Committees, ensembles.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

Introduction 2 / 25

Ensemble a.k.a committee

- ML model composing multiple different models to obtain better predictive performance than could be obtained from any of the constituent models.
- A way to compensate for poor learning algorithms by performing a lot of extra computations.
- Ensembles tend to yield better results when there is a significant diversity among the models (Intuition: averaging reduces variance).
- Individual ensamble/committee methods differ in the way they create individual *models different from each other*.
- Use different kinds of models, or models unstable w.r.t. a change in the training data.

P. Pošík \odot 2017 Artificial Intelligence – 3 / 25

Aggregation

The final aggregation of results of individual models is usually done by

- (weighted) *voting* of individual models for *classification* problems,
- (weighted) *averaging* of individual models for *regression* problems,
- or by other techniques.

Stacking

- Assume we have *M* different models h_m created for the same modeling task, each being a function $h_m(x)$ of the input features *x*.
- The predictions of these models, $h(x) = (h_1(x), \ldots, h_M(x))$, may be considered new features extracted from the data set (basis expansion).
- We can thus train a higher-level classification/regression model h_{stack} as a function of these new features, i.e. $h_{stack}(h)$ (sometimes together with the original features, i.e. $h_{\text{stack}}(x, h)$).
- For classification, logistic regression is often used as h_{stack} .
- For regression, multiple linear regression is often used as h_{stack} with the constraint on the weights w_i such that $\sum w_i = 1$ and $w_i > 0 \,\forall i.$
- An obvious way to estimate the weights *w* as $w^* = \arg\min_w w$ |*T*| ∑ *i*=1 $L\left(y_i, \sum_{m=1}^M w_m h_m(x_i)\right)$, however, can result in overfitting; this is solved by LOO cross-validation, i.e. using the estimate $w^* = \arg\min_w w$ |*T*| ∑ *i*=1 $L\left(y_i, \sum_{m=1}^M w_m \hat{h}_m^{-i}(x_i)\right)$, where \hat{h}_m^{-i} is a predictor obtained by training on data excluding (x_i, y_i) , i.e. at the price of high-computational demands.

P. Pošík \odot 2017 Artificial Intelligence – 5 / 25

Bagging 6 / 25

Bootstrapping

- A general statistical technique for assessing the accuracy of parameter estimates and for hypotheses testing.
- It relies on *many repetitions* and *random sampling with replacement*.

Example: Assume we want to estimate the average height of all the people in the world. How to do that?

- Cannot measure the whole population, measure just a sample of *N* people.
- Using this sample, we can obtain a (single) point estimate of the average population height: $\hat{h} = \frac{1}{N} \sum_{i=1}^{N} h_i$.
- We also need some measure of uncertainty/variability of this estimate. How to do that?
- Use "classic" statistics: compute the sample variance \hat{s}_h^2 and compute the variance of the estimate as $\hat{s}_h^2 = \frac{\hat{s}_h^2}{N}$, or:
- Use *bootstrapping*:
	- 1. Repeat *M* times $(M = 10^2, ..., 10^6)$:
		- Create a bootstrap sample from the original dataset.
		- Compute *b*th estimate of the statistic (here average) from the bootstrap sample.
	- 2. Now you have a histogram of the estimates (here averages), from which you can estimate the mean, variance, . . . of the sampling distribution.

Similar process works for many other estimators.

P. Pošík \odot 2017 Artificial Intelligence – 7 / 25

Bootstrap sample

Assume we have a dataset *T* with *N* items. What is the **bootstrap sample** *T b* ?

- A pertubed version of the original dataset *T*.
- Each item of T^b was chosen uniformly with replacement from the original dataset *T*. Usually, $|T| = N = |T^b|$.
- Some items of *T* are copied to T^b more than once. Some items are not copied at all.

How many unique elements of T are present in T^b (on average)?

- Probability that a particular item will not be chosen in one particular pick: $1 \frac{1}{N}$
- Probability that a particular item will not be chosen in any of *N* picks: $\left(1-\frac{1}{N}\right)^N$

■ The expected number of items that will not be copied to a bootstrap sample: $N\left(1-\frac{1}{N}\right)^N \approx Ne^{-1} = N \cdot 0.368$

■ The expected number of unique elements copied from $T: N\left(1-\left(1-\frac{1}{N}\right)^N\right)\approx N\left(1-e^{-1}\right)=N\cdot 0.632$

P. Pošík \odot 2017 Artificial Intelligence – 8 / 25

Bagging a.k.a. Bootstrap aggregation

- Uses bootstrap to improve the estimate or the prediction itself.
- Aggregating results of several models reduces variance and prevents overfitting.
- Algorithm:
	- 1. Create *M* bootstrap samples T^i from training data T ($i = 1, ..., M$).
	- 2. Build a model h_i on each bootstrap sample T^i .

