
Committees, ensembles.

Petr Pošík

Czech Technical University in Prague

Faculty of Electrical Engineering

Dept. of Cybernetics

Introduction 2
Committee . 3
Examples . 4
Aggregation. 5

Bagging 6
Bootstrapping . 7
Bootstrap sample . 8
Bagging . 9
Features . 10

Random forests 11
RF . 12
Features . 13

Boosting 14
Boosting . 15
AdaBoost . 16
Algorithm . 17
Graphically . 18
AdaBoost: remarks . 19
Another view. 20
L2Boosting . 21
GBM . 22
Further considerations. 23

Summary 24
Competencies . 25

1

Introduction 2 / 25

Ensemble a.k.a committee

■ ML model composing multiple different models to obtain better predictive performance than could be obtained from any of the
constituent models.

■ A way to compensate for poor learning algorithms by performing a lot of extra computations.

■ Ensembles tend to yield better results when there is a significant diversity among the models (Intuition: averaging reduces
variance).

■ Individual ensamble/committee methods differ in the way they create individual models different from each other.

■ Use different kinds of models, or models unstable w.r.t. a change in the training data.

Test. data

Tr. data

Training Training Training

Model 1 Pred. 1

Model M Pred. M

Model 2 Pred. 2

A
g
g
re

g
a
ti

o
n
,

v
o
ti

n
g

Final
prediction

..
.

...

...

P. Pošík c© 2017 Artificial Intelligence – 3 / 25

Ensemble examples

Some examples of committee/ensemble methods:

■ Stacking

■ Bagging

■ Random forests

■ Boosting

■ . . .

Decision trees (classification and regression) are used most often as the base models because

■ they are relatively fast to learn,

■ they are unstable w.r.t. the changes in the training dataset, and thus

■ it is quite easy to make a lot of trees which are very diverse.

P. Pošík c© 2017 Artificial Intelligence – 4 / 25

2

Aggregation

The final aggregation of results of individual models is usually done by

■ (weighted) voting of individual models for classification problems,

■ (weighted) averaging of individual models for regression problems,

■ or by other techniques.

Stacking

■ Assume we have M different models hm created for the same modeling task, each being a function hm(x) of the input features x.

■ The predictions of these models, h(x) = (h1(x), . . . , hM(x)), may be considered new features extracted from the data set (basis
expansion).

■ We can thus train a higher-level classification/regression model hstack as a function of these new features, i.e. hstack(h)
(sometimes together with the original features, i.e. hstack(x, h)).

■ For classification, logistic regression is often used as hstack.

■ For regression, multiple linear regression is often used as hstack with the constraint on the weights wi such that ∑ wi = 1 and
wi > 0 ∀i.

■ An obvious way to estimate the weights w as w
∗ = arg min

w

|T|
∑
i=1

L

(

yi ,
M

∑
m=1

wmhm(xi)

)

, however, can result in overfitting; this is

solved by LOO cross-validation, i.e. using the estimate w
∗ = arg min

w

|T|
∑
i=1

L

(

yi ,
M

∑
m=1

wm ĥ−i
m (xi)

)

, where ĥ−i
m is a predictor

obtained by training on data excluding (xi , yi), i.e. at the price of high-computational demands.

P. Pošík c© 2017 Artificial Intelligence – 5 / 25

Bagging 6 / 25

Bootstrapping

■ A general statistical technique for assessing the accuracy of parameter estimates and for hypotheses testing.

■ It relies on many repetitions and random sampling with replacement.

Example: Assume we want to estimate the average height of all the people in the world. How to do that?

■ Cannot measure the whole population, measure just a sample of N people.

■ Using this sample, we can obtain a (single) point estimate of the average population height: ĥ = 1
N ∑

N
i=1 hi .

■ We also need some measure of uncertainty/variability of this estimate. How to do that?

■ Use “classic” statistics: compute the sample variance ŝ2
h and compute the variance of the estimate as ŝ2

ĥ
=

ŝ2
h

N , or:

■ Use bootstrapping:

1. Repeat M times (M = 102, . . . , 106):

■ Create a bootstrap sample from the original dataset.

■ Compute bth estimate of the statistic (here average) from the bootstrap sample.

2. Now you have a histogram of the estimates (here averages), from which you can estimate the mean, variance, . . . of the
sampling distribution.

Similar process works for many other estimators.

P. Pošík c© 2017 Artificial Intelligence – 7 / 25

3

Bootstrap sample

Assume we have a dataset T with N items. What is the bootstrap sample Tb?

■ A pertubed version of the original dataset T.

