sum_{k \in K} p_{X|K}(x_i|k)p_K(k)}$$

and that the distribution is known (except the distribution parameters).

that an object was in state k when observation x_i was made.

The $\gamma_k(x)$ functions can be viewed as discriminant functions.

EM for HMM

General mixture distributions (cont.)

Learning (The rest of E-step and M-step):

- Given the training multiset $T = (x_i, k_i)_{i=1}^n$ (or the respective $\gamma_k(x_i)$ instead of k_i),
- assume $\gamma_k(x)$ is known, $p_K(k)$ are not known, and $p_{X|K}(x|k)$ are known except the parameter values Θ_k , i.e. we shall write $p_{X|K}(x|k,\Theta_k)$.

Let the object *model m* be a "set" of all unknown parameters $m = (p_K(k), \Theta_k)_{k \in K}$.

- MLE
- K-means
- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM

MLE

K-means

• GMM

Summary

EM for Mixtures

• EM for GMM

EM for HMM

General mixture EM for Mixtures

General mixture distributions (cont.)

Learning (The rest of E-step and M-step):

- Given the training multiset $T = (x_i, k_i)_{i=1}^n$ (or the respective $\gamma_k(x_i)$ instead of k_i),
- assume $\gamma_k(x)$ is known, $p_K(k)$ are not known, and $p_{X|K}(x|k)$ are known except the parameter values Θ_k , i.e. we shall write $p_{X|K}(x|k, \Theta_k)$.
- Let the object *model m* be a "set" of all unknown parameters $m = (p_K(k), \Theta_k)_{k \in K}$.
- The log-likelihood of model m if we assume k_i is known:

$$\log L(m) = \log \prod_{i=1}^{n} p_{XK}(x_i, k_i) = \sum_{i=1}^{n} \log p_K(k_i) + \sum_{i=1}^{n} \log p_{X|K}(x_i|k_i, \Theta_{k_i})$$

The log-likelihood of model *m* if we assume a distribution (γ) over *k* is known:

$$\log L(m) = \sum_{i=1}^{n} \sum_{k \in K} \gamma_k(x_i) \log p_K(k) + \sum_{i=1}^{n} \sum_{k \in K} \gamma_k(x_i) \log p_{X|K}(x_i|k,\Theta_k)$$

• We search for the optimal model using maximum likelihood:

$$m^* = (p_K^*(k), \Theta_k^*) = \arg\max_m \log L(m)$$

■ i.e. we compute

$$p_{K}^{*}(k) = \frac{1}{n} \sum_{i=1}^{n} \gamma_{k}(x_{i})$$
 and solve k independent tasks
 $\Theta_{k}^{*} = \arg \max_{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}(x_{i}) \log p_{X|K}(x_{i}|k,\Theta_{k}).$

EM for mixture distribution

Unsupervised learning algorithm [DLR77] for general mixture distributions:

- 1. Initialize the model parameters $m = ((p_K(k), \Theta_k) \forall k)$.
- 2. Perform the **recognition** task, i.e. assuming *m* is known, compute

$$\gamma_k(x_i) = \hat{p}_{K|X}(k|x_i) = \frac{p_K(k)p_{X|K}(x_i|k,\Theta_k)}{\sum_{j\in K}p_K(j)p_{X|K}(x_i|j,\Theta_j)}.$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters $p_K(k)$ and Θ_k for all k:

$$p_{K}(k) = \frac{1}{n} \sum_{i=1}^{n} \gamma_{k}(x_{i})$$
$$\Theta_{k} = \arg \max_{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}(x_{i}) \log p_{X|K}(x_{i}|k,\Theta_{k})$$

4. Iterate 2 and 3 until the model stabilizes.

MLE

K-means

EM for Mixtures

• General mixture

• EM for Mixtures

• GMM

• EM for GMM

EM for HMM

EM for mixture distribution

Unsupervised learning algorithm [DLR77] for general mixture distributions:

- 1. Initialize the model parameters $m = ((p_K(k), \Theta_k) \forall k)$.
- 2. Perform the **recognition** task, i.e. assuming *m* is known, compute

$$\gamma_k(x_i) = \hat{p}_{K|X}(k|x_i) = \frac{p_K(k)p_{X|K}(x_i|k,\Theta_k)}{\sum_{j\in K} p_K(j)p_{X|K}(x_i|j,\Theta_j)}.$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters $p_K(k)$ and Θ_k for all k:

$$p_{K}(k) = \frac{1}{n} \sum_{i=1}^{n} \gamma_{k}(x_{i})$$
$$\Theta_{k} = \arg \max_{\Theta_{k}} \sum_{i=1}^{n} \gamma_{k}(x_{i}) \log p_{X|K}(x_{i}|k,\Theta_{k})$$

4. Iterate 2 and 3 until the model stabilizes.

Features:

- The algorithm does not specify how to update Θ_k in step 3, it depends on the chosen form of $p_{X|K}$.
- The model created in iteration *t* is always at least as good as the model from iteration t 1, i.e. L(m) = p(T|m) increases.