3. Construct final model by averaging/voting the predictions of individual models: $\hat{y} = h_{\text{bag}}(x) = \frac{1}{M}$ $\sum_{i=1}^{M} h_i(x)$, resp.

P. Pošík © 2017 Artificial Intelligence – 9 / 25

Features

Bagging

- leads to improvements for unstable procedures (artificial neural networks, classification and regression trees, etc.), but
- it can mildly degrade the performance of stable methods such as K-nearest neighbors.
- Thanks to bootstrapping, it can provide not only predictions, but also estimates of uncertainty of those predictions.

Estimate of prediction error (out-of-bag error):

- Around 37 % of training examples are not part of a bootstrap sample; they are called OOB (out of bag).
- We can predict the model response for each training sample x_i using only the models that did not have x_i in their bootstrap sample.
- We can average these predicted responses (regression) or can take a majority vote (classification) to get a single "OOB prediction" for the each observation.
- OOB predictions then can be used to compute OOB estimate of the error.
- With *M* sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error.

P. Pošík c 2017 Artificial Intelligence – 10 / 25

Random forests 11 / 25

Random forest (RF)

An ensamble method using set of decision trees (i.e. forest):

- Trees that are grown very deep tend to learn highly irregular patterns: they *overfit* their training sets, i.e. have *low bias*, but *very high variance*.
- RF perform averaging of multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance.

RF combine

- bagging, and
- random subspace method (see below).

Predictions are computed using voting/averaging.

To train a single tree, RF algorithm

- creates a bootstrap sample of the training data (bagging), and
- uses a modified tree-learning algorithm which considers only *a random subset of input features* at each candidate split in the learning process ("feature bagging"; this further decorrelates the resulting trees). Suggestions:
	- Classification: consider \sqrt{D} features at each split.
	- Regression: consider *D*/3 features at each split, use minimum node size of 5.
- In *ExtraTrees* (extremely randomized trees), instead of searching for the locally optimal split for each variable, a random value is used for the split.

P. Pošík c 2017 Artificial Intelligence – 12 / 25

RF features

Estimate of prediction uncertainty and OOB error:

■ See bagging.

Variable importance:

- 1. Grow the forest. Compute OOB error for each data point averaged over the whole forest.
- 2. To measure the importance of *j*th variable, permute its values, and compute OOB error on this perturbed dataset. Compute the difference of the estimates before and after permutation.
- 3. The larger the difference, the larger the importance of variable *j*.

P. Pošík c 2017 Artificial Intelligence – 13 / 25

Boosting 14 / 25

Boosting

Hypothesis Boosting Problem

■ If there exists an efficient algorithm able to create *weak classifiers* (i.e. classifiers only slightly better than random guessing), does it also mean that there is an efficient algorithm able to build *strong classifiers* (i.e. classifiers with an arbitrary precision)?

■ No constraint on the algorithm.

Most (not all) **Boosting algorithms**

- sequentially learn weak classifiers using weighted training set (using information from previous trees),
- construct the final strong classifier as a weighted sum of the weak classifiers,
- assign the weights to individual weak learners depending on their accuracy,
- re-weight the training data for another round of the weak learner,
- differ in the way how they weight the training data and/or the individual weak classifiers.

P. Pošík c 2017 Artificial Intelligence – 15 / 25

AdaBoost (informally)

AdaBoost

■ Training data:

- In each iteration *t* = 1, . . . , *M*, it uses different weights $w_t(i)$ of the training examples x_i .
- *Misclassified examples get a larger weight* for the next iteration.
- The resulting classifier:
	- Weighted voting.
	- More accurate models get larger weight.

P. Pošík c 2017 Artificial Intelligence – 16 / 25

P. Pošík © 2017 Artificial Intelligence – 17 / 25

AdaBoost: remarks

The training error:

- Let γ ^{*t*} = 0.5 − ϵ ^{*t*} be the improvement of the *t*-th model over a random guess.
- **■** Let $\gamma = \min_t \gamma_t$ be the minimal improvement, i.e. the difference of error of all models h_t compared to the error of random guessing is at least *γ*, i.e.

