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Likelihood maximization

P. Pošík c© 2017 Artificial Intelligence – 3 / 43

Let’s have a random variable X with probability distribution pX(x|θ).

■ This emphasizes that the distribution is parameterized by θ ∈ Θ, i.e. the distribution comes from
certain parametric family. Θ is the space of possible parameter values.
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Let’s have a random variable X with probability distribution pX(x|θ).

■ This emphasizes that the distribution is parameterized by θ ∈ Θ, i.e. the distribution comes from
certain parametric family. Θ is the space of possible parameter values.

Learning task: assume the parameters θ are unknown, but we have an i.i.d. training dataset
T = {x1, . . . , xn} which can be used to estimate the unknown parameters.

■ The probability of observing dataset T given some parameter values θ is

p(X|θ) =
n

∏
j=1

pX(xj|θ)
def
= L(θ; T).

■ This probability can be interpretted as a degree with which the model parameters θ conform to the
data T. It is thus called the likelihood of parameters θ w.r.t. data T.

■ The optimal θ∗ is obtained by maximizing the likelihood

θ∗ = arg max
θ∈Θ

L(θ; T) = arg max
θ∈Θ

n

∏
j=1

pX(xj|θ)

■ Since arg maxx f (x) = arg maxx log f (x), we often maximize the log-likelihood l(θ; T) = log L(θ; T)

θ∗ = arg max
θ∈Θ

l(θ; T) = arg max
θ∈Θ

log
n

∏
j=1

pX(xj|θ) = arg max
θ∈Θ

n

∑
j=1

log pX(xj|θ),

which is often easier than maximization of L.
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Assume we cannot observe the objects completely:

■ r.v. X describes the observable part, r.v. K describes the unobservable, hidden part.

■ We assume there is an underlying distribution pXK(x, k|θ) of objects (x, k).
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Assume we cannot observe the objects completely:

■ r.v. X describes the observable part, r.v. K describes the unobservable, hidden part.

■ We assume there is an underlying distribution pXK(x, k|θ) of objects (x, k).

Learning task: we want to estimate the model parameters θ, but the training set contains
i.i.d. samples for the observable part only, i.e. TX = {x1, . . . , xn}. (Still, there also exists a
hidden, unobservable dataset TK = {k1, . . . , kn}.)

■ If we had a complete data (TX , TK), we could directly optimize
l(θ; TX , TK) = log p(TX , TK |θ). But we do not have access to TK .

■ If we would like to maximize

l(θ; TX) = log p(TX |θ) = log ∑
TK

p(TX , TK |θ),

the summation inside log() results in complicated expressions, or we would have to
use numerical methods.

■ Our state of knowledge about TK is given by p(TK |TX , θ).

■ The complete-data likelihood L(θ; TX , TK) = P(TX , TK |θ) is a random variable since
TK is unknown, random, but governed by the underlying distribution.

■ Instead of optimizing it directly, consider its expected value under the posterior
distribution over latent variables (E-step), and then maximize this expectation
(M-step).
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EM algorithm:

■ A general method of finding MLE of prob. dist. parameters from a given dataset
when data is incomplete (hidden variables, or missing values).

■ Hidden variables: mixture models, Hidden Markov models, . . .

■ It is a family of algorithms, or a recipe to derive a ML estimation algorithm for
various kinds of probabilistic models.
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EM algorithm:

■ A general method of finding MLE of prob. dist. parameters from a given dataset
when data is incomplete (hidden variables, or missing values).

■ Hidden variables: mixture models, Hidden Markov models, . . .

■ It is a family of algorithms, or a recipe to derive a ML estimation algorithm for
various kinds of probabilistic models.

1. Pretend that you know θ. (Use some initial guess θ(0).) Set iteration counter i = 1.

2. E-step: Use the current parameter values θ(i−1) to find the posterior distribution of

the latent variables P(TK |TX , θ(i−1)). Use this posterior distribution to find the
expectation of the complete-data log-likelihood evaluated for some general
parameter values θ:

Q(θ, θ(i−1)) = ∑
TK

p(TK |TX , θ(i−1)) log p(TX , TK |θ).