MLE

EM for Mixtures

• General mixture

• EM for Mixtures

• GMM

• EM for GMM

EM for HMM

Special Case: Gaussian Mixture Model

Each *k*th component is a Gaussian distribution:

$$\mathcal{N}(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma_k|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\}$$

- Gaussian Mixture Model (GMM):

$$p(x) = \sum_{k=1}^{K} p_K(k) p_{X|K}(x|k, \Theta_k) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

assuming
$$\sum_{k=1}^{K} \alpha_k = 1$$
 and $0 \le \alpha_k \le 1$

x 10⁻³ 5 0 50 -40 -30 40 -20 30 -10 20 0 10 10 20 0 30 -10 40 -20

- General mixture
- EM for Mixtures
- GMM
- EM for GMM

EM for HMM

EM for GMM

- 1. Initialize the model parameters $m = ((p_K(k), \mu_k, \Sigma_k) \forall k)$.
- 2. Perform the **recognition** task as in the general case, i.e. assuming *m* is known, compute

$$\gamma_k(x_i) = \hat{p}_{K|X}(k|x_i) = \frac{p_K(k)p_{X|K}(x_i|k,\Theta_k)}{\sum_{j \in K} p_K(j)p_{X|K}(x_i|j,\Theta_j)} = \frac{\alpha_k \mathcal{N}(x_i|\mu_k,\Sigma_k)}{\sum_{j \in K} \alpha_j \mathcal{N}(x_i|\mu_j,\Sigma_j)}$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters α_k , μ_k and Σ_k for all *k*:

• EM for GMM

EM for Mixtures • General mixture • EM for Mixtures

Summary

MLE

K-means

• GMM

$$\alpha_k = p_K(k) = \frac{1}{n} \sum_{i=1}^n \gamma_k(x_i)$$
$$\mu_k = \frac{\sum_{i=1}^n \gamma_k(x_i) x_i}{\sum_{i=1}^n \gamma_k(x_i)}$$
$$\Sigma_k = \frac{\sum_{i=1}^n \gamma_k(x_i) (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_{i=1}^n \gamma_k(x_i)}$$

4. Iterate 2 and 3 until the model stabilizes.

EM for GMM

- 1. Initialize the model parameters $m = ((p_K(k), \mu_k, \Sigma_k) \forall k)$.
- 2. Perform the **recognition** task as in the general case, i.e. assuming *m* is known, compute

$$\gamma_k(x_i) = \hat{p}_{K|X}(k|x_i) = \frac{p_K(k)p_{X|K}(x_i|k,\Theta_k)}{\sum_{j \in K} p_K(j)p_{X|K}(x_i|j,\Theta_j)} = \frac{\alpha_k \mathcal{N}(x_i|\mu_k,\Sigma_k)}{\sum_{j \in K} \alpha_j \mathcal{N}(x_i|\mu_j,\Sigma_j)}$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters α_k , μ_k and Σ_k for all *k*:

• EM for GMM

EM for Mixtures • General mixture • EM for Mixtures

Summary

MLE

K-means

• GMM

$$\alpha_k = p_K(k) = \frac{1}{n} \sum_{i=1}^n \gamma_k(x_i)$$

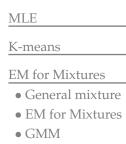
$$\sum_{i=1}^n \gamma_k(x_i) x_i$$

$$\mu_k = \frac{\sum_{i=1}^n \gamma_k(x_i) x_i}{\sum_{i=1}^n \gamma_k(x_i)}$$
$$\Sigma_k = \frac{\sum_{i=1}^n \gamma_k(x_i) (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_{i=1}^n \gamma_k(x_i)}$$

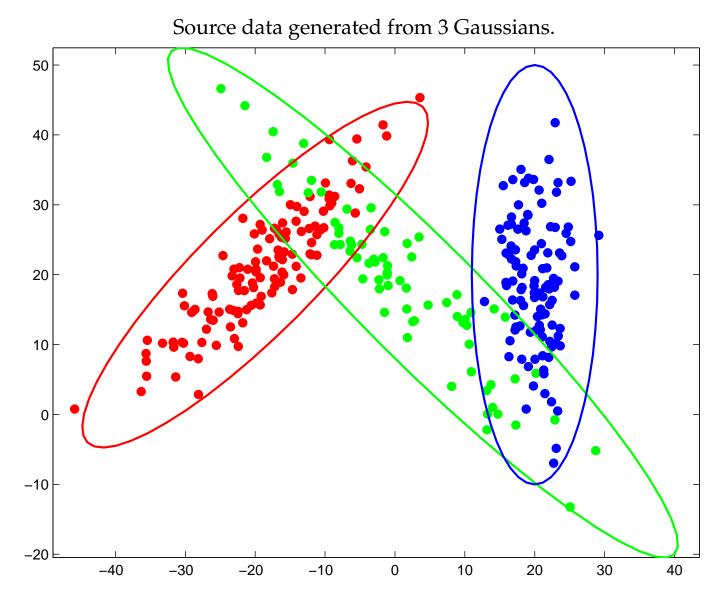
4. Iterate 2 and 3 until the model stabilizes.

Remarks:

- Each data point belongs to all components to a certain degree $\gamma_k(x_i)$.
- The eq. for μ_k is just a weighted average of x_i s.
- The eq. for Σ_k is just a weighted covariance matrix.



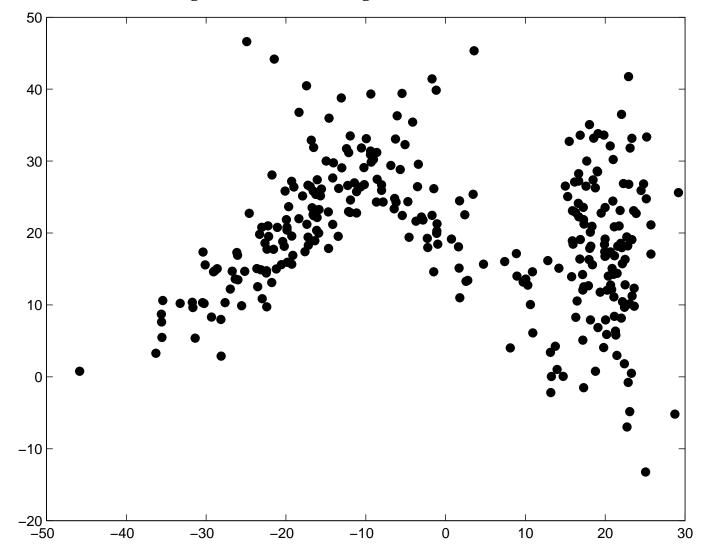
• EM for GMM



Example: Input to EM algorithm

The data were given to the EM algorithm as an unlabeled dataset.