 $∀t: γ_t ≥ γ > 0.$

■ It can be shown that the training error

 $\text{Err}_{\text{Tr}}(H_{\text{final}}) \leq e^{-2\gamma^2 M}$

P. Pošík c 2017 Artificial Intelligence – 19 / 25

Forward stagewise additive modeling

Boosting tries to solve the following optimization problem: $f^* = \arg\min_{f \in \mathcal{F}}$ $\sum_{i=1}^{|T|} L(y_i, f(x_i))$ Finding the optimal f^* is hard; we shall

tackle it sequentially:

Algorithm 2: Forward stagewise additive modeling (FSAM)

1 begin 2 Initialize $f_0(x) = 0$.
 3 for $m = 1, ..., M$ do $\mathbf{a} \cdot \mathbf{b} = \mathbf{1}, \ldots, \mathbf{M} \cdot \mathbf{d} \cdot \mathbf{d}$ **4** Compute $(\alpha_m, \theta_m) = \arg\min_{\alpha, \theta}$ $\sum_{i=1}^{|T|} L(y_i, f_{m-1}(x_i) + \alpha h(x_i; \theta)).$ 5 Set $f_m(x) = f_{m-1}(x) + \alpha_m h(x; \theta_m)$.

AdaBoost.M1 is equivalent to FSAM using the exponential loss function $L(y, f(x)) = \exp(-y \cdot f(x))$.

$$
(\alpha_m, \theta_m) = \arg \min_{\alpha, \theta} \sum_{i=1}^{|T|} \exp \left[-y_i \left(f_{m-1}(\mathbf{x}_i) + \alpha h(\mathbf{x}_i; \theta) \right) \right]
$$

$$
= \arg \min_{\alpha, \theta} \sum_{i=1}^{|T|} w_m(i) \exp \left[-y_i \alpha h(\mathbf{x}_i; \theta) \right],
$$

where $w_m(i) = \exp(-y_i f_{m-1}(x_i))$ depend neither on α_m nor θ_m and can be regarded as weights of training examples, which change each iteration. AdaBoost.M1 then follows from minimization of the last expression.

P. Pošík c 2017 Artificial Intelligence – 20 / 25

L2Boosting

Suppose we need to solve regression problem with squared error loss (L2).

■ Then at step *m* we have:

$$
L(y_i, f_m(x_i)) = L(y_i, f_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)) =
$$

= $(y_i - f_{m-1}(x_i) - \alpha_m h(x_i; \theta_m))^2 =$
= $(r_{im} - \alpha_m h(x_i; \theta_m))^2$,

where we define $r_{im} = y_i - f_{m-1}(x_i)$ to be the current residual of the model for *i*th data point.

- By fitting each weak model h_m to the residuals r_{im} , the *m*th model f_m learns to correct its predecessor f_{m-1} .
- Observation: the residuals $r_{im} = y_i f_{m-1}(x_i)$ are negative gradients of the squared error loss function $\frac{1}{2}(y f(x))^2$.
- The algorithm can be viewed as a *gradient descent in the space of functions*.
- The generalization of
	- FSAM using exponential loss (AdaBoost.M1) and
	- FSAM using L2 loss (L2Boosting)

for a general differentiable loss function *L* is called **Gradient Boosting Machine**.

P. Pošík c 2017 Artificial Intelligence – 21 / 25

Gradient Boosting Algorithms

P. Pošík c 2017 Artificial Intelligence – 22 / 25

Further considerations

Choosing the number of models *M*:

- The optimal value usually found by tracking the error on validation set.
- Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Shrinkage:

■ Often, the so-called shrinkage is applied, i.e. only a small part of the *m*th model is used:

$$
f_m(x) = f_{m-1}(x) + \nu \alpha_m h(x; \theta_m),
$$

where $\nu \in (0,1)$, often $\nu \approx 0.1$, is the so-called *learning rate*.

■ Learning is slowed down; it requires more models to be added to the model, providing a configuration trade-off between the number of trees and learning rate.

Stochastic gradient boosting

- It is possible to subsample the training data set and use only a subset of it to train each model.
- Subsample examples as in boosting (but without replacement).
- Subsample features as in random forests.
- It further *prevents overfitting*, *speeds up learning* of individual models, and gives chance to *compute out-of-bag error* estimates.

P. Pošík c 2017 Artificial Intelligence – 23 / 25

Summary 24 / 25

Competencies

After this lecture, a student shall be able to ...

- describe the basic principle behind all committee/ensemble methods;
- list and conceptually compare several methods to achieve diversity among models trained on the same data, and know which of these methods are used in which ensemble algorithms;
- explain the purpose and the basic principle of stacking;
- explain how a bootstrap sample is created from the available data, and describe its properties;
- describe features of bagging;
- explain how to compute out-of-bag error estimate when using bagging;
- explain the principle of random forests and describe their difference to bagging with trees;
- explain how to compute a score of variable importance using random forest;
- explain the hypothesis boosting problem, and define a weak and a strong classifier in this context;
- explain the basic principle of AdaBoost.M1 algorithm;
- relate the training error of the AdaBoost algorithm to the number of constituent models and to the errors of individual models;
- describe the relations of AdaBoost.M1, L2Boost, and Gradient Boosting.

P. Pošík c 2017 Artificial Intelligence – 25 / 25