■ Each item of Tb was chosen uniformly with replacement from the original dataset T. Usually, |T| = N = |Tb|.
■ Some items of T are copied to Tb more than once. Some items are not copied at all.

How many unique elements of T are present in Tb (on average)?

■ Probability that a particular item will not be chosen in one particular pick: 1 − 1
N

■ Probability that a particular item will not be chosen in any of N picks:
(

1 − 1
N

)N

■ The expected number of items that will not be copied to a bootstrap sample: N
(

1 − 1
N

)N
≈ Ne−1 = N · 0.368

■ The expected number of unique elements copied from T: N

(

1 −
(

1 − 1
N

)N
)

≈ N
(

1 − e−1
)

= N · 0.632

P. Pošík c© 2017 Artificial Intelligence – 8 / 25

Bagging a.k.a. Bootstrap aggregation

■ Uses bootstrap to improve the estimate or the prediction itself.

■ Aggregating results of several models reduces variance and prevents overfitting.

■ Algorithm:

1. Create M bootstrap samples Ti from training data T (i = 1, . . . , M).

2. Build a model hi on each bootstrap sample Ti .

3. Construct final model by averaging/voting the predictions of individual models: ŷ = hbag(x) =
1

M

M

∑
i=1

hi(x), resp.

ŷ = hbag(x) = arg max
y∈C

M

∑
i=1

I(y = hi(x))

Test. data

Tr. data

...Bootstrap

sample 1

Bootstrap

sample 2

Bootstrap

sample M

Training Training Training

Model 1 Pred. 1

Model M Pred. T

Model 2 Pred. 2

A
g
g
re

g
a
ti

o
n
,

v
o
ti

n
g

Final
prediction

..
.

...

...

P. Pošík c© 2017 Artificial Intelligence – 9 / 25

4

Features

Bagging

■ leads to improvements for unstable procedures (artificial neural networks, classification and regression trees, etc.), but

■ it can mildly degrade the performance of stable methods such as K-nearest neighbors.

■ Thanks to bootstrapping, it can provide not only predictions, but also estimates of uncertainty of those predictions.

Estimate of prediction error (out-of-bag error):

■ Around 37 % of training examples are not part of a bootstrap sample; they are called OOB (out of bag).

■ We can predict the model response for each training sample xi using only the models that did not have xi in their bootstrap
sample.

■ We can average these predicted responses (regression) or can take a majority vote (classification) to get a single “OOB
prediction” for the each observation.

■ OOB predictions then can be used to compute OOB estimate of the error.

■ With M sufficiently large, OOB error is virtually equivalent to leave-one-out cross-validation error.

P. Pošík c© 2017 Artificial Intelligence – 10 / 25

Random forests 11 / 25

Random forest (RF)

An ensamble method using set of decision trees (i.e. forest):

■ Trees that are grown very deep tend to learn highly irregular patterns: they overfit their training sets, i.e. have low bias, but very
high variance.

■ RF perform averaging of multiple deep decision trees, trained on different parts of the same training set, with the goal of
reducing the variance.

RF combine

■ bagging, and

■ random subspace method (see below).

Predictions are computed using voting/averaging.

To train a single tree, RF algorithm

■ creates a bootstrap sample of the training data (bagging), and

■ uses a modified tree-learning algorithm which considers only a random subset of input features at each candidate split in the
learning process (“feature bagging”; this further decorrelates the resulting trees). Suggestions:

■ Classification: consider
√

D features at each split.

■ Regression: consider D/3 features at each split, use minimum node size of 5.

■ In ExtraTrees (extremely randomized trees), instead of searching for the locally optimal split for each variable, a random value is
used for the split.

P. Pošík c© 2017 Artificial Intelligence – 12 / 25

5

RF features

Estimate of prediction uncertainty and OOB error:

■ See bagging.

Variable importance:

1. Grow the forest. Compute OOB error for each data point averaged over the whole forest.

2. To measure the importance of jth variable, permute its values, and compute OOB error on this perturbed dataset. Compute the
difference of the estimates before and after permutation.

3. The larger the difference, the larger the importance of variable j.

P. Pošík c© 2017 Artificial Intelligence – 13 / 25

Boosting 14 / 25

Boosting

Hypothesis Boosting Problem

■ If there exists an efficient algorithm able to create weak classifiers (i.e. classifiers only slightly better than random guessing), does
it also mean that there is an efficient algorithm able to build strong classifiers (i.e. classifiers with an arbitrary precision)?

■ No constraint on the algorithm.

