Committees, ensembles.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

Introduction	2
Committee	. 3
Examples	
Aggregation	
Bagging	6
Bootstrapping	. 7
Bootstrap sample	. 8
Bagging	
Features	
Random forests	11
RF	12
Features	
Boosting	14
Boosting	15
AdaBoost	
Algorithm	
Graphically	
	19
AdaBoost: remarks	
AdaBoost: remarks Another view	20
AdaBoost: remarks Another view L2Boosting	20 21
AdaBoost: remarks Another view L2Boosting GBM	20 21 22
AdaBoost: remarks Another view L2Boosting	20 21 22
AdaBoost: remarks. Another view. L2Boosting. GBM Further considerations.	20 21 22
AdaBoost: remarks Another view L2Boosting GBM	20 21 22 23 24

Introduction

Ensemble a.k.a committee

- ML model composing multiple different models to obtain better predictive performance than could be obtained from any of the constituent models.
- A way to compensate for poor learning algorithms by performing a lot of extra computations.
- Ensembles tend to yield better results when there is a significant diversity among the models (Intuition: averaging reduces variance).
- Individual ensamble/committee methods differ in the way they create individual *models different from each other*.
- Use different kinds of models, or models unstable w.r.t. a change in the training data.

P. Pošík © 2017

Artificial Intelligence - 3 / 25

P. Pošík © 2017

Artificial Intelligence - 4 / 25

Aggregation

The final aggregation of results of individual models is usually done by

- (weighted) *voting* of individual models for *classification* problems,
- (weighted) *averaging* of individual models for *regression* problems,
- or by other techniques.

Stacking

- Assume we have M different models h_m created for the same modeling task, each being a function $h_m(x)$ of the input features x.
- The predictions of these models, $h(x) = (h_1(x), \dots, h_M(x))$, may be considered new features extracted from the data set (basis expansion).
- We can thus train a higher-level classification/regression model h_{stack} as a function of these new features, i.e. $h_{\text{stack}}(h)$ (sometimes together with the original features, i.e. $h_{\text{stack}}(x, h)$).
- For classification, logistic regression is often used as h_{stack} .
- For regression, multiple linear regression is often used as h_{stack} with the constraint on the weights w_i such that $\sum w_i = 1$ and $w_i > 0 \forall i$.
- An obvious way to estimate the weights w as $w^* = \arg \min_{w} \sum_{i=1}^{|T|} L\left(y_i, \sum_{m=1}^{M} w_m h_m(x_i)\right)$, however, can result in overfitting; this is solved by LOO cross-validation, i.e. using the estimate $w^* = \arg \min_{w} \sum_{i=1}^{|T|} L\left(y_i, \sum_{m=1}^{M} w_m \hat{h}_m^{-i}(x_i)\right)$, where \hat{h}_m^{-i} is a predictor obtained by training on data excluding (x_i, y_i) , i.e. at the price of high-computational demands.

P. Pošík © 2017

Artificial Intelligence - 5 / 25

6 / 25

Bagging

Bootstrapping

- A general statistical technique for assessing the accuracy of parameter estimates and for hypotheses testing.
- It relies on *many repetitions* and *random sampling with replacement*.

Example: Assume we want to estimate the average height of all the people in the world. How to do that?

- Cannot measure the whole population, measure just a sample of *N* people.
- Using this sample, we can obtain a (single) point estimate of the average population height: $\hat{h} = \frac{1}{N} \sum_{i=1}^{N} h_i$.
- We also need some measure of uncertainty/variability of this estimate. How to do that?
- Use "classic" statistics: compute the sample variance \hat{s}_h^2 and compute the variance of the estimate as $\hat{s}_{\hat{t}}^2 = \frac{\hat{s}_h^2}{N}$, or:
- Use *bootstrapping*:
 - 1. Repeat *M* times $(M = 10^2, ..., 10^6)$:
 - Create a bootstrap sample from the original dataset.
 - Compute *b*th estimate of the statistic (here average) from the bootstrap sample.
 - 2. Now you have a histogram of the estimates (here averages), from which you can estimate the mean, variance, ... of the sampling distribution.