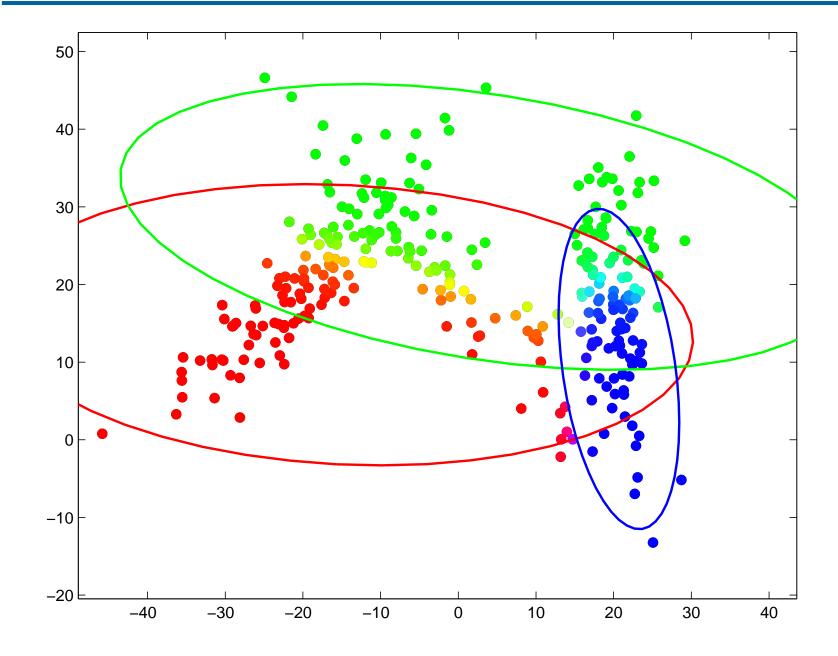


MLE

K-means

- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

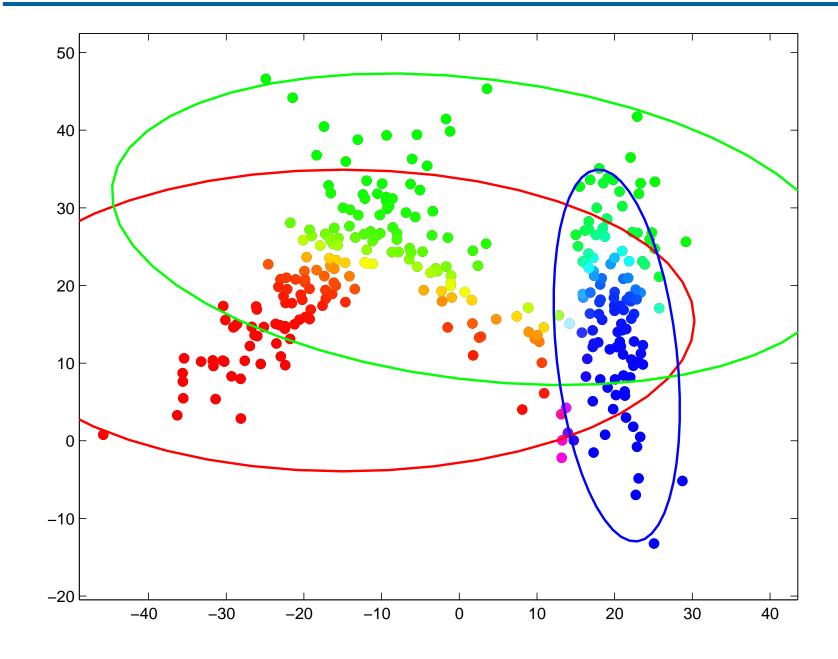
EM for HMM



K-means

- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

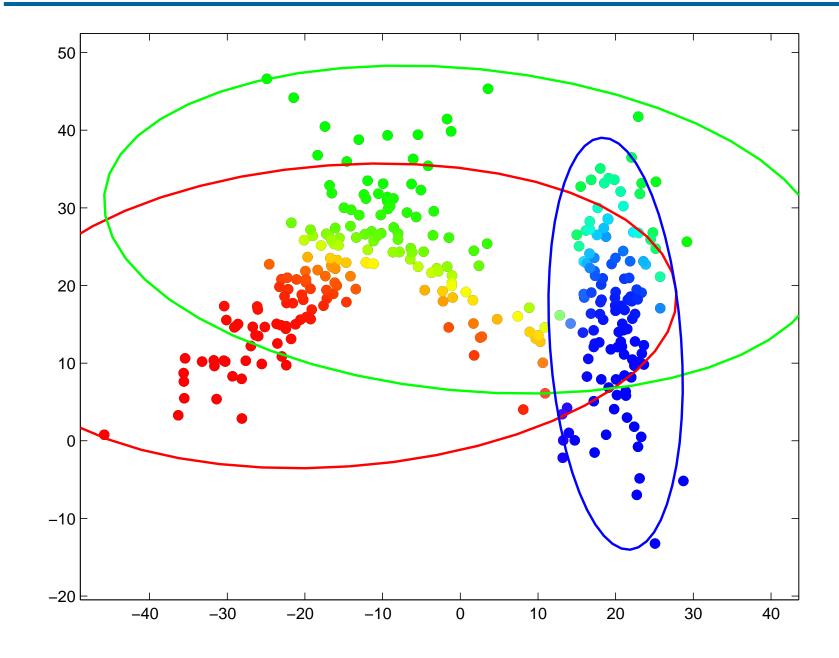
EM for HMM



K-means

- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

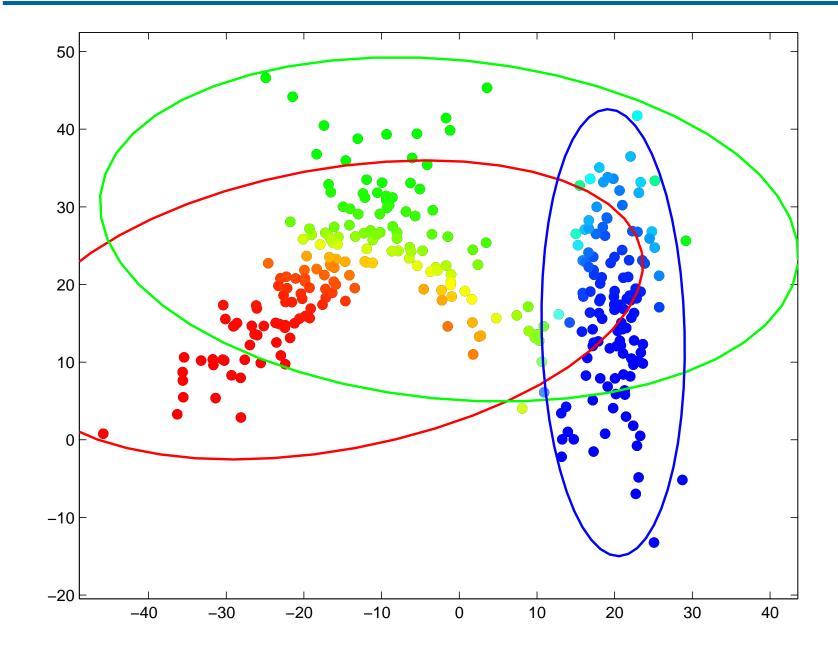