3. M-step: maximize the expectation, i.e. compute an updated estimate of θ as

θ(i) = arg max
θ∈Θ

Q(θ, θ(i−1)).

4. Check for convergence: finish, or advance the iteration counter i⇐= i + 1, and repeat
from 2.
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Pros:

■ Among the possible optimization methods, EM exploits the structure of the model.

■ For pX|K from exponential family:

■ M-step can be done analytically and there is a unique optimizer.

■ The expected value in the E-step can be expressed as a function of θ without
solving it explicitly for each θ.

■ pX(TX |θ
(i+1)) ≥ pX(TX |θ

(i)), i.e. the process finds a local optimum.

■ Works well in practice.
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Pros:

■ Among the possible optimization methods, EM exploits the structure of the model.

■ For pX|K from exponential family:

■ M-step can be done analytically and there is a unique optimizer.

■ The expected value in the E-step can be expressed as a function of θ without
solving it explicitly for each θ.

■ pX(TX |θ
(i+1)) ≥ pX(TX |θ

(i)), i.e. the process finds a local optimum.

■ Works well in practice.

Cons:

■ Not guaranteed to get globally optimal estimate.

■ MLE can overfit; use MAP instead (EM can be used as well).

■ Convergence may be slow.



K-means

P. Pošík c© 2017 Artificial Intelligence – 7 / 43



K-means algorithm

MLE

K-means

• Algorithm

• Illustration

• EM view

EM for Mixtures

EM for HMM

Summary

P. Pošík c© 2017 Artificial Intelligence – 8 / 43

Clustering is one of the tasks of unsupervised learning.
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Clustering is one of the tasks of unsupervised learning.

K-means algorithm for clustering [Mac67]:

■ K is the apriori given number of clusters.

■ Algorithm:

1. Choose K centroids µk (in almost any way, but every cluster should have at least
one example.)

2. For all x, assign x to its closest µk .

3. Compute the new position of centroids µk based on all examples xi , i ∈ Ik , in
cluster k.

4. If the positions of centroids changed, repeat from 2.
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Clustering is one of the tasks of unsupervised learning.

K-means algorithm for clustering [Mac67]:

■ K is the apriori given number of clusters.

■ Algorithm:

1. Choose K centroids µk (in almost any way, but every cluster should have at least
one example.)

2. For all x, assign x to its closest µk .

3. Compute the new position of centroids µk based on all examples xi , i ∈ Ik , in
cluster k.

4. If the positions of centroids changed, repeat from 2.

Algorithm features:

■ Algorithm minimizes the function (intracluster variance):

J =
k

∑
j=1

nj

∑
i=1

∣

∣xi,j − cj

∣

∣

2
(1)

■ Algorithm is fast, but each time it can converge to a different local optimum of J.

[DLR77] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society, 39(1):1–38, 1977.
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Assume:

■ An object can be in one of the |K| states with equal probabilities.

■ All pX|K(x|k) are isotropic Gaussians: pX|K(x|k) = N (x|µk, σI).



K-means: EM view

MLE

K-means

• Algorithm

• Illustration

• EM view

EM for Mixtures

EM for HMM

Summary

P. Pošík c© 2017 Artificial Intelligence – 15 / 43

Assume:

■ An object can be in one of the |K| states with equal probabilities.

■ All pX|K(x|k) are isotropic Gaussians: pX|K(x|k) = N (x|µk, σI).

Recognition (Part of E-step):

■ The task is to decide the state k for each x, assuming all µk are known.

■ The Bayesian strategy (minimizes the probability of error) chooses the cluster which
center is the closest to observation x:

q∗(x) = arg min
k∈K

(x− µk)
2

■ If µk , k ∈ K, are not known, it is a parametrized strategy qΘ(x), where Θ = (µk)
K
k=1.

■ Deciding state k for each x assuming known µk is actually the computation of a

degenerate probability distribution p(TK |TX , θ(i−1)), i.e. the first part of E-step.
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Assume:

■ An object can be in one of the |K| states with equal probabilities.

