CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Cybernetics

Committees, ensembles.

Petr Pošík
Czech Technical University in Prague
Faculty of Electrical Engineering
Dept. of Cybernetics

Introduction

Ensemble a.k.a committee

- ML model composing multiple different models to obtain better predictive performance than could be obtained from any of the constituent models.

Introduction

- Committee
- Examples
- Aggregation

Bagging
Random forests
Boosting
Summary

- A way to compensate for poor learning algorithms by performing a lot of extra computations.
- Ensembles tend to yield better results when there is a significant diversity among the models (Intuition: averaging reduces variance).
- Individual ensamble/committee methods differ in the way they create individual models different from each other.
- Use different kinds of models, or models unstable w.r.t. a change in the training data.

Ensemble examples

Some examples of committee/ensemble methods:

- Stacking

Introduction

- Committee
- Examples
- Aggregation

Bagging
Random forests
Boosting
Summary

- Bagging
- Random forests
- Boosting

■ ...

Decision trees (classification and regression) are used most often as the base models because

- they are relatively fast to learn,
- they are unstable w.r.t. the changes in the training dataset, and thus
- it is quite easy to make a lot of trees which are very diverse.

Aggregation

The final aggregation of results of individual models is usually done by

- (weighted) voting of individual models for classification problems,
- (weighted) averaging of individual models for regression problems,
- or by other techniques.

Aggregation

The final aggregation of results of individual models is usually done by

- (weighted) voting of individual models for classification problems,
- (weighted) averaging of individual models for regression problems,
- or by other techniques.

Stacking

- Assume we have M different models h_{m} created for the same modeling task, each being a function $h_{m}(\boldsymbol{x})$ of the input features \boldsymbol{x}.
- The predictions of these models, $\boldsymbol{h}(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{M}(\boldsymbol{x})\right)$, may be considered new features extracted from the data set (basis expansion).
- We can thus train a higher-level classification/regression model $h_{\text {stack }}$ as a function of these new features, i.e. $h_{\text {stack }}(\boldsymbol{h})$ (sometimes together with the original features, i.e. $h_{\text {stack }}(\boldsymbol{x}, \boldsymbol{h})$).
- For classification, logistic regression is often used as $h_{\text {stack }}$.
- For regression, multiple linear regression is often used as $h_{\text {stack }}$ with the constraint on the weights w_{i} such that $\sum w_{i}=1$ and $w_{i}>0 \forall i$.
■ An obvious way to estimate the weights \boldsymbol{w} as $\boldsymbol{w}^{*}=\arg \min _{w} \sum_{i=1}^{|T|} L\left(y_{i}, \sum_{m=1}^{M} w_{m} h_{m}\left(\boldsymbol{x}_{i}\right)\right)$, however, can result in overfitting; this is solved by LOO cross-validation, i.e. using the estimate $\boldsymbol{w}^{*}=\arg \min _{\boldsymbol{w}} \sum_{i=1}^{|T|} L\left(y_{i}, \sum_{m=1}^{M} w_{m} \hat{h}_{m}^{-i}\left(\boldsymbol{x}_{i}\right)\right)$, where \hat{h}_{m}^{-i} is a predictor obtained by training on data excluding $\left(x_{i}, y_{i}\right)$, i.e. at the price of high-computational demands.

Bagging

Bootstrapping

- A general statistical technique for assessing the accuracy of parameter estimates and for hypotheses testing.

Introduction

- It relies on many repetitions and random sampling with replacement.

Introduction

Bagging

- Bootstrapping
- Bootstrap sample
- Bagging
- Features

Random forests
Boosting
Summary

Bootstrapping

- A general statistical technique for assessing the accuracy of parameter estimates and for hypotheses testing.
- It relies on many repetitions and random sampling with replacement.

Example: Assume we want to estimate the average height of all the people in the world. How to do that?

- Cannot measure the whole population, measure just a sample of N people.
- Using this sample, we can obtain a (single) point estimate of the average population height: $\hat{h}=\frac{1}{N} \sum_{i=1}^{N} h_{i}$.
- We also need some measure of uncertainty/variability of this estimate. How to do that?
- Use "classic" statistics: compute the sample variance \hat{s}_{h}^{2} and compute the variance of the estimate as $\hat{s}_{\hat{h}}^{2}=\frac{\hat{s}_{h}^{2}}{N}$, or:
- Use bootstrapping:

1. Repeat M times $\left(M=10^{2}, \ldots, 10^{6}\right)$:

- Create a bootstrap sample from the original dataset.
- Compute b th estimate of the statistic (here average) from the bootstrap sample.