EM for HMM



K-means

- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

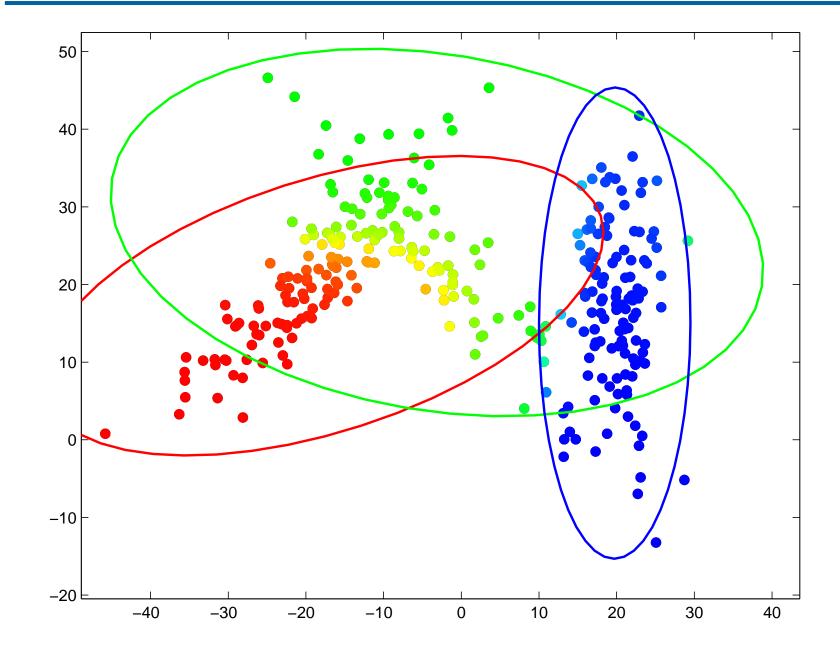
EM for HMM



K-means

- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM

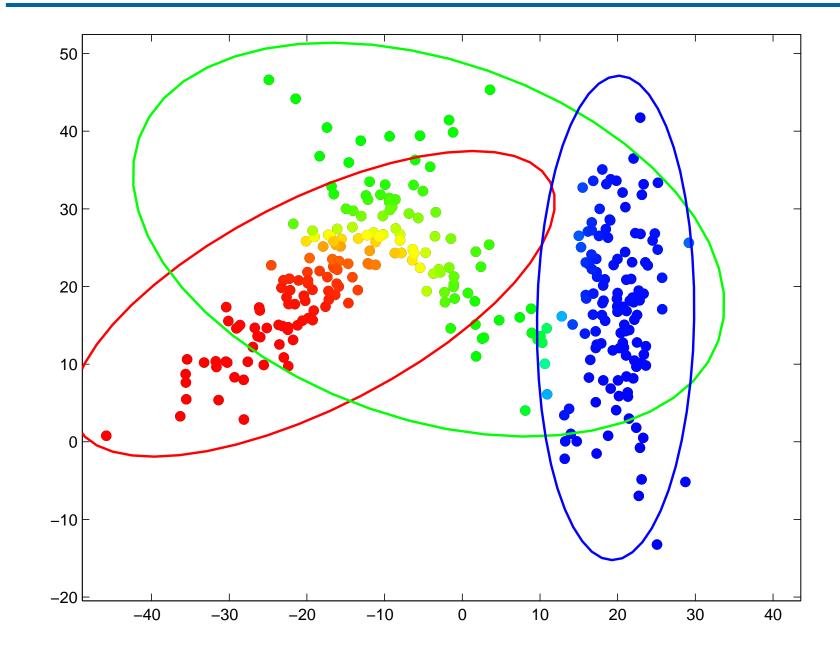
EM for HMM



MLE

K-means

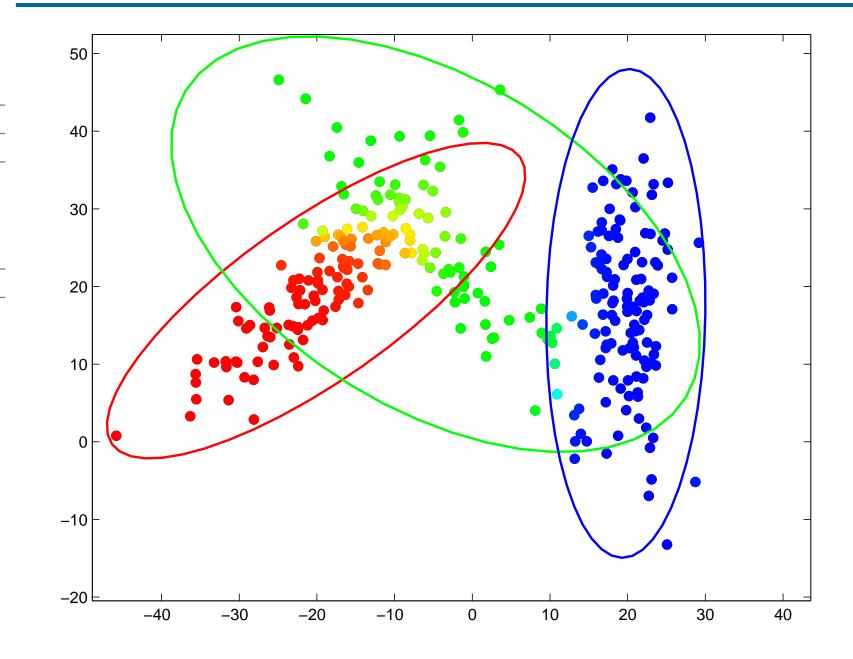
- EM for Mixtures
- General mixture
- EM for Mixtures
- GMM
- EM for GMM
- EM for HMM



