CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Cybernetics

Hidden Markov Models.

Petr Pošík
Czech Technical University in Prague
Faculty of Electrical Engineering
Dept. of Cybernetics

Markov Models

Reasoning over Time or Space

In areas like

- speech recognition,

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM

- robot localization,
- medical monitoring,
- language modeling,
- DNA analysis,
- ...,
we want to reason about a sequence of observations.

Reasoning over Time or Space

In areas like

- speech recognition,

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

- robot localization,
- medical monitoring,
- language modeling,
- DNA analysis,

■ ...,
we want to reason about a sequence of observations.
We need to introduce time (or space) into our models:

- A static world is modeled using a variable for each of its aspects which are of interest.
- A changing world is modeled using these variables at each point in time. The world is viewed as a sequence of time slices.
- Random variables form sequences in time or space.

Reasoning over Time or Space

In areas like

- speech recognition,

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

- robot localization,
- medical monitoring,
- language modeling,
- DNA analysis,

■ ...,
we want to reason about a sequence of observations.
We need to introduce time (or space) into our models:

- A static world is modeled using a variable for each of its aspects which are of interest.
- A changing world is modeled using these variables at each point in time. The world is viewed as a sequence of time slices.
- Random variables form sequences in time or space.

Notation:

- X_{t} is the set of variables describing the world state at time t.

■ X_{a}^{b} is the set of variables from X_{a} to X_{b}.
■ E.g., X_{1}^{t} corresponds to variables X_{1}, \ldots, X_{t}.

Reasoning over Time or Space

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

In areas like

- speech recognition,
- robot localization,
- medical monitoring,
- language modeling,
- DNA analysis,
- ...,
we want to reason about a sequence of observations.
We need to introduce time (or space) into our models:
- A static world is modeled using a variable for each of its aspects which are of interest.
- A changing world is modeled using these variables at each point in time. The world is viewed as a sequence of time slices.
- Random variables form sequences in time or space.

Notation:

- X_{t} is the set of variables describing the world state at time t.
- X_{a}^{b} is the set of variables from X_{a} to X_{b}.

■ E.g., X_{1}^{t} corresponds to variables X_{1}, \ldots, X_{t}.
We need a way to specify joint distribution over a large number of random variables using assumptions suitable for the fields mentioned above.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Markov models

Transition model

- In general, it specifies the probability distribution over the current state X_{t} given all the previous states X_{0}^{t-1} :

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)
$$

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Markov models

Transition model

- In general, it specifies the probability distribution over the current state X_{t} given all the previous states X_{0}^{t-1} :

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)
$$

- Problem 1: X_{0}^{t-1} is unbounded in size as t increases.
- Solution: Markov assumption - the current state depends only on a finite fixed number of previous states. Such processes are called Markov processes or Markov chains.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Markov models

Transition model

- In general, it specifies the probability distribution over the current state X_{t} given all the previous states X_{0}^{t-1} :

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)
$$

- Problem 1: X_{0}^{t-1} is unbounded in size as t increases.
- Solution: Markov assumption - the current state depends only on a finite fixed number of previous states. Such processes are called Markov processes or Markov chains.
- First-order Markov process:

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Second-order Markov process:

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)=P\left(X_{t} \mid X_{t-1}^{t-2}\right)
$$

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Markov models

Transition model

- In general, it specifies the probability distribution over the current state X_{t} given all the previous states X_{0}^{t-1} :

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)
$$

- Problem 1: X_{0}^{t-1} is unbounded in size as t increases.
- Solution: Markov assumption - the current state depends only on a finite fixed number of previous states. Such processes are called Markov processes or Markov chains.

■ First-order Markov process:

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Second-order Markov process:

$$
P\left(X_{t} \mid X_{0}^{t-1}\right)=P\left(X_{t} \mid X_{t-1}^{t-2}\right)
$$

- Problem 2: Even with Markov assumption, there are infinitely many values of t. Do we have to specify a different distribution in each time step?
- Solution: assume a stationary process, i.e. the transition model does not change over time:

$$
P\left(X_{t} \mid X_{t-k}^{t-1}\right)=P\left(X_{t^{\prime}} \mid X_{t^{\prime}-k}^{t^{\prime}-1}\right) \quad \text { for } \quad t \neq t^{\prime}
$$

Joint distribution of a Markov model

Assuming a stationary first-order Markov chain,

the MC joint distribution is factorized as

$$
P\left(X_{0}^{T}\right)=P\left(X_{0}\right) \prod_{t=1}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

Joint distribution of a Markov model

Assuming a stationary first-order Markov chain,

the MC joint distribution is factorized as

$$
P\left(X_{0}^{T}\right)=P\left(X_{0}\right) \prod_{t=1}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

This factorization is possible due to the following assumptions:

$$
X_{t} \Perp X_{0}^{t-2} \mid X_{t-1}
$$

- Past X are conditionally independent of future X given present X.
- In many cases, these assumptions are reasonable.
- They simplify things a lot: we can do reasoning in polynomial time and space!

Joint distribution of a Markov model

Assuming a stationary first-order Markov chain,

- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary
This factorization is possible due to the following assumptions:

$$
X_{t} \Perp X_{0}^{t-2} \mid X_{t-1}
$$

- Past X are conditionally independent of future X given present X.
- In many cases, these assumptions are reasonable.
- They simplify things a lot: we can do reasoning in polynomial time and space!

Just a growing Bayesian network with a very simple structure.