2. Now you have a histogram of the estimates (here averages), from which you can estimate the mean, variance, ... of the sampling distribution.

Similar process works for many other estimators.

Introduction
Bagging

- Bootstrapping
- Bootstrap sample
- Bagging
- Features

Random forests
Boosting
Summary

Bootstrap sample

Assume we have a dataset T with N items. What is the bootstrap sample T^{b} ?

- A pertubed version of the original dataset T.
- Each item of T^{b} was chosen uniformly with replacement from the original dataset T. Usually, $|T|=N=\left|T^{b}\right|$.
- Some items of T are copied to T^{b} more than once. Some items are not copied at all.

Introduction

Bagging

- Bootstrapping
- Bootstrap sample
- Bagging
- Features

Random forests Boosting

Summary

Bootstrap sample

Assume we have a dataset T with N items. What is the bootstrap sample T^{b} ?

- A pertubed version of the original dataset T.
- Each item of T^{b} was chosen uniformly with replacement from the original dataset T. Usually, $|T|=N=\left|T^{b}\right|$.
- Some items of T are copied to T^{b} more than once. Some items are not copied at all.

How many unique elements of T are present in T^{b} (on average)?

- Probability that a particular item will not be chosen in one particular pick: $1-\frac{1}{N}$
- Probability that a particular item will not be chosen in any of N picks: $\left(1-\frac{1}{N}\right)^{N}$
- The expected number of items that will not be copied to a bootstrap sample:
$N\left(1-\frac{1}{N}\right)^{N} \approx N e^{-1}=N \cdot 0.368$
- The expected number of unique elements copied from T :
$N\left(1-\left(1-\frac{1}{N}\right)^{N}\right) \approx N\left(1-e^{-1}\right)=N \cdot 0.632$

Bagging a.k.a. Bootstrap aggregation

■ Uses bootstrap to improve the estimate or the prediction itself.

- Aggregating results of several models reduces variance and prevents overfitting.

Introduction
Bagging

- Bootstrapping
- Bootstrap sample
- Bagging
- Features

Random forests
Boosting
Summary \qquad

- Algorithm:

1. Create M bootstrap samples T^{i} from training data $T(i=1, \ldots, M)$.
2. Build a model h_{i} on each bootstrap sample T^{i}.
3. Construct final model by averaging/voting the predictions of individual models:

$$
\hat{y}=h_{\mathrm{bag}}(x)=\frac{1}{M} \sum_{i=1}^{M} h_{i}(x), \text { resp. } \hat{y}=h_{\mathrm{bag}}(x)=\arg \max _{y \in C} \sum_{i=1}^{M} I\left(y=h_{i}(x)\right)
$$

Introduction
Bagging

- Bootstrapping
- Bootstrap sample
- Bagging
- Features

Random forests
Boosting
Summary

Features

Bagging

- leads to improvements for unstable procedures (artificial neural networks, classification and regression trees, etc.), but
- it can mildly degrade the performance of stable methods such as K-nearest neighbors.
- Thanks to bootstrapping, it can provide not only predictions, but also estimates of uncertainty of those predictions.

Estimate of prediction error (out-of-bag error):

- Around 37% of training examples are not part of a bootstrap sample; they are called OOB (out of bag).
- We can predict the model response for each training sample x_{i} using only the models that did not have x_{i} in their bootstrap sample.
- We can average these predicted responses (regression) or can take a majority vote (classification) to get a single "OOB prediction" for the each observation.
- OOB predictions then can be used to compute OOB estimate of the error.
- With M sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error.

Random forests

Random forest (RF)

An ensamble method using set of decision trees (i.e. forest):

- Trees that are grown very deep tend to learn highly irregular patterns: they overfit

Introduction
Bagging
Random forests

- RF
- Features

Boosting

Summary their training sets, i.e. have low bias, but very high variance.
■ RF perform averaging of multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance.

RF combine

- bagging, and
- random subspace method (see below).