■ All pX|K(x|k) are isotropic Gaussians: pX|K(x|k) = N (x|µk, σI).

Recognition (Part of E-step):

■ The task is to decide the state k for each x, assuming all µk are known.

■ The Bayesian strategy (minimizes the probability of error) chooses the cluster which
center is the closest to observation x:

q∗(x) = arg min
k∈K

(x− µk)
2

■ If µk , k ∈ K, are not known, it is a parametrized strategy qΘ(x), where Θ = (µk)
K
k=1.

■ Deciding state k for each x assuming known µk is actually the computation of a

degenerate probability distribution p(TK |TX , θ(i−1)), i.e. the first part of E-step.

Learning (The rest of E-step and M-step):

■ Find the maximum-likelihood estimates of µk based on known (x1, k1), . . . , (xl , kl):

µ∗k =
1

|Ik |
∑
i∈Ik

xi ,

where Ik is a set of indices of training examples (currently) belonging to state k.

■ This completes the E-step and implements the M-step.



EM for Mixture Models
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Assume the data are samples from a distribution factorized as

pXK(x, k) = pK(k)pX|K(x|k), i.e.

pX(x) = ∑
k∈K

pK(k)pX|K(x|k)

and that the distribution is known (except the distribution parameters).
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Assume the data are samples from a distribution factorized as

pXK(x, k) = pK(k)pX|K(x|k), i.e.

pX(x) = ∑
k∈K

pK(k)pX|K(x|k)

and that the distribution is known (except the distribution parameters).

Recognition (Part of E-step):

■ Let’s define the result of recognition not as a single decision for some state k (as done
in K-means), but rather as

■ a set of posterior probabilities (sometimes called responsibilities) for all k given xi

γk(xi) = pK|X(k|xi , θ(t)) =
pX|K(xi |k)pK(k)

∑k∈K pX|K(xi |k)pK(k)

that an object was in state k when observation xi was made.

■ The γk(x) functions can be viewed as discriminant functions.
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Learning (The rest of E-step and M-step):

■ Given the training multiset T = (xi , ki)
n
i=1 (or the respective γk(xi) instead of ki),

■ assume γk(x) is known, pK(k) are not known, and pX|K(x|k) are known except the

parameter values Θk , i.e. we shall write pX|K(x|k, Θk).

■ Let the object model m be a “set” of all unknown parameters m = (pK(k), Θk)k∈K .
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Learning (The rest of E-step and M-step):

■ Given the training multiset T = (xi , ki)
n
i=1 (or the respective γk(xi) instead of ki),

■ assume γk(x) is known, pK(k) are not known, and pX|K(x|k) are known except the

parameter values Θk , i.e. we shall write pX|K(x|k, Θk).

■ Let the object model m be a “set” of all unknown parameters m = (pK(k), Θk)k∈K .

■ The log-likelihood of model m if we assume ki is known:

log L(m) = log
n

∏
i=1

pXK(xi , ki) =
n

∑
i=1

log pK(ki) +
n

∑
i=1

log pX|K(xi |ki , Θki
)

■ The log-likelihood of model m if we assume a distribution (γ) over k is known:

log L(m) =
n

∑
i=1

∑
k∈K

γk(xi) log pK(k) +
n

∑
i=1

∑
k∈K

γk(xi) log pX|K(xi |k, Θk)

■ We search for the optimal model using maximum likelihood:

m∗ = (p∗K(k), Θ∗k ) = arg max
m

log L(m)

■ i.e. we compute

p∗K(k) =
1

n

n

∑
i=1

γk(xi) and solve k independent tasks

Θ∗k = arg max
Θk

n

∑
i=1

γk(xi) log pX|K(xi |k, Θk).
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Unsupervised learning algorithm [DLR77] for general mixture distributions:

1. Initialize the model parameters m = ((pK(k), Θk)∀k).

2. Perform the recognition task, i.e. assuming m is known, compute

γk(xi) = p̂K|X(k|xi) =
pK(k)pX|K(xi |k, Θk)

∑j∈K pK(j)pX|K(xi |j, Θj)
.