MLE K-means EM for Mixtures • General mixture • EM for Mixtures

- GMM
- EM for GMM

EM for HMM



MLE

K-means

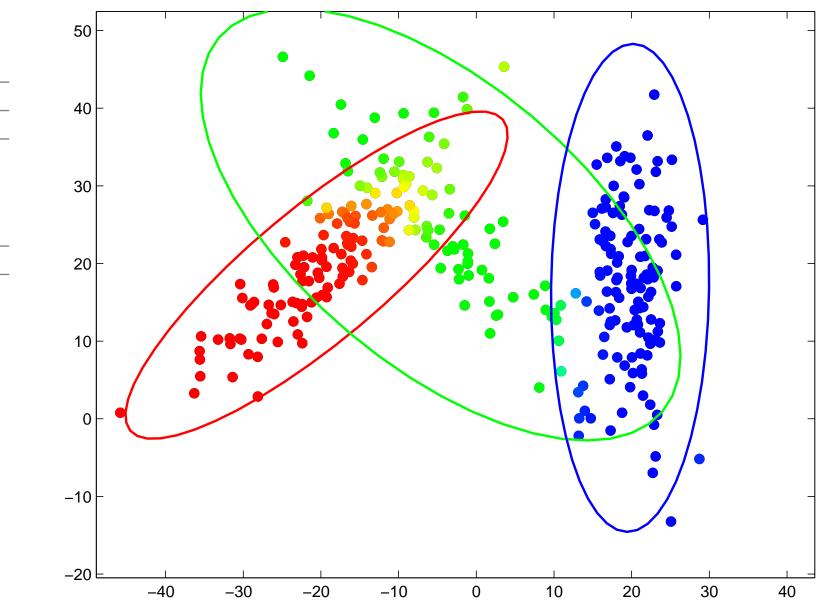
• GMM

Summary

EM for Mixtures • General mixture • EM for Mixtures

• EM for GMM

EM for HMM



MLE

K-means

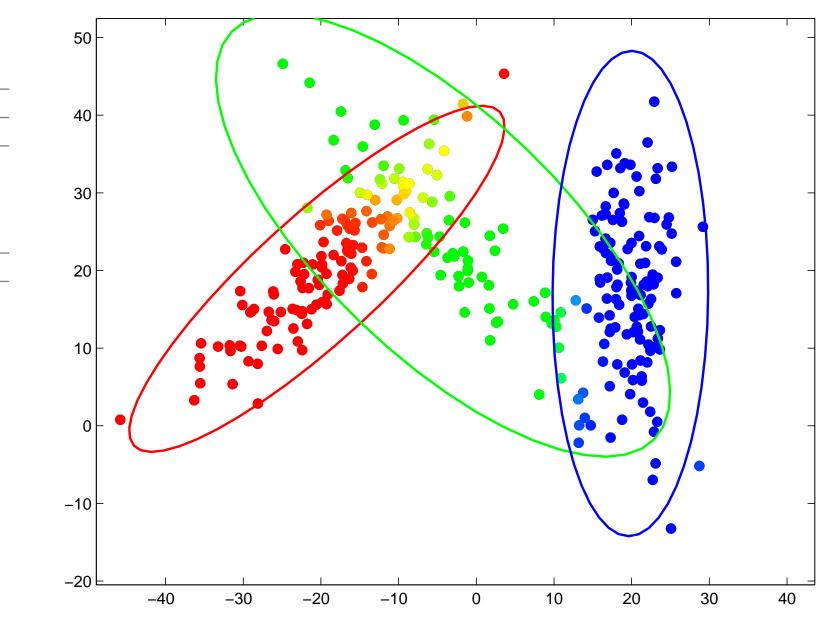
• GMM

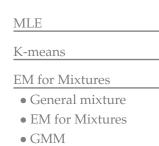