MC Example

- States: $X=\{$ rain, sun $\}=\{r, s\}$
- Initial distribution: sun 100\%
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$

As a conditional prob. table:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

As a state transition diagram (automaton):

As a state trellis:

MC Example

- States: $X=\{$ rain, sun $\}=\{r, s\}$
- Initial distribution: sun 100\%
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$

As a conditional prob. table:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

As a state transition diagram (automaton):

As a state trellis:

What is the weather distribution after one step, i.e. $P\left(X_{1}\right)$ given $P\left(X_{0}=s\right)=1$?

$$
\begin{aligned}
P\left(X_{1}=s\right) & =P\left(X_{1}=s \mid X_{0}=s\right) P\left(X_{0}=s\right)+P\left(X_{1}=s \mid X_{0}=r\right) P\left(X_{0}=r\right)= \\
& =\sum_{x_{0}} P\left(X_{1}=s \mid x_{0}\right) P\left(x_{0}\right)= \\
& =0.9 \cdot 1+0.3 \cdot 0=0.9
\end{aligned}
$$

Markov Models

HMM
Summary

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

Prediction

A mini-forward algorithm:

- What is $P\left(X_{t}\right)$ on some day $t ? P\left(X_{0}\right)$ and $P\left(X_{t} \mid X_{t-1}\right)$ is known.

$$
\begin{aligned}
P\left(X_{t}\right) & =\sum_{x_{t-1}} P\left(X_{t}, x_{t-1}\right)= \\
& =\sum_{x_{t-1}} \underbrace{P\left(X_{t} \mid x_{t-1}\right)}_{\text {Step forward }} \underbrace{P\left(x_{t-1}\right)}_{\text {Recursion }}
\end{aligned}
$$

- $P\left(X_{t} \mid x_{t-1}\right)$ is known from the transition model.
- $P\left(x_{t-1}\right)$ is either known from $P\left(X_{0}\right)$ or from previous step of forward simulation.

Prediction

A mini-forward algorithm:

- What is $P\left(X_{t}\right)$ on some day $t ? P\left(X_{0}\right)$ and $P\left(X_{t} \mid X_{t-1}\right)$ is known.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

$$
\begin{aligned}
P\left(X_{t}\right) & =\sum_{x_{t-1}} P\left(X_{t}, x_{t-1}\right)= \\
& =\sum_{x_{t-1}} \underbrace{P\left(X_{t} \mid x_{t-1}\right)}_{\text {Step forward }} \underbrace{P\left(x_{t-1}\right)}_{\text {Recursion }}
\end{aligned}
$$

- $P\left(X_{t} \mid x_{t-1}\right)$ is known from the transition model.
- $P\left(x_{t-1}\right)$ is either known from $P\left(X_{0}\right)$ or from previous step of forward simulation.

Example run for our example starting from sun:

t	$P\left(X_{t}=s\right)$	$P\left(X_{t}=r\right)$
0	1	0
1	0.90	0.10
2	0.84	0.16
3	0.804	0.196
\vdots	\vdots	\vdots
∞	0.75	0.25

starting from rain:

t	$P\left(X_{t}=s\right)$	$P\left(X_{t}=r\right)$
0	0	1
1	0.3	0.7
2	0.48	0.52
3	0.588	0.412
\vdots	\vdots	\vdots
∞	0.75	0.25

Prediction

A mini-forward algorithm:

- What is $P\left(X_{t}\right)$ on some day $t ? P\left(X_{0}\right)$ and $P\left(X_{t} \mid X_{t-1}\right)$ is known.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

$$
\begin{aligned}
P\left(X_{t}\right) & =\sum_{x_{t-1}} P\left(X_{t}, x_{t-1}\right)= \\
& =\sum_{x_{t-1}} \underbrace{P\left(X_{t} \mid x_{t-1}\right)}_{\text {Step forward }} \underbrace{P\left(x_{t-1}\right)}_{\text {Recursion }}
\end{aligned}
$$

- $P\left(X_{t} \mid x_{t-1}\right)$ is known from the transition model.
- $P\left(x_{t-1}\right)$ is either known from $P\left(X_{0}\right)$ or from previous step of forward simulation.

Example run for our example starting from sun:

t	$P\left(X_{t}=s\right)$	$P\left(X_{t}=r\right)$
0	1	0
1	0.90	0.10
2	0.84	0.16
3	0.804	0.196
\vdots	\vdots	\vdots
∞	0.75	0.25

starting from rain:

t	$P\left(X_{t}=s\right)$	$P\left(X_{t}=r\right)$
0	0	1
1	0.3	0.7
2	0.48	0.52
3	0.588	0.412
\vdots	\vdots	\vdots
∞	0.75	0.25

In both cases we end up in the stationary distribution of the MC.

Stationary distribution

Informally, for most chains:

- Influence of initial distribution decreases with time.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary distribution
- PageRank

HMM
Summary

- The limiting distribution is independent of the initial one.
- The limiting distribution $P_{\infty}(X)$ is called stationary distribution and it satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Stationary distribution

Informally, for most chains:

- Influence of initial distribution decreases with time.
- The limiting distribution is independent of the initial one.
- The limiting distribution $P_{\infty}(X)$ is called stationary distribution and it satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

More formally:

- MC is called regular if there is a finite positive integer m such that after m time-steps, every state has a nonzero chance of being occupied, no matter what the initial state is.
- For a regular MC, a unique stationary distribution exists.

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Stationary distribution

Informally, for most chains:

- Influence of initial distribution decreases with time.
- The limiting distribution is independent of the initial one.
- The limiting distribution $P_{\infty}(X)$ is called stationary distribution and it satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

More formally:

- MC is called regular if there is a finite positive integer m such that after m time-steps, every state has a nonzero chance of being occupied, no matter what the initial state is.
- For a regular MC, a unique stationary distribution exists.