Most (not all) Boosting algorithms

■ sequentially learn weak classifiers using weighted training set (using information from previous trees),

■ construct the final strong classifier as a weighted sum of the weak classifiers,

■ assign the weights to individual weak learners depending on their accuracy,

■ re-weight the training data for another round of the weak learner,

■ differ in the way how they weight the training data and/or the individual weak classifiers.

P. Pošík c© 2017 Artificial Intelligence – 15 / 25

6

AdaBoost (informally)

AdaBoost

■ Training data:

■ In each iteration t = 1, . . . , M, it uses different weights wt(i) of the training examples xi .

■ Misclassified examples get a larger weight for the next iteration.

■ The resulting classifier:

■ Weighted voting.

■ More accurate models get larger weight.

Test. data

Tr. data

...Data 1

Training

Data 2

Training

Data M

Training

Model 1 Pred. 1

Model M Pred. M

Model 2 Pred. 2

A
g
g
re

g
a
ti

o
n
,

v
o
ti

n
g

Final
prediction

..
.

...

...

Reweight. Reweight.

P. Pošík c© 2017 Artificial Intelligence – 16 / 25

AdaBoost.M1

■ AdaBoost for classification problem and weak learners with class label as output.

■ A slightly different version exists for weak learners with output in the form of class probabilities.

Algorithm 1: AdaBoost.M1

Input: Training set of labeled examples: T = {xi , yi}, xi ∈ RD , yi ∈ {+1,−1}, i = 1, . . . , |T|

Output: Final classifier Hfinal(x) = sign

(

M

∑
m=1

αmhm(x)

)

1 begin
2 Initialize the weights of training examples: w1(i) =

1
|T| .

3 for m = 1, . . . , M do
4 Train a weak classifier hm using T with weights wm .

5 Compute the weighted error: ǫm =
∑

|T|
m=1 wm(i)I (yi 6= hm(xi))

∑
|T|
m=1 wm(i)

6 Compute the weight of classifier hm : αm = ln

(

1 − ǫm

ǫm

)

> 0

7 Update the weights of the training examples: wm+1(i) = wm(i) · exp [αm I (yi 6= hm(xi))] .

P. Pošík c© 2017 Artificial Intelligence – 17 / 25

7

AdaBoost.M1 graphically

Iteration 1:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 1: Last hypothesis

ǫ1 = 0.3

α1 = 0.42

Iteration 2:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 2: Last hypothesis

ǫ2 = 0.21

α2 = 0.65

Iteration 3:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 3: Last hypothesis

ǫ3 = 0.13

α3 = 0.92

0.42× 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 1: Last hypothesis

+0.65× 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 2: Last hypothesis

+0.92× 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iter 3: Last hypothesis

= 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The whole model up to iter 3

P. Pošík c© 2017 Artificial Intelligence – 18 / 25

AdaBoost: remarks

The training error:

■ Let γt = 0.5 − ǫt be the improvement of the t-th model over a random guess.

■ Let γ = mint γt be the minimal improvement, i.e. the difference of error of all models ht compared to the error of random
guessing is at least γ, i.e.

∀t : γt ≥ γ > 0.

■ It can be shown that the training error

ErrTr(Hfinal) ≤ e−2γ2 M

P. Pošík c© 2017 Artificial Intelligence – 19 / 25

8

Forward stagewise additive modeling

Boosting tries to solve the following optimization problem: f ∗ = arg min
f∈F

|T|
∑
i=1

L(yi , f (xi)) Finding the optimal f ∗ is hard; we shall

tackle it sequentially:

Algorithm 2: Forward stagewise additive modeling (FSAM)

1 begin
2 Initialize f0(x) = 0.
3 for m = 1, . . . , M do

4 Compute (αm , θm) = arg min
α,θ

|T|
∑
i=1

L(yi , fm−1(xi) + αh(xi ; θ)).

5 Set fm(x) = fm−1(x) + αmh(x; θm).

AdaBoost.M1 is equivalent to FSAM using the exponential loss function L(y, f (x)) = exp(−y · f (x)).

(αm, θm) = arg min
α,θ

|T|
∑
i=1

exp [−yi (fm−1(xi) + αh(xi ; θ))]

= arg min
α,θ

|T|
∑
i=1

wm(i) exp [−yiαh(xi ; θ)] ,

where wm(i) = exp(−yi fm−1(xi)) depend neither on αm nor θm and can be regarded as weights of training examples, which change
each iteration. AdaBoost.M1 then follows from minimization of the last expression.

P. Pošík c© 2017 Artificial Intelligence – 20 / 25

L2Boosting

Suppose we need to solve regression problem with squared error loss (L2).