Summary

EM for Mixtures • General mixture • EM for Mixtures

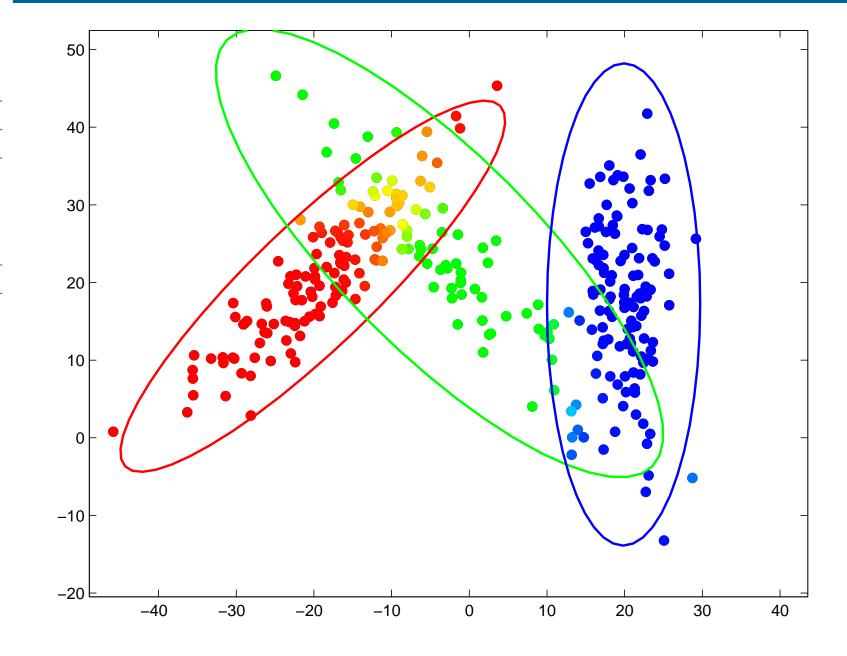
• EM for GMM

EM for HMM





EM for HMM



MLE

K-means

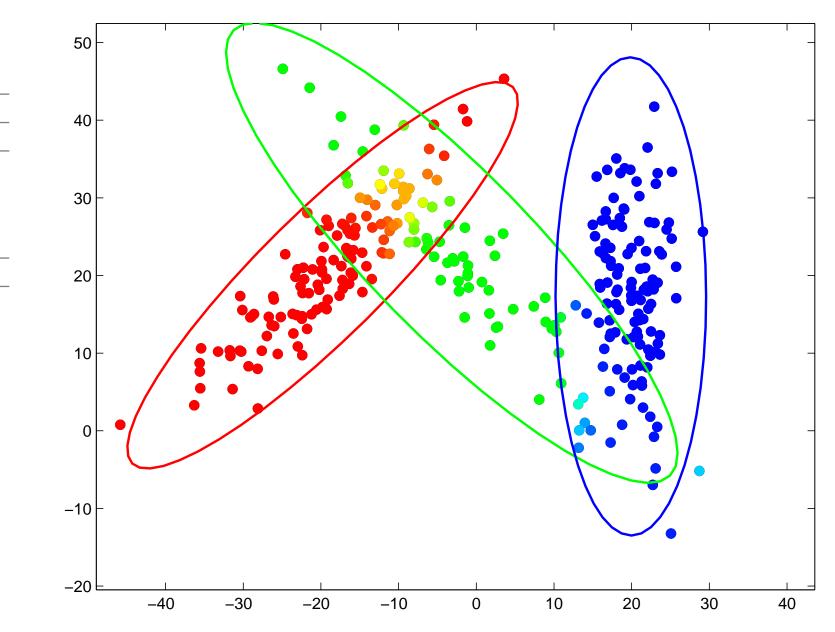
• GMM

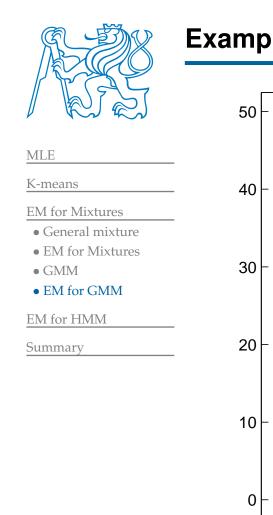
Summary

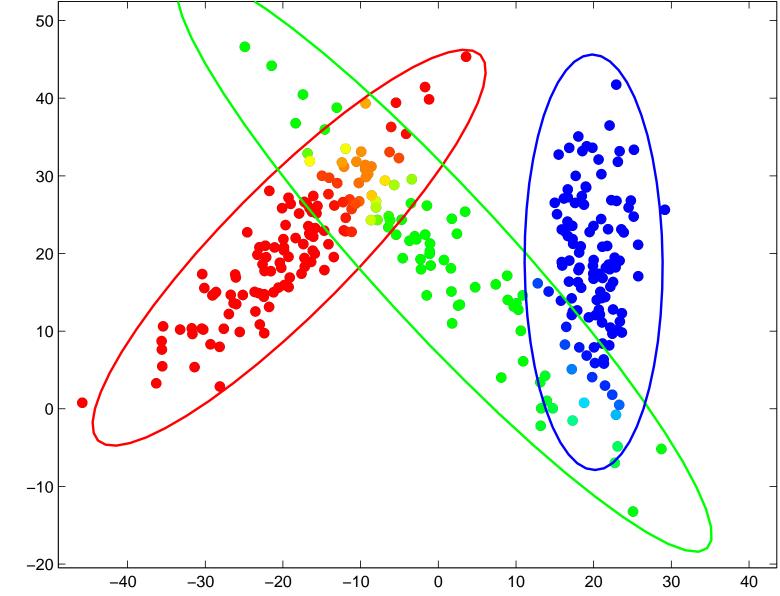
EM for Mixtures • General mixture • EM for Mixtures