Predictions are computed using voting/averaging.
To train a single tree, RF algorithm

- creates a bootstrap sample of the training data (bagging), and
- uses a modified tree-learning algorithm which considers only a random subset of input features at each candidate split in the learning process ("feature bagging"; this further decorrelates the resulting trees). Suggestions:
- Classification: consider \sqrt{D} features at each split.
- Regression: consider $D / 3$ features at each split, use minimum node size of 5 .
- In ExtraTrees (extremely randomized trees), instead of searching for the locally optimal split for each variable, a random value is used for the split.

RF features

Estimate of prediction uncertainty and OOB error:

- See bagging.

Introduction

Bagging
Random forests

- RF
- Features

Boosting
Summary

Variable importance:

1. Grow the forest. Compute OOB error for each data point averaged over the whole forest.
2. To measure the importance of j th variable, permute its values, and compute OOB error on this perturbed dataset. Compute the difference of the estimates before and after permutation.
3. The larger the difference, the larger the importance of variable j.

Boosting

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further considerations

Summary

Boosting

Hypothesis Boosting Problem

- If there exists an efficient algorithm able to create weak classifiers (i.e. classifiers only slightly better than random guessing), does it also mean that there is an efficient algorithm able to build strong classifiers (i.e. classifiers with an arbitrary precision)?
- No constraint on the algorithm.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

Boosting

Hypothesis Boosting Problem

- If there exists an efficient algorithm able to create weak classifiers (i.e. classifiers only slightly better than random guessing), does it also mean that there is an efficient algorithm able to build strong classifiers (i.e. classifiers with an arbitrary precision)?
- No constraint on the algorithm.

Most (not all) Boosting algorithms

- sequentially learn weak classifiers using weighted training set (using information from previous trees),
- construct the final strong classifier as a weighted sum of the weak classifiers,
- assign the weights to individual weak learners depending on their accuracy,
- re-weight the training data for another round of the weak learner,
- differ in the way how they weight the training data and/or the individual weak classifiers.

AdaBoost (informally)

AdaBoost

- Training data:

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

In each iteration $t=1, \ldots, M$, it uses different weights $w_{t}(i)$ of the training examples \boldsymbol{x}_{i}.

- Misclassified examples get a larger weight for the next iteration.
- The resulting classifier:
- Weighted voting.
- More accurate models get larger weight.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

AdaBoost.M1

- AdaBoost for classification problem and weak learners with class label as output.
- A slightly different version exists for weak learners with output in the form of class probabilities.

Algorithm 1: AdaBoost.M1

Input: Training set of labeled examples: $T=\left\{x_{i}, y_{i}\right\}, x_{i} \in \mathcal{R}^{D}, y_{i} \in\{+1,-1\}, i=1, \ldots,|T|$
Output: Final classifier $H_{\text {final }}(x)=\operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} h_{m}(x)\right)$
begin
Initialize the weights of training examples: $w_{1}(i)=\frac{1}{|T|}$.
for $m=1, \ldots, M$ do
Train a weak classifier h_{m} using T with weights w_{m}.
Compute the weighted error: $\epsilon_{m}=\frac{\sum_{m=1}^{|T|} w_{m}(i) I\left(y_{i} \neq h_{m}\left(\boldsymbol{x}_{i}\right)\right)}{\sum_{m=1}^{|T|} w_{m}(i)}$
Compute the weight of classifier $h_{m}: \alpha_{m}=\ln \left(\frac{1-\epsilon_{m}}{\epsilon_{m}}\right)>0$
Update the weights of the training examples: $w_{m+1}(i)=w_{m}(i) \cdot \exp \left[\alpha_{m} I\left(y_{i} \neq h_{m}\left(\boldsymbol{x}_{i}\right)\right)\right]$.