Stationary distribution for the weather example:

$$
\begin{aligned}
& P_{\infty}(s)=P(s \mid s) P_{\infty}(s)+P(s \mid r) P_{\infty}(r) \\
& P_{\infty}(r)=P(r \mid s) P_{\infty}(s)+P(r \mid r) P_{\infty}(r) \\
& P_{\infty}(s)=0.9 P_{\infty}(s)+0.3 P_{\infty}(r) \\
& P_{\infty}(r)=0.1 P_{\infty}(s)+0.7 P_{\infty}(r) \\
& P_{\infty}(s)=3 P_{\infty}(r) \\
& P_{\infty}(r)=\frac{1}{3} P_{\infty}(s)
\end{aligned}
$$

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Stationary distribution

Informally, for most chains:

- Influence of initial distribution decreases with time.
- The limiting distribution is independent of the initial one.
- The limiting distribution $P_{\infty}(X)$ is called stationary distribution and it satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

More formally:

- MC is called regular if there is a finite positive integer m such that after m time-steps, every state has a nonzero chance of being occupied, no matter what the initial state is.
- For a regular MC, a unique stationary distribution exists.

Stationary distribution for the weather example:

$$
\begin{aligned}
& P_{\infty}(s)=P(s \mid s) P_{\infty}(s)+P(s \mid r) P_{\infty}(r) \\
& P_{\infty}(r)=P(r \mid s) P_{\infty}(s)+P(r \mid r) P_{\infty}(r) \\
& P_{\infty}(s)=0.9 P_{\infty}(s)+0.3 P_{\infty}(r) \\
& P_{\infty}(r)=0.1 P_{\infty}(s)+0.7 P_{\infty}(r) \\
& P_{\infty}(s)=3 P_{\infty}(r) \\
& P_{\infty}(r)=\frac{1}{3} P_{\infty}(s)
\end{aligned}
$$

Two equations saying the same thing. But we know that $P_{\infty}(s)+P_{\infty}(r)=1$, thus $P_{\infty}(s)=0.75$ and $P_{\infty}(r)=0.25$

Markov Models

- Time and space
- Markov models
- Joint
- MC Example
- Prediction
- Stationary
distribution
- PageRank

HMM
Summary

Google PageRank

■ The most famous and successful application of stationary distribution.

- Problem: How to order web pages mentioning the query phrases? How to compute relevance/importance of the result?
- Idea: Good pages are referenced more often; a random surfer spends more time on highly reachable pages.
- Each web page is a state.
- Random surfer clicks on a randomly chosen link on a web page, but with a small probability goes to a random page.
- This defines a MC. Its stationary distribution gives the importance of individual pages.
■ In 1997, this was revolutionary and Google quickly surpassed the other search engines (Altavista, Yahoo, ...).
- Nowadays, all search engines use link analysis along with many other factors (rank getting less important over time).

Hidden Markov Models

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

From Markov Chains to Hidden Markov Models

- MCs are not that useful in practice. They assume all the state variables are observable.
- In real world, some variables are observable, some are not (they are hidden).
- At any time slice t, the world is described by $\left(X_{t}, E_{t}\right)$ where
- X_{t} are the hidden state variables, and
- E_{t} are the observable variables (evidence, effects).
- In general, the probability distribution over possible current states and observations given the past states and observations is

$$
P\left(X_{t}, E_{t} \mid X_{0}^{t-1}, E_{1}^{t-1}\right)
$$

- Assumption: past observations E_{1}^{t-1} have no effect on the current state X_{t} and obs. E_{t} given the past states X_{1}^{t-1}. Using the first-order Markov assumption, then

$$
P\left(X_{t}, E_{t} \mid X_{0}^{t-1}, E_{1}^{t-1}\right)=P\left(X_{t}, E_{t} \mid X_{t-1}\right)
$$

- Assumption: E_{t} is independent of X_{t-1} given X_{t}, then

$$
P\left(X_{t}, E_{t} \mid X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Hidden Markov Model

HMM is defined by

- the initial state distribution $P\left(X_{0}\right)$,
- the transition model $P\left(X_{t} \mid X_{t-1}\right)$, and

■ the emission (sensor) model $P\left(E_{t} \mid X_{t}\right)$.

- It defines the following factorization of the joint distribution

$$
P\left(X_{0}^{T}, E_{1}^{T}\right)=\underbrace{P\left(X_{0}\right)}_{\text {Init. state }} \prod_{t=1}^{T} \underbrace{P\left(X_{t} \mid X_{t-1}\right)}_{\text {Transition model Sensor model }} \underbrace{P\left(E_{t} \mid X_{t}\right)}
$$

Independence assumptions:

$$
\begin{array}{r}
X_{2} \Perp X_{0}, E_{1} \mid X_{1} \\
E_{2} \Perp X_{0}, X_{1}, E_{1} \mid X_{2} \\
X_{3} \Perp X_{0}, X_{1}, E_{1}, E_{2} \mid X_{2} \\
E_{3} \Perp X_{0}, X_{1}, E_{1}, X_{2}, E_{2} \mid X_{3}
\end{array}
$$

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Weather-Umbrella Domain

Suppose you are in a situation with no chance of learning what the weather is today.

- You may be a hard working Ph.D. student locked in your no-windows lab for several days.
■ Or you may be a soldier guarding a military base hidden a few hundred meters underneath the Earth surface.

The only indication of the weather outside is your boss (or supervisor) coming to his office each day, and bringing an umbrella or not.

Random variables:

- R_{t} : Is it raining on day t ?
- U_{t} : Did your boss bring an umbrella?