• EM for GMM

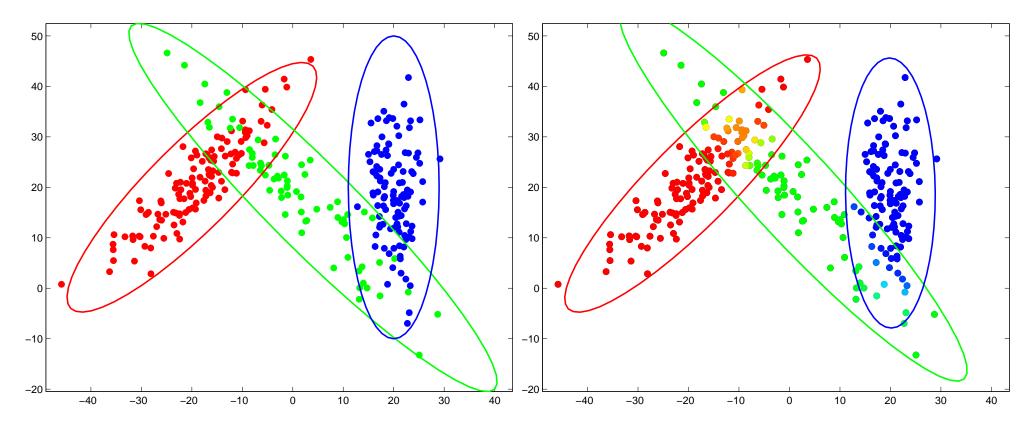
EM for HMM







Example: Ground Truth and EM Estimate



The ground truth (left) and the EM estimate (right) are very close because

- we have enough data,
- we know the right number of components, and
- we were lucky that EM converged to the right local optimum of the likelihood function.

Baum-Welch Algorithm:

EM for HMM

Hidden Markov Model

MLE K-means EM for Mixtures EM for HMM • HMM • HMM learning • Sufficient statistics • Baum-Welch

Summary

1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_0, \ldots, X_t , the domain of all of them is the set of states $\{s_1, \ldots, s_N\}$.
- a sequence of observed variables E_1, \ldots, E_t ,
 - the domain of all of them is the set of observations $\{v_1, \ldots, v_M\}$.
 - an initial distribution over hidden states $P(X_0)$,
- a transition model $P(X_t|X_{t-1})$, and
 - an emission model $P(E_t|X_t)$.

Hidden Markov Model

MLE K-means

EM for Mixtures

EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_0, \ldots, X_t , the domain of all of them is the set of states $\{s_1, \ldots, s_N\}$.
- a sequence of observed variables E_1, \ldots, E_t ,
 - the domain of all of them is the set of observations $\{v_1, \ldots, v_M\}$.
 - an initial distribution over hidden states $P(X_0)$,
- a transition model $P(X_t|X_{t-1})$, and
 - an emission model $P(E_t|X_t)$.

Simulating HMM:

- 1. Generate an initial state x_0 according to $P(X_0)$. Set $t \leftarrow 1$.
- 2. Generate a new current state x_t according to $P(X_t|x_{t-1})$.
- 3. Generate an observation e_t according to $P(E_t|x_t)$.
- 4. Advance time $t \leftarrow t + 1$.
- 5. Finish, or repeat from step 2.

Hidden Markov Model

MLE K-means

EM for Mixtures

EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Summary

1st order HMM is a generative probabilistic model formed by

- a sequence of hidden variables X_0, \ldots, X_t , the domain of all of them is the set of states $\{s_1, \ldots, s_N\}$.
- a sequence of observed variables E_1, \ldots, E_t ,
 - the domain of all of them is the set of observations $\{v_1, \ldots, v_M\}$.
 - an initial distribution over hidden states $P(X_0)$,
- a transition model $P(X_t|X_{t-1})$, and
 - an emission model $P(E_t|X_t)$.

Simulating HMM:

- 1. Generate an initial state x_0 according to $P(X_0)$. Set $t \leftarrow 1$.
- 2. Generate a new current state x_t according to $P(X_t|x_{t-1})$.
- 3. Generate an observation e_t according to $P(E_t|x_t)$.
- 4. Advance time $t \leftarrow t + 1$.
- 5. Finish, or repeat from step 2.

With HMM:

- efficient algorithms exist for solving inference tasks;
- but we have no idea (so far) how to learn HMM parameters from the observation sequence, because we do not have access to the hidden states.

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.
 - No optimal way of estimating the model parameters from the observation sequences.
 - We can find model parameters such that the probability of observations is maximized \rightarrow **Baum-Welch algorithm** (a special case of EM).

MLE

K-means

EM for Mixtures

EM for HMM

- HMM
- HMM learning

• Sufficient statistics

• Baum-Welch

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.
 - No optimal way of estimating the model parameters from the observation sequences.
 - We can find model parameters such that the probability of observations is maximized \rightarrow **Baum-Welch algorithm** (a special case of EM).