AdaBoost.M1 graphically

Iteration 1:
Iter 1: Last hypothesis

$\epsilon_{1}=0.3$
$\alpha_{1}=0.42$

AdaBoost.M1 graphically

Iteration 1:
Iter 1: Last hypothesis

$\epsilon_{1}=0.3$
$\alpha_{1}=0.42$

Iteration 2:

$\epsilon_{2}=0.21$
$\alpha_{2}=0.65$

AdaBoost.M1 graphically

AdaBoost.M1 graphically

Iteration 1:
Iter 1: Last hypothesis

$\epsilon_{1}=0.3$
$\alpha_{1}=0.42$

Iteration 2:

Iteration 3:
Iter 3: Last hypothesis

$\epsilon_{3}=0.13$
$\alpha_{3}=0.92$

AdaBoost: remarks

The training error:

- Let $\gamma_{t}=0.5-\epsilon_{t}$ be the improvement of the t-th model over a random guess.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary
- Let $\gamma=\min _{t} \gamma_{t}$ be the minimal improvement, i.e. the difference of error of all models h_{t} compared to the error of random guessing is at least γ, i.e.

$$
\forall t: \gamma_{t} \geq \gamma>0
$$

- It can be shown that the training error

$$
\operatorname{Err}_{\operatorname{Tr}}\left(H_{\text {final }}\right) \leq e^{-2 \gamma^{2} M}
$$

Forward stagewise additive modeling
Boosting tries to solve the following optimization problem: $f^{*}=\arg \min _{f \in \mathcal{F}} \sum_{i=1}^{|T|} L\left(y_{i}, f\left(x_{i}\right)\right)$

Introduction

Finding the optimal f^{*} is hard; we shall tackle it sequentially:
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks

Algorithm 2: Forward stagewise additive modeling (FSAM)

- Another view
- L2Boosting
- GBM
begin
Initialize $f_{0}(\boldsymbol{x})=0$.
for $m=1, \ldots, M$ do
Compute $\left(\alpha_{m}, \theta_{m}\right)=\arg \min _{\alpha, \theta} \sum_{i=1}^{|T|} L\left(y_{i}, f_{m-1}\left(\boldsymbol{x}_{i}\right)+\alpha h\left(\boldsymbol{x}_{i} ; \theta\right)\right)$.
Set $f_{m}(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})+\alpha_{m} h\left(\boldsymbol{x} ; \theta_{m}\right)$.
- Further
considerations
Summary $L(y, f(x))=\exp (-y \cdot f(x))$.

$$
\begin{aligned}
\left(\alpha_{m}, \theta_{m}\right) & =\arg \min _{\alpha, \theta} \sum_{i=1}^{|T|} \exp \left[-y_{i}\left(f_{m-1}\left(\boldsymbol{x}_{i}\right)+\alpha h\left(\boldsymbol{x}_{i} ; \theta\right)\right)\right] \\
& =\arg \min _{\alpha, \theta} \sum_{i=1}^{|T|} w_{m}(i) \exp \left[-y_{i} \alpha h\left(\boldsymbol{x}_{i} ; \theta\right)\right]
\end{aligned}
$$

where $w_{m}(i)=\exp \left(-y_{i} f_{m-1}\left(\boldsymbol{x}_{i}\right)\right)$ depend neither on α_{m} nor θ_{m} and can be regarded as weights of training examples, which change each iteration. AdaBoost.M1 then follows from minimization of the last expression.

L2Boosting

Suppose we need to solve regression problem with squared error loss (L2).

- Then at step m we have:

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

$$
\begin{aligned}
L\left(y_{i}, f_{m}\left(\boldsymbol{x}_{i}\right)\right) & =L\left(y_{i}, f_{m-1}\left(\boldsymbol{x}_{i}\right)+\alpha_{m} h\left(\boldsymbol{x}_{i} ; \theta_{m}\right)\right)= \\
& =\left(y_{i}-f_{m-1}\left(\boldsymbol{x}_{i}\right)-\alpha_{m} h\left(\boldsymbol{x}_{i} ; \theta_{m}\right)\right)^{2}= \\
& =\left(r_{i m}-\alpha_{m} h\left(\boldsymbol{x}_{i} ; \theta_{m}\right)\right)^{2},
\end{aligned}
$$

where we define $r_{i m}=y_{i}-f_{m-1}\left(x_{i}\right)$ to be the current residual of the model for i th data point.