Transition model:

R_{t-1}	R_{t}	$P\left(R_{t} \mid R_{t-1}\right)$
t	t	0.7
t	f	0.3
f	t	0.3
f	f	0.7

Emission model:

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
t	t	0.9
t	f	0.1
f	t	0.2
f	f	0.8

HMM tasks

Filtering:

- computing the posterior distribution over the current state given all the previous

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
нмм

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

HMM tasks

Filtering:

- computing the posterior distribution over the current state given all the previous evidence, i.e.
- $P\left(X_{t} \mid e_{1}^{t}\right)$.
- AKA state estimation, or tracking.
- Forward algorithm.

Prediction:

- computing the posterior distribution over the future state given all the previous evidence, i.e.
- $P\left(X_{t+k} \mid e_{1}^{t}\right)$ for some $k>0$.

■ The same "mini-forward" algorithm as in case of Markov Chain.

Smoothing:

- computing the posterior distribution over the past state given all the evidence, i.e.
- $P\left(X_{k} \mid e_{1}^{t}\right)$ for some $k \in(0, t)$
- It estimates the state better than filtering because more evidence is available.
- Forward-backward algorithm.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

HMM tasks (cont.)

Recognition or evaluation of statistical model:

- Compute the likelihood of an HMM, i.e. the probability of observing the data given the HMM parameters,
- $P\left(e_{1}^{t} \mid \theta\right)$.

■ If several HMMs are given, the most likely model can be chosen (as a class label).

- Uses forward algorithm.

Most likely explanation:

- given a sequence of observations, find the sequence of states that has most likely generated those observations, i.e.
■ $\arg \max P\left(x_{1}^{t} \mid e_{1}^{t}\right)$.
x_{1}^{t}
- Viterbi algorithm (dynamic programming).
- Useful in speech recognition, in reconstruction of bit strings transmitted over a noisy channel, etc.

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

HMM tasks (cont.)

Recognition or evaluation of statistical model:

- Compute the likelihood of an HMM, i.e. the probability of observing the data given the HMM parameters,
- $P\left(e_{1}^{t} \mid \theta\right)$.

■ If several HMMs are given, the most likely model can be chosen (as a class label).

- Uses forward algorithm.

Most likely explanation:

- given a sequence of observations, find the sequence of states that has most likely generated those observations, i.e.
- $\arg \max _{x^{t}} P\left(x_{1}^{t} \mid e_{1}^{t}\right)$.
x_{1}^{t}
- Viterbi algorithm (dynamic programming).
- Useful in speech recognition, in reconstruction of bit strings transmitted over a noisy channel, etc.

HMM Learning:

- Given the HMM structure, learn the transition and sensor models from observations.
- Baum-Welch algorithm, an instance of EM algorithm.
- Requires smoothing, learning with filtering can fail to converge correctly.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Filtering

Recursive estimation:

- Any useful filtering algorithm must maintain and update a current state estimate (as opposed to estimating the current state from the whole evidence sequence each time), i.e.

■ we want to find a function u such that

$$
P\left(X_{t} \mid e_{1}^{t}\right)=u\left(P\left(X_{t-1} \mid e_{1}^{t-1}\right), e_{t}\right)
$$

This process will have 2 parts:

1. Predict the current state at t from the filtered estimate of state at $t-1$.
2. Update the prediction with new evidence at t.

$$
\begin{aligned}
P\left(X_{t} \mid e_{1}^{t}\right) & =P\left(X_{t} \mid e_{1}^{t-1}, e_{t}\right)= & & \text { (split the evidence sequence) } \\
& =\alpha P\left(e_{t} \mid X_{t}, e_{1}^{t-1}\right) P\left(X_{t} \mid e_{1}^{t-1}\right)= & & \text { (from Bayes rule) } \\
& =\alpha P\left(e_{t} \mid X_{t}\right) P\left(X_{t} \mid e_{1}^{t-1}\right) & & \text { (using Markov assumption) }
\end{aligned}
$$

where

- α is a normalization constant,
- $P\left(e_{t} \mid X_{t}\right)$ is the update by evidence (known from sensor model), and
- $P\left(X_{t} \mid e_{1}^{t-1}\right)$ is the 1-step prediction. How to compute it?

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Filtering (cont.)

1-step prediction:

$$
\begin{aligned}
P\left(X_{t} \mid e_{1}^{t-1}\right) & =\sum_{x_{t-1}} P\left(X_{t}, x_{t-1} \mid e_{1}^{t-1}\right)=\quad \text { (as a sum over previous states) } \\
& =\sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}, e_{1}^{t-1}\right) P\left(x_{t-1} \mid e_{1}^{t-1}\right)=\quad \text { (introduce conditioning on previous state) } \\
& =\sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1}^{t-1}\right), \quad \quad \text { (using Markov assumption) }
\end{aligned}
$$

where

- $P\left(X_{t} \mid x_{t-1}\right)$ is known from transition model, and
- $P\left(x_{t-1} \mid e_{1}^{t-1}\right)$ is the filtered estimate at previous step.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Filtering (cont.)

1-step prediction:

$$
\begin{array}{rlr}
P\left(X_{t} \mid e_{1}^{t-1}\right) & =\sum_{x_{t-1}} P\left(X_{t}, x_{t-1} \mid e_{1}^{t-1}\right)= & \quad \text { (as a sum over previous states) } \\
& =\sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}, e_{1}^{t-1}\right) P\left(x_{t-1} \mid e_{1}^{t-1}\right)=\quad \text { (introduce conditioning on previous state) } \\
& =\sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1}^{t-1}\right), \quad \quad \text { (using Markov assumption) }
\end{array}
$$

where

- $P\left(X_{t} \mid x_{t-1}\right)$ is known from transition model, and
- $P\left(x_{t-1} \mid e_{1}^{t-1}\right)$ is the filtered estimate at previous step.