Let's use a slightly different notation to emphasize the model parameters:

- $\pi = [\pi_i] = [P(X_1 = s_i)] \dots$ vector of the initial probabilities of states
- $A = [a_{i,j}] = [P(X_t = s_j | X_{t-1} = s_i)] \dots$ the matrix of transition probabilities to next state given the current state
- $B = [b_{i,k}] = [P(E_t = v_k | X_t = s_i)] \dots$ the matrix of observation probabilities given the current state
- The whole set of **HMM parameters** is then $\theta = (\pi, A, B)$

K-means

MLE

EM for Mixtures

EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.
 - No optimal way of estimating the model parameters from the observation sequences.
 - We can find model parameters such that the probability of observations is maximized \rightarrow **Baum-Welch algorithm** (a special case of EM).

Let's use a slightly different notation to emphasize the model parameters:

- $\pi = [\pi_i] = [P(X_1 = s_i)] \dots$ vector of the initial probabilities of states
- $A = [a_{i,j}] = [P(X_t = s_j | X_{t-1} = s_i)] \dots$ the matrix of transition probabilities to next state given the current state
- $B = [b_{i,k}] = [P(E_t = v_k | X_t = s_i)] \dots$ the matrix of observation probabilities given the current state
- The whole set of **HMM parameters** is then $\theta = (\pi, A, B)$

The algorithm (presented on the next slides) will

- compute the expected numbers of being in a state or taking a transition given the observations and *the current model parameters* $\theta = (\pi, A, B)$, and then
- compute the new estimate of model parameters $\theta' = (\pi', A', B')$,
- such that $P(e_1^t | \theta') \ge P(e_1^t | \theta)$.

MLE K-means

EM for Mixtures

EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Sufficient statistics

Let's define

the probability of transition from state s_i at time t to state s_j at time t + 1, given the model and the observation sequence e_1^t :

$$\begin{aligned} \xi_t(i,j) &= P(X_t = s_i, X_{t+1} = s_j | e_1^t, \theta) = \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{P(e_1^t | \theta)} = \\ &= \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}, \end{aligned}$$

where α_t and β_t are the forward and backward messages computed by the forward-backward algorithm, and

the probability of being in state s_i at time t, given the model and the observation sequence:

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j).$$

K-means

MLE

EM for Mixtures

EM for HMM

• HMM

- HMM learning
- Sufficient statistics
- Baum-Welch

Sufficient statistics

Let's define

the probability of transition from state s_i at time t to state s_j at time t + 1, given the model and the observation sequence e_1^t :

$$\begin{aligned} \xi_t(i,j) &= P(X_t = s_i, X_{t+1} = s_j | e_1^t, \theta) = \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{P(e_1^t | \theta)} = \\ &= \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}, \end{aligned}$$

where α_t and β_t are the forward and backward messages computed by the forward-backward algorithm, and

the probability of being in state s_i at time t, given the model and the observation sequence:

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j).$$

Then we can interpret

Σ_{k=1}^{T-1} γ_k(i) as the expected number of transitions from state s_i, and
 Σ_{k=1}^{T-1} ξ_k(i, j) as the expected number of transitions from s_i to s_j.

MLE K-means

EM for Mixtures

EM for HMM

- HMM
- HMM learning
- Sufficient statistics
- Baum-Welch

Baum-Welch algorithm

The re-estimation formulas are

MLE

K-means

EM for Mixtures

EM for HMM

 $\bullet \operatorname{HMM}$

• HMM learning

• Sufficient statistics

• Baum-Welch

Summary

 π'_i = expected frequency of being in state s_i at time $(t = 1) = \gamma_1(i)$

 $a'_{ij} = \frac{\text{expected number of transitions from } s_i \text{ to } s_j}{\text{expected number of transitions from } s_i} = \frac{\sum_{k=1}^{T-1} \xi_k(i,j)}{\sum_{k=1}^{T-1} \gamma_k(i)}$

 $b'_{jk} = \frac{\text{expected number of times being in state } s_j \text{ and observing } v_k}{\text{expected number of times being in state } s_j}$ $= \frac{\sum_{t=1}^{T} I(e_t = v_k) \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$

Baum-Welch algorithm

The re-estimation formulas are

MLE

K-means

EM for Mixtures

EM for HMM

• HMM

• HMM learning

• Sufficient statistics

• Baum-Welch

Summary

 π'_i = expected frequency of being in state s_i at time $(t = 1) = \gamma_1(i)$

 $a'_{ij} = \frac{\text{expected number of transitions from } s_i \text{ to } s_j}{\text{expected number of transitions from } s_i} = \frac{\sum_{k=1}^{T-1} \xi_k(i,j)}{\sum_{k=1}^{T-1} \gamma_k(i)}$

 $b'_{jk} = \frac{\text{expected number of times being in state } s_j \text{ and observing } v_k}{\text{expected number of times being in state } s_j} = \frac{\sum_{t=1}^{T} I(e_t = v_k) \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$

As with other EM variants, with the old model parameters $\theta = (\pi, A, B)$ and new, re-estimated parameters $\theta' = (\pi', A', B')$, the new model is at least as likely as the old one:

$$P(e_1^t|\theta') \ge P(e_1^t|\theta)$$

The above equations are used iteratively with θ' taking place of θ .

Competencies

After this lecture, a student shall be able to ...

- define and explain the task of maximum likelihood estimation;
- explain why we can maximize log-likelihood instead of likelihood, describe the advantages;
- describe the issues we face when trying to maximize the likelihood in case of incomplete data;
- explain the general high-level principle of Expectation-Maximization algorithm;
- describe the pros and cons of the EM algorithm, especially what happens with the likelihood in one EM iteration;
- describe the EM algorithm for mixture distributions, including the notion of responsibilities;
- explain the Baum-Welch algorithm, i.e. the application of EM to HMM; what parameters are learned and how (conceptually).