3. Perform the learning task, i.e. assuming γk(xi) are known, update the ML estimates
of the model parameters pK(k) and Θk for all k:

pK(k) =
1

n

n

∑
i=1

γk(xi)

Θk = arg max
Θk

n

∑
i=1

γk(xi) log pX|K(xi |k, Θk)

4. Iterate 2 and 3 until the model stabilizes.
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Unsupervised learning algorithm [DLR77] for general mixture distributions:

1. Initialize the model parameters m = ((pK(k), Θk)∀k).

2. Perform the recognition task, i.e. assuming m is known, compute

γk(xi) = p̂K|X(k|xi) =
pK(k)pX|K(xi |k, Θk)

∑j∈K pK(j)pX|K(xi |j, Θj)
.

3. Perform the learning task, i.e. assuming γk(xi) are known, update the ML estimates
of the model parameters pK(k) and Θk for all k:

pK(k) =
1

n

n

∑
i=1

γk(xi)

Θk = arg max
Θk

n

∑
i=1

γk(xi) log pX|K(xi |k, Θk)

4. Iterate 2 and 3 until the model stabilizes.

Features:

■ The algorithm does not specify how to update Θk in step 3, it depends on the chosen
form of pX|K .

■ The model created in iteration t is always at least as good as the model from iteration
t− 1, i.e. L(m) = p(T|m) increases.
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Each kth component is a Gaussian distribution:

N (x|µk, Σk) =
1

(2π)
D
2 |Σk |

1
2

exp{−
1

2
(x− µk)

TΣ−1
k (x− µk)}

Gaussian Mixture Model (GMM):

p(x) =
K

∑
k=1

pK(k)pX|K(x|k, Θk) =
K

∑
k=1

αkN (x|µk, Σk)

assuming
K

∑
k=1

αk = 1 and 0 ≤ αk ≤ 1
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1. Initialize the model parameters m = ((pK(k), µk , Σk)∀k).

2. Perform the recognition task as in the general case, i.e. assuming m is known,
compute

γk(xi) = p̂K|X(k|xi) =
pK(k)pX|K(xi |k, Θk)

∑j∈K pK(j)pX|K(xi |j, Θj)
=

αkN (xi |µk, Σk)

∑j∈K αjN (xi |µj, Σj)
.

3. Perform the learning task, i.e. assuming γk(xi) are known, update the ML estimates
of the model parameters αk , µk and Σk for all k:

αk = pK(k) =
1

n

n

∑
i=1

γk(xi)

µk =
∑

n
i=1 γk(xi)xi

∑
n
i=1 γk(xi)

Σk =
∑

n
i=1 γk(xi)(xi − µk)(xi − µk)

T

∑
n
i=1 γk(xi)

4. Iterate 2 and 3 until the model stabilizes.
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1. Initialize the model parameters m = ((pK(k), µk , Σk)∀k).

2. Perform the recognition task as in the general case, i.e. assuming m is known,
compute

γk(xi) = p̂K|X(k|xi) =
pK(k)pX|K(xi |k, Θk)

∑j∈K pK(j)pX|K(xi |j, Θj)
=

αkN (xi |µk, Σk)

∑j∈K αjN (xi |µj, Σj)
.

3. Perform the learning task, i.e. assuming γk(xi) are known, update the ML estimates
of the model parameters αk , µk and Σk for all k:

αk = pK(k) =
1

n

n

∑
i=1

γk(xi)

µk =
∑

n
i=1 γk(xi)xi

∑
n
i=1 γk(xi)

Σk =
∑

n
i=1 γk(xi)(xi − µk)(xi − µk)

T

∑
n
i=1 γk(xi)

4. Iterate 2 and 3 until the model stabilizes.

Remarks:

■ Each data point belongs to all components to a certain degree γk(xi).

■ The eq. for µk is just a weighted average of xis.

■ The eq. for Σk is just a weighted covariance matrix.
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Source data generated from 3 Gaussians.
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The data were given to the EM algorithm as an unlabeled dataset.
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Example: Ground Truth and EM Estimate
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The ground truth (left) and the EM estimate (right) are very close because

■ we have enough data,

■ we know the right number of components, and

■ we were lucky that EM converged to the right local optimum of the likelihood function.