All together:

Markov Models

- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Online belief updates

$$
\underbrace{P\left(X_{t} \mid e_{1}^{t}\right)}_{\text {new estimate }}=\alpha \underbrace{P\left(e_{t} \mid X_{t}\right)}_{\text {sensor model }} \sum_{x_{t-1}} \underbrace{P\left(X_{t} \mid x_{t-1}\right)}_{\text {transition model previous estimate }} \underbrace{P\left(x_{t-1} \mid e_{1}^{t-1}\right)}_{\text {pres }}
$$

- At every moment, we have a belief distribution over the states, $B(X)$.
- Initially, it is our prior distribution $B(X)=P\left(X_{0}\right)$.
- The above update equation may be split into 2 parts:

1. Update for time step:

$$
B(X) \leftarrow \sum_{x^{\prime}} P\left(X \mid x^{\prime}\right) \cdot B(X)
$$

2. Update for a new evidence:

$$
B(X) \leftarrow \alpha P(e \mid X) \cdot B(X)
$$

where α is a normalization constant.

- If you update for time step several times without evidence, it is a prediction several steps ahead.
- If you update for evidence several times without a time step, you incorporate multiple measurements.
- The forward algorithm does both updates at once and does not normalize!

Markov Models

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Forward algorithm

$$
\underbrace{P\left(X_{t} \mid e_{1}^{t}\right)}_{\text {new estimate }}=\alpha \underbrace{P\left(e_{t} \mid X_{t}\right)}_{\text {sensor model }} \sum_{x_{t-1}} \underbrace{P\left(X_{t} \mid x_{t-1}\right)}_{\text {transition model previous estimate }} \underbrace{P\left(x_{t-1} \mid e_{1}^{t-1}\right)}_{\text {pres }}
$$

Forward message: a filtered estimate of state at time t given the evidence e_{1}^{t}, i.e.

$$
f_{t}\left(X_{t}\right) \stackrel{\text { def }}{=} P\left(X_{t} \mid e_{1}^{t}\right)
$$

Then

$$
f_{t}\left(X_{t}\right)=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) f_{t-1}\left(x_{t-1}\right),
$$

i.e.

$$
f_{t}=\alpha \cdot \operatorname{FORWARD-UPDATE}\left(f_{t-1}, e_{t}\right)
$$

where

- the FORWARD-UPDATE function implements the update equation above (without the normalization), and
\square the recursion is initialized with $f_{0}\left(X_{0}\right)=P\left(X_{0}\right)$.

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$
- Update by evidence and normalize:
$P\left(R_{1} \mid u_{1}\right)=$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$
- Update by evidence and normalize:

$$
P\left(R_{1} \mid u_{1}\right)=\alpha P\left(u_{1} \mid R_{1}\right) P\left(R_{1}\right)=\alpha(0.9,0.2) \cdot(0.5,0.5)=\alpha(0.45,0.1)=(0.818,0.182)
$$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$
- Update by evidence and normalize:

$$
P\left(R_{1} \mid u_{1}\right)=\alpha P\left(u_{1} \mid R_{1}\right) P\left(R_{1}\right)=\alpha(0.9,0.2) \cdot(0.5,0.5)=\alpha(0.45,0.1)=(0.818,0.182)
$$

Day 2: 2nd observation $U_{2}=$ true
\square Prediction: $P\left(R_{2} \mid u_{1}\right)=\sum_{r_{1}} P\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)=(0.7,0.3) \cdot 0.818+(0.3,0.7) \cdot 0.182=(0.627,0.373)$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$
- Update by evidence and normalize:

$$
P\left(R_{1} \mid u_{1}\right)=\alpha P\left(u_{1} \mid R_{1}\right) P\left(R_{1}\right)=\alpha(0.9,0.2) \cdot(0.5,0.5)=\alpha(0.45,0.1)=(0.818,0.182)
$$

Day 2: 2nd observation $U_{2}=$ true
\square Prediction: $P\left(R_{2} \mid u_{1}\right)=\sum_{r_{1}} P\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)=(0.7,0.3) \cdot 0.818+(0.3,0.7) \cdot 0.182=(0.627,0.373)$

- Update by evidence and normalize:
$P\left(R_{2} \mid u_{1}, u_{2}\right)=\alpha P\left(u_{2} \mid R_{2}\right) P\left(R_{2} \mid u_{1}\right)=\alpha(0.9,0.2) \cdot(0.627,0.373)=(0.883,0.117)$

Umbrella example

Day 0:

- No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.

Day 1: 1st observation $U_{1}=$ true

- Prediction: $P\left(R_{1}\right)=\sum_{r_{0}} P\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)=(0.7,0.3) \cdot 0.5+(0.7,0.3) \cdot 0.5=(0.5,0.5)$
- Update by evidence and normalize:

$$
P\left(R_{1} \mid u_{1}\right)=\alpha P\left(u_{1} \mid R_{1}\right) P\left(R_{1}\right)=\alpha(0.9,0.2) \cdot(0.5,0.5)=\alpha(0.45,0.1)=(0.818,0.182)
$$

Day 2: 2nd observation $U_{2}=$ true
\square Prediction: $P\left(R_{2} \mid u_{1}\right)=\sum_{r_{1}} P\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)=(0.7,0.3) \cdot 0.818+(0.3,0.7) \cdot 0.182=(0.627,0.373)$

- Update by evidence and normalize:

$$
P\left(R_{2} \mid u_{1}, u_{2}\right)=\alpha P\left(u_{2} \mid R_{2}\right) P\left(R_{2} \mid u_{1}\right)=\alpha(0.9,0.2) \cdot(0.627,0.373)=(0.883,0.117)
$$

Probability of rain increased, because rain tends to persist.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Prediction

- Filtering contains 1-step prediction.
- General prediction in HMM is like filtering without adding a new evidence:

$$
P\left(X_{t+k+1} \mid e_{1}^{t}\right)=\sum_{x_{t+k}} P\left(X_{t+k+1} \mid x_{t+k}\right) P\left(x_{t+k} \mid e_{1}^{t}\right)
$$

- It involves the transition model only.
- From the time slice we have our last evidence, it is just a Markov chain over hidden states:
- Use filtering to compute $P\left(X_{t} \mid e_{1}^{t}\right)$. This is the initial state of MC.
- Use mini-forward algorithm to predict further in time.
- By predicting further in the future, we recover the stationary distribution of the Markov chain given by the transition model.