■ Then at step m we have:

L(yi , fm(xi)) = L(yi , fm−1(xi) + αmh(xi ; θm)) =

= (yi − fm−1(xi)− αmh(xi ; θm))
2 =

= (rim − αmh(xi ; θm))
2,

where we define rim = yi − fm−1(xi) to be the current residual of the model for ith data point.

■ By fitting each weak model hm to the residuals rim, the mth model fm learns to correct its predecessor fm−1.

■ Observation: the residuals rim = yi − fm−1(xi) are negative gradients of the squared error loss function 1
2 (y − f (x))2.

■ The algorithm can be viewed as a gradient descent in the space of functions.

■ The generalization of

■ FSAM using exponential loss (AdaBoost.M1) and

■ FSAM using L2 loss (L2Boosting)

for a general differentiable loss function L is called Gradient Boosting Machine.

P. Pošík c© 2017 Artificial Intelligence – 21 / 25

9

Gradient Boosting Algorithms

Algorithm 3: Gradient boosting

Input: Training set of labeled examples: T = {xi , yi}, i = 1, . . . , |T|, a differentiable loss function L(y, f (x)), number of iterations M.
Output: Final model fM(x).

1 begin

2 Initialize model with constant value: f0(x) = arg min
γ

|T|
∑
i=1

L(yi , γ)

3 for m = 1, . . . , M do

4 Compute pseudo-residuals rim = − ∂L(yi , f (xi))

∂ f (xi)

∣

∣

∣

∣

f (x)= fm−1(x)

for all i = 1, . . . , |T|.

5 Fit model hm(x) to pseudo-residuals, i.e. use training set {(xi , yi)}|T|i=1.

6 Compute multiplier αm by solving the following 1D opt. problem: αm = arg min
α

|T|
∑
i=1

L(yi , fm−1(xi) + αhm(xi)).

7 Update the model: fm(x) = fm−1(x) + αmhm(x)

By plugging in different loss functions, we can construct different boosting variants like

■ AdaBoost,

■ L2Boost,

■ LogitBoost,

■ etc.

P. Pošík c© 2017 Artificial Intelligence – 22 / 25

Further considerations

Choosing the number of models M:

■ The optimal value usually found by tracking the error on validation set.

■ Often, we do not bother; we just set it sufficiently high (several hundreds). Boosting can overfit, but is quite resistant to it.

Shrinkage:

■ Often, the so-called shrinkage is applied, i.e. only a small part of the mth model is used:

fm(x) = fm−1(x) + ναmh(x; θm),

where ν ∈ (0, 1), often ν ≈ 0.1, is the so-called learning rate.

■ Learning is slowed down; it requires more models to be added to the model, providing a configuration trade-off between the
number of trees and learning rate.

Stochastic gradient boosting

■ It is possible to subsample the training data set and use only a subset of it to train each model.

■ Subsample examples as in boosting (but without replacement).

■ Subsample features as in random forests.

■ It further prevents overfitting, speeds up learning of individual models, and gives chance to compute out-of-bag error estimates.

P. Pošík c© 2017 Artificial Intelligence – 23 / 25

10

Summary 24 / 25

Competencies

After this lecture, a student shall be able to . . .

■ describe the basic principle behind all committee/ensemble methods;

■ list and conceptually compare several methods to achieve diversity among models trained on the same data, and know which
of these methods are used in which ensemble algorithms;

■ explain the purpose and the basic principle of stacking;

■ explain how a bootstrap sample is created from the available data, and describe its properties;

■ describe features of bagging;

■ explain how to compute out-of-bag error estimate when using bagging;

■ explain the principle of random forests and describe their difference to bagging with trees;

■ explain how to compute a score of variable importance using random forest;

■ explain the hypothesis boosting problem, and define a weak and a strong classifier in this context;

■ explain the basic principle of AdaBoost.M1 algorithm;

■ relate the training error of the AdaBoost algorithm to the number of constituent models and to the errors of individual models;

■ describe the relations of AdaBoost.M1, L2Boost, and Gradient Boosting.

P. Pošík c© 2017 Artificial Intelligence – 25 / 25

11

	Introduction
	Ensemble a.k.a committee
	Ensemble examples
	Aggregation

	Bagging
	Bootstrapping
	Bootstrap sample
	Bagging a.k.a. Bootstrap aggregation
	Features

	Random forests
	Random forest (RF)
	RF features

	Boosting
	Boosting
	AdaBoost (informally)
	AdaBoost.M1
	AdaBoost.M1 graphically
	AdaBoost: remarks
	Forward stagewise additive modeling
	L2Boosting
	Gradient Boosting Algorithms
	Further considerations

	Summary
	Competencies