- By fitting each weak model h_{m} to the residuals $r_{i m}$, the m th model f_{m} learns to correct its predecessor f_{m-1}.
- Observation: the residuals $r_{i m}=y_{i}-f_{m-1}\left(x_{i}\right)$ are negative gradients of the squared error loss function $\frac{1}{2}(y-f(x))^{2}$.
- The algorithm can be viewed as a gradient descent in the space of functions.
- The generalization of
- FSAM using exponential loss (AdaBoost.M1) and
- FSAM using L2 loss (L2Boosting)
for a general differentiable loss function L is called Gradient Boosting Machine.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

Gradient Boosting Algorithms

Algorithm 3: Gradient boosting

Input: Training set of labeled examples: $T=\left\{x_{i}, y_{i}\right\}, i=1, \ldots,|T|$, a differentiable loss function $L(y, f(x))$, number of iterations M.
Output: Final model $f_{\mathrm{M}}(\boldsymbol{x})$.
1 begin
2 Initialize model with constant value: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{|T|} L\left(y_{i}, \gamma\right)$
for $m=1, \ldots, M$ do
Compute pseudo-residuals $r_{i m}=-\left.\frac{\partial L\left(y_{i}, f\left(\boldsymbol{x}_{i}\right)\right)}{\partial f\left(\boldsymbol{x}_{i}\right)}\right|_{f(x)=f_{m-1}(\boldsymbol{x})}$ for all $i=1, \ldots,|T|$.
Fit model $h_{m}(\boldsymbol{x})$ to pseudo-residuals, i.e. use training set $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{|T|}$.
Compute multiplier α_{m} by solving the following 1D opt. problem:
$\alpha_{m}=\arg \min _{\alpha} \sum_{i=1}^{|T|} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\alpha h_{m}\left(x_{i}\right)\right)$.
Update the model: $f_{m}(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})+\alpha_{m} h_{m}(\boldsymbol{x})$

By plugging in different loss functions, we can construct different boosting variants like

- AdaBoost,
- L2Boost,
- LogitBoost,
- etc.

Further considerations

Choosing the number of models M :

- The optimal value usually found by tracking the error on validation set.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further considerations Summary

■ Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Further considerations

Choosing the number of models M :

- The optimal value usually found by tracking the error on validation set.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary
- Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Shrinkage:

- Often, the so-called shrinkage is applied, i.e. only a small part of the m th model is used:

$$
f_{m}(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})+v \alpha_{m} h\left(\boldsymbol{x} ; \theta_{m}\right)
$$

where $v \in(0,1)$, often $v \approx 0.1$, is the so-called learning rate.

- Learning is slowed down; it requires more models to be added to the model, providing a configuration trade-off between the number of trees and learning rate.

Introduction
Bagging
Random forests
Boosting

- Boosting
- AdaBoost
- Algorithm
- Graphically
- AdaBoost: remarks
- Another view
- L2Boosting
- GBM
- Further
considerations
Summary

Further considerations

Choosing the number of models M :
■ The optimal value usually found by tracking the error on validation set.

- Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Shrinkage:

- Often, the so-called shrinkage is applied, i.e. only a small part of the m th model is used:

$$
f_{m}(\boldsymbol{x})=f_{m-1}(\boldsymbol{x})+v \alpha_{m} h\left(\boldsymbol{x} ; \theta_{m}\right),
$$

where $v \in(0,1)$, often $v \approx 0.1$, is the so-called learning rate.
■ Learning is slowed down; it requires more models to be added to the model, providing a configuration trade-off between the number of trees and learning rate.

Stochastic gradient boosting

- It is possible to subsample the training data set and use only a subset of it to train each model.
- Subsample examples as in boosting (but without replacement).
- Subsample features as in random forests.
- It further prevents overfitting, speeds up learning of individual models, and gives chance to compute out-of-bag error estimates.

Summary

Competencies

After this lecture, a student shall be able to ...

- describe the basic principle behind all committee/ensemble methods;
- list and conceptually compare several methods to achieve diversity among models trained on the same data, and know which of these methods are used in which ensemble algorithms;
- explain the purpose and the basic principle of stacking;
- explain how a bootstrap sample is created from the available data, and describe its properties;
- describe features of bagging;
- explain how to compute out-of-bag error estimate when using bagging;
- explain the principle of random forests and describe their difference to bagging with trees;
- explain how to compute a score of variable importance using random forest;
- explain the hypothesis boosting problem, and define a weak and a strong classifier in this context;
- explain the basic principle of AdaBoost.M1 algorithm;
- relate the training error of the AdaBoost algorithm to the number of constituent models and to the errors of individual models;
- describe the relations of AdaBoost.M1, L2Boost, and Gradient Boosting.