Model evaluation

- Compute the likelihood of the evidence sequence given the HMM parameters, i.e. $P\left(e_{1}^{t}\right)$.

Markov Models

- Useful for assesssing which of several HMMs could have generated the observation.
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Model evaluation

- Compute the likelihood of the evidence sequence given the HMM parameters, i.e. $P\left(e_{1}^{t}\right)$.
- Useful for assesssing which of several HMMs could have generated the observation.

Likelihood message:

- Similarly to forward message, we can define a likelihood message as

$$
l_{t}\left(X_{t}\right) \stackrel{\text { def }}{=} P\left(X_{t}, e_{1}^{t}\right)
$$

- It can be shown that the forward algorithm can be used to update the likelihood message as well:

$$
l_{t}\left(X_{t}\right)=\operatorname{FORWARD-UPDATE}\left(l_{t-1}\left(X_{t-1}\right), e_{t}\right)
$$

- The likelihood of e_{1}^{t} is then obtained by summing out X_{t} :

$$
L_{t}=P\left(e_{1}^{t}\right)=\sum_{x_{t}} l_{t}\left(x_{t}\right)
$$

- l_{t} is a probability of longer and longer evidence sequence as time goes by, resulting in numbers close to $0 \Rightarrow$ underflow problems. (
- When forward updates are used with the forward message f_{t}, these issues are prevented, because f_{t} is rescaled in each time step to form a proper prob. distribution.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Let's factorize the distribution as follows:

$$
\begin{array}{rlrl}
P\left(X_{k} \mid e_{1}^{t}\right) & =P\left(X_{t} \mid e_{1}^{k}, e_{k+1}^{t}\right)= & & \text { (split the evidence sequence) } \\
& =\alpha P\left(e_{k+1}^{t} \mid X_{k}, e_{1}^{k}\right) P\left(X_{k} \mid e_{1}^{k}\right)= & & \text { (from Bayes rule) } \\
& =\alpha \underbrace{P\left(e_{k+1}^{t} \mid X_{k}\right)} \underbrace{P\left(X_{k} \mid e_{1}^{k}\right)} \quad \text { (using Markov assumption) }
\end{array}
$$

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Smoothing

Compute the distribution over past state given evidence up to present:

$$
P\left(X_{k} \mid e_{1}^{t}\right) \text { for some } k<t .
$$

Let's factorize the distribution as follows:

$$
\begin{array}{rlrl}
P\left(X_{k} \mid e_{1}^{t}\right) & =P\left(X_{t} \mid e_{1}^{k}, e_{k+1}^{t}\right)= & & \text { (split the evidence sequence) } \\
& =\alpha P\left(e_{k+1}^{t} \mid X_{k}, e_{1}^{k}\right) P\left(X_{k} \mid e_{1}^{k}\right)= & & \text { (from Bayes rule) } \\
& =\alpha \underbrace{P\left(e_{k+1}^{t} \mid X_{k}\right)}_{?} \underbrace{P\left(X_{k} \mid e_{1}^{k}\right)}_{\text {filtering, forward }} & \text { (using Markov assumption) }
\end{array}
$$

$$
\begin{array}{rlr}
P\left(e_{k+1}^{t} \mid X_{k}\right) & =\sum_{x_{k+1}} P\left(e_{k+1}^{t} \mid X_{k}, x_{k+1}\right) P\left(x_{k+1} \mid X_{k}\right)= & \text { (condition on } \left.X_{k+1}\right) \\
& =\sum_{x_{k+1}} P\left(e_{k+1}^{t} \mid x_{k+1}\right) P\left(x_{k+1} \mid X_{k}\right)= & \text { (using Markov assumption) } \\
& =\sum_{x_{k+1}} P\left(e_{k+1}, e_{k+2}^{t} \mid x_{k+1}\right) P\left(x_{k+1} \mid X_{k}\right)= & \text { (split evidence sequence) } \\
& =\sum_{x_{k+1}}^{P\left(e_{k+1} \mid x_{k+1}\right)} \underbrace{P\left(e_{k+2}^{t} \mid x_{k+1}\right)}_{\text {sensor model }} \underbrace{P\left(x_{k+1} \mid X_{k}\right)}_{\text {recursion }} & \text { (using cond. independence) } \\
\text { transition model } &
\end{array}
$$

Smoothing (cont.)

Markov Models

$$
P\left(e_{k+1}^{t} \mid X_{k}\right)=\sum_{x_{k+1}} \underbrace{P\left(e_{k+1} \mid x_{k+1}\right)}_{\text {sensor model }} \underbrace{P\left(e_{k+2}^{t} \mid x_{k+1}\right)}_{\text {recursion }} \underbrace{P\left(x_{k+1} \mid X_{k}\right)}_{\text {transition model }}
$$

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Backward message:

$$
b_{k}\left(X_{k}\right) \stackrel{\text { def }}{=} P\left(e_{k+1}^{t} \mid X_{k}\right)
$$

Then

$$
b_{k}\left(X_{k}\right)=\sum_{x_{k+1}} P\left(e_{k+1} \mid x_{k+1}\right) b_{k+1} P\left(x_{k+1} \mid X_{k}\right)
$$

i.e.

$$
b_{k}=\operatorname{BACKWARD-UPDATE}\left(b_{k+1}, e_{k+1}\right)
$$

where

- the BACKWARD-UPDATE function implements the update equation above, and

■ the recursion is initialized by $b_{t}=P\left(e_{t+1}^{t} \mid X_{t}\right)=P\left(\varnothing \mid X_{t}\right)=\mathbf{1}$.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Smoothing (cont.)