Similar process works for many other estimators.

P. Pošík © 2017

Artificial Intelligence - 7 / 25

Bootstrap sample

Assume we have a dataset *T* with *N* items. What is the **bootstrap sample** T^b ?

- A pertubed version of the original dataset *T*.
- Each item of T^b was chosen uniformly with replacement from the original dataset T. Usually, $|T| = N = |T^b|$.
- Some items of *T* are copied to *T^b* more than once. Some items are not copied at all.

How many unique elements of T are present in T^b (on average)?

- Probability that a particular item will not be chosen in one particular pick: $1 \frac{1}{N}$
- Probability that a particular item will not be chosen in any of *N* picks: $\left(1 \frac{1}{N}\right)^N$

The expected number of items that will not be copied to a bootstrap sample: $N\left(1-\frac{1}{N}\right)^N \approx Ne^{-1} = N \cdot 0.368$

• The expected number of unique elements copied from $T: N\left(1 - \left(1 - \frac{1}{N}\right)^N\right) \approx N\left(1 - e^{-1}\right) = N \cdot 0.632$

P. Pošík © 2017

Artificial Intelligence - 8 / 25

Bagging a.k.a. Bootstrap aggregation

- Uses bootstrap to improve the estimate or the prediction itself.
- Aggregating results of several models reduces variance and prevents overfitting.
- Algorithm:
 - 1. Create *M* bootstrap samples T^i from training data T (i = 1, ..., M).
 - 2. Build a model h_i on each bootstrap sample T^i .

3. Construct final model by averaging/voting the predictions of individual models: $\hat{y} = h_{\text{bag}}(x) = \frac{1}{M} \sum_{i=1}^{M} h_i(x)$, resp.

P. Pošík © 2017

Artificial Intelligence - 9 / 25

Features

Bagging

- leads to improvements for unstable procedures (artificial neural networks, classification and regression trees, etc.), but
- it can mildly degrade the performance of stable methods such as K-nearest neighbors.
- Thanks to bootstrapping, it can provide not only predictions, but also estimates of uncertainty of those predictions.

Estimate of prediction error (out-of-bag error):

- Around 37 % of training examples are not part of a bootstrap sample; they are called OOB (out of bag).
- We can predict the model response for each training sample x_i using only the models that did not have x_i in their bootstrap sample.
- We can average these predicted responses (regression) or can take a majority vote (classification) to get a single "OOB prediction" for the each observation.
- OOB predictions then can be used to compute OOB estimate of the error.
- With *M* sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error.

P. Pošík © 2017

Artificial Intelligence - 10 / 25

Random forests

11 / 25

Random forest (RF)

An ensamble method using set of decision trees (i.e. forest):

- Trees that are grown very deep tend to learn highly irregular patterns: they overfit their training sets, i.e. have low bias, but very high variance.
- RF perform averaging of multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance.

RF combine

- bagging, and
- random subspace method (see below).

Predictions are computed using voting/averaging.

To train a single tree, RF algorithm

- creates a bootstrap sample of the training data (bagging), and
- uses a modified tree-learning algorithm which considers only *a random subset of input features* at each candidate split in the learning process ("feature bagging"; this further decorrelates the resulting trees). Suggestions:
 - Classification: consider \sqrt{D} features at each split.
 - Regression: consider *D*/3 features at each split, use minimum node size of 5.
- In *ExtraTrees* (extremely randomized trees), instead of searching for the locally optimal split for each variable, a random value is used for the split.

P. Pošík © 2017

Artificial Intelligence – 12 / 25

RF features

Estimate of prediction uncertainty and OOB error:

See bagging.

Variable importance:

- 1. Grow the forest. Compute OOB error for each data point averaged over the whole forest.
- 2. To measure the importance of *j*th variable, permute its values, and compute OOB error on this perturbed dataset. Compute the difference of the estimates before and after permutation.
- 3. The larger the difference, the larger the importance of variable *j*.