Baum-Welch Algorithm:
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1st order HMM is a generative probabilistic model formed by

■ a sequence of hidden variables X0, . . . , Xt,
the domain of all of them is the set of states {s1, . . . , sN}.

■ a sequence of observed variables E1, . . . , Et,
the domain of all of them is the set of observations {v1, . . . , vM}.

■ an initial distribution over hidden states P(X0),

■ a transition model P(Xt|Xt−1), and

■ an emission model P(Et|Xt).
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1st order HMM is a generative probabilistic model formed by

■ a sequence of hidden variables X0, . . . , Xt,
the domain of all of them is the set of states {s1, . . . , sN}.

■ a sequence of observed variables E1, . . . , Et,
the domain of all of them is the set of observations {v1, . . . , vM}.

■ an initial distribution over hidden states P(X0),

■ a transition model P(Xt|Xt−1), and

■ an emission model P(Et|Xt).

Simulating HMM:

1. Generate an initial state x0 according to P(X0). Set t← 1.

2. Generate a new current state xt according to P(Xt|xt−1).

3. Generate an observation et according to P(Et|xt).

4. Advance time t← t + 1.

5. Finish, or repeat from step 2.
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1st order HMM is a generative probabilistic model formed by

■ a sequence of hidden variables X0, . . . , Xt,
the domain of all of them is the set of states {s1, . . . , sN}.

■ a sequence of observed variables E1, . . . , Et,
the domain of all of them is the set of observations {v1, . . . , vM}.

■ an initial distribution over hidden states P(X0),

■ a transition model P(Xt|Xt−1), and

■ an emission model P(Et|Xt).

Simulating HMM:

1. Generate an initial state x0 according to P(X0). Set t← 1.

2. Generate a new current state xt according to P(Xt|xt−1).

3. Generate an observation et according to P(Et|xt).

4. Advance time t← t + 1.

5. Finish, or repeat from step 2.

With HMM:

■ efficient algorithms exist for solving inference tasks;

■ but we have no idea (so far) how to learn HMM parameters from the observation
sequence, because we do not have access to the hidden states.
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Is it possible to learn HMM from data?

■ No known way to analytically solve for the model which maximizes the probability
of observations.

■ No optimal way of estimating the model parameters from the observation sequences.

■ We can find model parameters such that the probability of observations is maximized
−→ Baum-Welch algorithm (a special case of EM).
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Is it possible to learn HMM from data?

■ No known way to analytically solve for the model which maximizes the probability
of observations.

■ No optimal way of estimating the model parameters from the observation sequences.

■ We can find model parameters such that the probability of observations is maximized
−→ Baum-Welch algorithm (a special case of EM).

Let’s use a slightly different notation to emphasize the model parameters:

■ π = [πi ] = [P(X1 = si)] . . . vector of the initial probabilities of states

■ A = [ai,j] = [P(Xt = sj|Xt−1 = si)] . . . the matrix of transition probabilities to next
state given the current state

■ B = [bi,k ] = [P(Et = vk |Xt = si)] . . . the matrix of observation probabilities given the
current state

■ The whole set of HMM parameters is then θ = (π, A, B)
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Is it possible to learn HMM from data?

■ No known way to analytically solve for the model which maximizes the probability
of observations.

■ No optimal way of estimating the model parameters from the observation sequences.

■ We can find model parameters such that the probability of observations is maximized
−→ Baum-Welch algorithm (a special case of EM).