The whole smoothing algorithm can then be expressed as

$$
P\left(X_{k} \mid e_{1}^{t}\right)=\alpha P\left(e_{k+1}^{t} \mid X_{k}\right) P\left(X_{k} \mid e_{1}^{k}\right)=\alpha f_{k} \times b_{k}
$$

where

- \times denotes element-wise multiplication.
- Both f_{k} and b_{k} can be computed by recursion in time:
- f_{k} by a forward recursion from 1 to k,
- b_{k} by a backward recursion from t to $k+1$.

Smoothing the whole sequence of hidden states:

- Can be computed efficiently by
- a forward pass, computing and storing all the filtered estimates f_{k} for $k=1 \rightarrow t$, followed by
■ a backward pass, using the stored $f_{k} \mathrm{~s}$ and computing $b_{k} \mathrm{~s}$ on the fly for $k=t \rightarrow 1$.

Umbrella example: Smoothing

Filtering with uniform prior and observations $U_{1}=$ true and $U_{2}=$ true:

- Day 0: No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.
- Day 1: Observation $U_{1}=$ true: $P\left(R_{1} \mid u_{1}\right)=(0.818,0.182)$
- Day 2: Observation $U_{2}=$ true: $P\left(R_{2} \mid u_{1}, u_{2}\right)=(0.883,0.117)$

Umbrella example: Smoothing

Filtering with uniform prior and observations $U_{1}=$ true and $U_{2}=$ true:

- Day 0: No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.
- Day 1: Observation $U_{1}=$ true: $P\left(R_{1} \mid u_{1}\right)=(0.818,0.182)$
- Day 2: Observation $U_{2}=$ true: $P\left(R_{2} \mid u_{1}, u_{2}\right)=(0.883,0.117)$

Filtering versus smoothing:

- Filtering estimates $P\left(R_{t}\right)$ by using evidence up to time t, i.e. $P\left(R_{1}\right)$ is estimated by $P\left(R_{1} \mid u_{1}\right)$, i.e. it ignores future observation u_{2}.
- At $t=2$, we have a new observation u_{2} which also brings some information about R_{1}. We can thus update the distribution about past state by future evidence by computing $P\left(R_{1} \mid u_{1}, u_{2}\right)$.

Umbrella example: Smoothing

Filtering with uniform prior and observations $U_{1}=$ true and $U_{2}=$ true:

- Day 0: No observations, just prior belief: $P\left(R_{0}\right)=(0.5,0.5)$.
- Day 1: Observation $U_{1}=$ true: $P\left(R_{1} \mid u_{1}\right)=(0.818,0.182)$
- Day 2: Observation $U_{2}=$ true: $P\left(R_{2} \mid u_{1}, u_{2}\right)=(0.883,0.117)$

Filtering versus smoothing:

- Filtering estimates $P\left(R_{t}\right)$ by using evidence up to time t, i.e. $P\left(R_{1}\right)$ is estimated by $P\left(R_{1} \mid u_{1}\right)$, i.e. it ignores future observation u_{2}.
- At $t=2$, we have a new observation u_{2} which also brings some information about R_{1}. We can thus update the distribution about past state by future evidence by computing $P\left(R_{1} \mid u_{1}, u_{2}\right)$.

Smoothing:

$$
P\left(R_{1} \mid u_{1}, u_{2}\right)=\alpha P\left(R_{1} \mid u_{1}\right) P\left(u_{2} \mid R_{1}\right)
$$

- The first term is known from the forward pass.
- The second term can be computed by the backward recursion:

$$
P\left(u_{2} \mid R_{1}\right)=\sum_{r_{2}} P\left(u_{2} \mid r_{2}\right) P\left(\varnothing \mid r_{2}\right) P\left(r_{2} \mid R_{1}\right)=0.9 \cdot 1 \cdot(0.7,0.3)+0.2 \cdot 1 \cdot(0.3,0.7)=(0.69,0.41)
$$

- Substituting back to the smoothing equation above:

$$
P\left(R_{1} \mid u_{1}, u_{2}\right)=\alpha(0.818,0.182) \times(0.69,0.41) \doteq(0.883,0.117)
$$

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Forward-backward algorithm

Algorithm 1: FORWARD-BACKWARD (e_{1}^{t}, P_{0}) returns a vector of prob. distributions
Input : $e_{1}^{t}-$ a vector of evidence values for steps $1, \ldots, t$
P_{0} - the prior distribution on the initial state
Local : f_{0}^{t}-a vector of forward messages for steps $0, \ldots, t$
b - the backward message, initially all 1 s
s_{1}^{t} - a vector of smoothed estimates for steps $1, \ldots, t$
Output: a vector of prob. distributions, i.e. the smoothed estimates s_{1}^{t}
begin
$f_{0} \leftarrow P_{0}$
for $i=1$ to t do
$f_{i} \leftarrow \operatorname{FORWARD-UPDATE}\left(f_{i-1}, e_{i}\right)$
for $i=t$ downto 1 do
$s_{i} \leftarrow$ NORMALIZE $\left(f_{i} \times b\right)$
$b \leftarrow \operatorname{BACKWARD-UPDATE}\left(b, e_{i}\right)$
return s_{1}^{t}

Most likely sequence

Weather-Umbrella example problem:

- Assume that the observation sequence over 5 days is

Markov Models
нмM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Most likely sequence

Weather-Umbrella example problem:

- Assume that the observation sequence over 5 days is
$u_{1}^{5}=$ (true, true, false, true, true).
- What is the weather sequence most likely to explain these observations?