P. Pošík © 2017

Artificial Intelligence - 13 / 25

Boosting

Boosting

Hypothesis Boosting Problem

If there exists an efficient algorithm able to create *weak classifiers* (i.e. classifiers only slightly better than random guessing), does it also mean that there is an efficient algorithm able to build *strong classifiers* (i.e. classifiers with an arbitrary precision)?

No constraint on the algorithm.

Most (not all) Boosting algorithms

- sequentially learn weak classifiers using weighted training set (using information from previous trees),
- construct the final strong classifier as a weighted sum of the weak classifiers,
- assign the weights to individual weak learners depending on their accuracy,
- re-weight the training data for another round of the weak learner,
- differ in the way how they weight the training data and/or the individual weak classifiers.

P. Pošík © 2017

Artificial Intelligence - 15 / 25

14 / 25

AdaBoost (informally)

AdaBoost

Training data:

- In each iteration t = 1, ..., M, it uses different weights $w_t(i)$ of the training examples x_i .
- Misclassified examples get a larger weight for the next iteration.
- The resulting classifier:
 - Weighted voting.
 - More accurate models get larger weight.

P. Pošík © 2017

Artificial Intelligence - 16 / 25

P. Pošík © 2017

Artificial Intelligence - 17 / 25

AdaBoost: remarks

The training error:

- Let $\gamma_t = 0.5 \epsilon_t$ be the improvement of the *t*-th model over a random guess.
- Let $\gamma = \min_t \gamma_t$ be the minimal improvement, i.e. the difference of error of all models h_t compared to the error of random guessing is at least γ , i.e.

 $\forall t: \gamma_t \geq \gamma > 0.$

It can be shown that the training error

 $\operatorname{Err}_{\operatorname{Tr}}(H_{\operatorname{final}}) \leq e^{-2\gamma^2 M}$

P. Pošík © 2017

Artificial Intelligence - 19 / 25

Forward stagewise additive modeling

Boosting tries to solve the following optimization problem: $f^* = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^{|T|} L(y_i, f(x_i))$ Finding the optimal f^* is hard; we shall

tackle it sequentially:

Algorithm 2: Forward stagewise additive modeling (FSAM)

1 begin Initialize $f_0(x) = 0$. 2 for $m = 1, \ldots, M$ do 3 Compute $(\alpha_m, \theta_m) = \arg \min_{\alpha, \theta} \sum_{i=1}^{|T|} L(y_i, f_{m-1}(\mathbf{x}_i) + \alpha h(\mathbf{x}_i; \theta)).$ 4 Set $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \alpha_m h(\mathbf{x}; \theta_m)$ 5

AdaBoost.M1 is equivalent to FSAM using the **exponential loss function** $L(y, f(x)) = \exp(-y \cdot f(x))$.

$$\begin{aligned} (\alpha_m, \theta_m) &= \arg\min_{\alpha, \theta} \sum_{i=1}^{|I|} \exp\left[-y_i \left(f_{m-1}(\mathbf{x}_i) + \alpha h(\mathbf{x}_i; \theta)\right)\right] \\ &= \arg\min_{\alpha, \theta} \sum_{i=1}^{|T|} w_m(i) \exp\left[-y_i \alpha h(\mathbf{x}_i; \theta)\right], \end{aligned}$$

where $w_m(i) = \exp(-y_i f_{m-1}(x_i))$ depend neither on α_m nor θ_m and can be regarded as weights of training examples, which change each iteration. AdaBoost.M1 then follows from minimization of the last expression.

P. Pošík © 2017

Artificial Intelligence - 20 / 25

L2Boosting

Suppose we need to solve regression problem with squared error loss (L2).