Let’s use a slightly different notation to emphasize the model parameters:

■ π = [πi ] = [P(X1 = si)] . . . vector of the initial probabilities of states

■ A = [ai,j] = [P(Xt = sj|Xt−1 = si)] . . . the matrix of transition probabilities to next
state given the current state

■ B = [bi,k ] = [P(Et = vk |Xt = si)] . . . the matrix of observation probabilities given the
current state

■ The whole set of HMM parameters is then θ = (π, A, B)

The algorithm (presented on the next slides) will

■ compute the expected numbers of being in a state or taking a transition given the
observations and the current model parameters θ = (π, A, B), and then

■ compute the new estimate of model parameters θ′ = (π′, A′, B′),

■ such that P(et
1|θ
′) ≥ P(et

1|θ).
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Let’s define

■ the probability of transition from state si at time t to state sj at time t + 1, given the

model and the observation sequence et
1:

ξt(i, j) = P(Xt = si , Xt+1 = sj|e
t
1, θ) =

αt(si)aijbjk βt+1(sj)

P(et
1|θ)

=

=
αt(si)aijbjk βt+1(sj)

∑
N
i=1 ∑

N
j=1 αt(si)aijbjk βt+1(sj)

,

where αt and βt are the forward and backward messages computed by the
forward-backward algorithm, and

■ the probability of being in state si at time t, given the model and the observation
sequence:

γt(i) =
N

∑
j=1

ξt(i, j).
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■ the probability of transition from state si at time t to state sj at time t + 1, given the

model and the observation sequence et
1:

ξt(i, j) = P(Xt = si , Xt+1 = sj|e
t
1, θ) =

αt(si)aijbjk βt+1(sj)

P(et
1|θ)

=

=
αt(si)aijbjk βt+1(sj)

∑
N
i=1 ∑

N
j=1 αt(si)aijbjk βt+1(sj)

,

where αt and βt are the forward and backward messages computed by the
forward-backward algorithm, and

■ the probability of being in state si at time t, given the model and the observation
sequence:

γt(i) =
N

∑
j=1

ξt(i, j).

Then we can interpret

■

T−1

∑
k=1

γk(i) as the expected number of transitions from state si , and

■

T−1

∑
k=1

ξk(i, j) as the expected number of transitions from si to sj.
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The re-estimation formulas are

π′i = expected frequency of being in state si at time (t = 1) =

= γ1(i)

a′ij =
expected number of transitions from si to sj

expected number of transitions from si
=

=
∑

T−1
k=1 ξk(i, j)

∑
T−1
k=1 γk(i)

b′jk =
expected number of times being in state sj and observing vk

expected number of times being in state sj
=

=
∑

T
t=1 I(et = vk)γt(j)

∑
T
t=1 γt(j)
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The re-estimation formulas are

π′i = expected frequency of being in state si at time (t = 1) =

= γ1(i)

a′ij =
expected number of transitions from si to sj

expected number of transitions from si
=

=
∑

T−1
k=1 ξk(i, j)

∑
T−1
k=1 γk(i)

b′jk =
expected number of times being in state sj and observing vk

expected number of times being in state sj
=

=
∑

T
t=1 I(et = vk)γt(j)

∑
T
t=1 γt(j)

As with other EM variants, with the old model parameters θ = (π, A, B) and new,
re-estimated parameters θ′ = (π′, A′, B′), the new model is at least as likely as the old one:

P(et
1|θ
′) ≥ P(et

1|θ)

The above equations are used iteratively with θ′ taking place of θ.
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Competencies
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After this lecture, a student shall be able to . . .

■ define and explain the task of maximum likelihood estimation;

■ explain why we can maximize log-likelihood instead of likelihood, describe the advantages;

■ describe the issues we face when trying to maximize the likelihood in case of incomplete data;

■ explain the general high-level principle of Expectation-Maximization algorithm;

■ describe the pros and cons of the EM algorithm, especially what happens with the likelihood in one
EM iteration;

■ describe the EM algorithm for mixture distributions, including the notion of responsibilities;

■ explain the Baum-Welch algorithm, i.e. the application of EM to HMM; what parameters are learned
and how (conceptually).


	Maximum likelihood estimation
	Likelihood maximization
	Incomplete data
	Expectation-Maximization algorithm
	EM algorithm features

	K-means
	K-means algorithm
	Illustration
	K-means: EM view

	EM for Mixture Models
	General mixture distributions
	EM for mixture distribution
	GMM
	EM for GMM

	EM for HMM
	Hidden Markov Model
	Learning HMM from data
	Sufficient statistics
	Baum-Welch algorithm

	Summary
	Competencies


	pdstartclock: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 