Possible approaches:

- Approach 1: Enumeration of all possible sequences.
- View each sequence as a possible path through the state trellis graph:

- There are 2 possible states for each of the 5 days, that is $2^{5}=32$ different state sequences r_{1}^{5}.
- Enumerate and evaluate them by computing $P\left(r_{1}^{t}, e_{1}^{t}\right)$, and choose the one with the largest probability.
- Intractable for longer sequences/larger state spaces. Can it be done more efficiently?

Markov Models

HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Most likely sequence (cont.)

- Approach 2: Sequence of most likely states?
\square Use smoothing to find a posterior distribution of rain $P\left(R_{k} \mid u_{1}^{t}\right)$ for all time steps.
- Then construct a sequence of most likely states

$$
\left(\arg \max _{r_{1}} P\left(r_{1} \mid u_{1}^{t}\right), \ldots, \arg \max _{r_{t}} P\left(r_{t} \mid u_{1}^{t}\right)\right)
$$

- But this is not the same as the most likely sequence

$$
\arg \max _{r_{1}^{t}} P\left(r_{1}^{t} \mid u_{1}^{t}\right)
$$

- Approach 3: Find $\arg \max _{r_{1}^{t}} P\left(r_{1}^{t} \mid u_{1}^{t}\right)$ using a recursive algorithm:
- The likelihood of any path is the product of the transition probabilities along the path and the probabilities of the given observations at each state.
- The most likely path to certain state x_{t} consists of the most likely path to some state x_{t-1} followed by a transition to x_{t}. The state x_{t-1} that will become part of the path to x_{t} is the one which maximizes the likelihood of that path.
- Let's define a recursive relationship between most likely path to each state x_{t-1} and most likely path to each state x_{t}.

Markov Models
HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary

Viterbi algorithm

A dynamic programming approach to finding most likely sequence of states.

- We want to find $\arg \max _{x_{1}^{t}} P\left(x_{1}^{t} \mid e_{1}^{t}\right)$.

■ Note that $\arg \max _{x_{1}^{t}} P\left(x_{1}^{t} \mid e_{1}^{t}\right)=\arg \max _{x_{1}^{t}} P\left(x_{1}^{t}, e_{1}^{t}\right)$. Let's work with the joint.

- Let's define the max message:

$$
\begin{aligned}
m_{t}\left(X_{t}\right) & \stackrel{\text { def }}{=} \max _{x_{1}^{t-1}} P\left(x_{1}^{t-1}, X_{t}, e_{1}^{t}\right)= \\
& =\max _{x_{1}^{t-2}, x_{t-1}} P\left(e_{t} \mid X_{t}\right) P\left(X_{t} \mid x_{t-1}\right) P\left(x_{1}^{t-1}, e_{1}^{t-1}\right)= \\
& =P\left(e_{t} \mid X_{t}\right) \max _{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) \max _{x_{1}^{t-2}} P\left(x_{1}^{t-1}, e_{1}^{t-1}\right)= \\
& =P\left(e_{t} \mid X_{t}\right) \max _{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) m_{t-1}\left(x_{t-1}\right) \text { for } t \geq 2 .
\end{aligned}
$$

- The recursion is initialized by $m_{1}=P\left(X_{1}, e_{1}\right)=\operatorname{FORWARD-UPDATE}\left(P\left(X_{0}\right), e_{1}\right)$.
- At the end, we have the probability of the most likely sequence reaching each final state.
- The construction of the most likely sequence starts in the final state with the largest probability, and runs backwards.
- The algorithm needs to store for each x_{t} its "best" predecesor x_{t-1}.

Markov Models HMM

- MC to HMM
- Hidden MM
- HMM Examples
- W-U Example
- HMM tasks
- Filtering
- Online updates
- Forward algorithm
- Umbrella example
- Prediction
- Model evaluation
- Smoothing
- Umbrella smooth.
- Forward-backward
- Most likely seq.
- Viterbi

Summary \qquad

Viterbi algorithm: example

Weather-Umbrella example:

- After applying

$$
\begin{aligned}
& m_{1}=P\left(X_{1}, e_{1}\right)=\text { FORWARD-UPDATE }\left(P\left(X_{0}\right), e_{1}\right) \text { and } \\
& m_{t}=P\left(e_{t} \mid X_{t}\right) \max _{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) m_{t-1} \text { for } t \geq 2
\end{aligned}
$$

we have the following:

- The most likely sequence is constructed by
- starting in the last state with the highest probability, and
- following the bold arrows backwards.

Note:

- The probabilities for sequences of increasing length decrease towards 0 , they can underflow.
- To remedy this, we can use the log-sum-exp approach.

Summary

Competencies

After this lecture, a student shall be able to ..

- define Markov Chain (MC), describe assumptions used in MCs;
- show the factorization of joint probability distribution used by 1st-order MC;
- understand and implement the mini-forward algorithm for prediction;
- explain the notion of the stationary distribution of a MC, describe its features, compute it analytically for simple cases;
- define Hidden Markov Model (HMM), describe assumptions used in HMM;
- explain the factorization of the joint probability distribution of states and observations implied by HMM;

■ define the main inference tasks related to HMMs;

- explain the principles of forward, forward-backward, and Viterbi algorithms, implement them, and know when to apply them;
■ compute a few steps of the above algorithms by hand for simple cases;
- describe issues that can arise in practice when using the above algorithms.