■ Then at step *m* we have:

$$\begin{split} L(y_i, f_m(\mathbf{x}_i)) &= L(y_i, f_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)) = \\ &= (y_i - f_{m-1}(\mathbf{x}_i) - \alpha_m h(\mathbf{x}_i; \theta_m))^2 = \\ &= (r_{im} - \alpha_m h(\mathbf{x}_i; \theta_m))^2, \end{split}$$

where we define $r_{im} = y_i - f_{m-1}(x_i)$ to be the current residual of the model for *i*th data point.

B By fitting each weak model h_m to the residuals r_{im} , the *m*th model f_m learns to correct its predecessor f_{m-1} .

- Observation: the residuals $r_{im} = y_i f_{m-1}(x_i)$ are negative gradients of the squared error loss function $\frac{1}{2}(y f(x))^2$.
- The algorithm can be viewed as a gradient descent in the space of functions.
- The generalization of
 - FSAM using exponential loss (AdaBoost.M1) and
 - FSAM using L2 loss (L2Boosting)

for a general differentiable loss function L is called Gradient Boosting Machine.

P. Pošík © 2017

Artificial Intelligence - 21 / 25

Gradient Boosting Algorithms Algorithm 3: Gradient boosting Input: Training set of labeled examples: $T = \{x_i, y_i\}, i = 1, ..., |T|$, a differentiable loss function L(y, f(x)), number of iterations M. Output: Final model $f_M(x)$. 1 begin 2 Initialize model with constant value: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{|T|} L(y_i, \gamma)$ 3 for m = 1, ..., M do 4 Compute pseudo-residuals $r_{im} = -\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \Big|_{f(x) = f_{m-1}(x)}$ for all i = 1, ..., |T|.

5 Fit model $h_m(\mathbf{x})$ to pseudo-residuals, i.e. use training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^{|T|}$. 6 Compute multiplier α_m by solving the following 1D opt. problem: $\alpha_m = \arg\min_{\alpha} \sum_{k=1}^{|T|} L(y_i, f_{m-1}(\mathbf{x}_i) + \alpha h_m(\mathbf{x}_i))$.

Update the model: $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \alpha_m h_m(\mathbf{x})$

By plugging in different loss functions, we can construct different boosting variants like

AdaBoost,

- L2Boost,
- LogitBoost,
- etc.

7

P. Pošík © 2017

Further considerations

Choosing the number of models *M*:

- The optimal value usually found by tracking the error on validation set.
- Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Shrinkage:

• Often, the so-called shrinkage is applied, i.e. only a small part of the *m*th model is used:

 $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \alpha_m h(\mathbf{x}; \theta_m),$

where $\nu \in (0, 1)$, often $\nu \approx 0.1$, is the so-called *learning rate*.

Learning is slowed down; it requires more models to be added to the model, providing a configuration trade-off between the number of trees and learning rate.

Stochastic gradient boosting

- It is possible to subsample the training data set and use only a subset of it to train each model.
- Subsample examples as in boosting (but without replacement).
- Subsample features as in random forests.
- It further *prevents overfitting*, *speeds up learning* of individual models, and gives chance to *compute out-of-bag error* estimates.

P. Pošík © 2017

Artificial Intelligence - 23 / 25

Summary

Competencies

After this lecture, a student shall be able to ...

- describe the basic principle behind all committee/ensemble methods;
- list and conceptually compare several methods to achieve diversity among models trained on the same data, and know which
 of these methods are used in which ensemble algorithms;
- explain the purpose and the basic principle of stacking;
- explain how a bootstrap sample is created from the available data, and describe its properties;
- describe features of bagging;
- explain how to compute out-of-bag error estimate when using bagging;
- explain the principle of random forests and describe their difference to bagging with trees;
- explain how to compute a score of variable importance using random forest;
- explain the hypothesis boosting problem, and define a weak and a strong classifier in this context;
- explain the basic principle of AdaBoost.M1 algorithm;
- relate the training error of the AdaBoost algorithm to the number of constituent models and to the errors of individual models;
- describe the relations of AdaBoost.M1, L2Boost, and Gradient Boosting.

P. Pošík © 2017

Artificial Intelligence – 25 / 25