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When a linear model is not enough... 2/20

Basis expansion

a.k.a. feature space straightening.

Why?
B Linear decision boundary (or linear regression model) may not be flexible enough to perform accurate classification (regression).
B The algorithms for fitting linear models can be used to fit (certain type of) non-linear models!

How?
B Let’s define a new multidimensional image space F.
B Feature vectors x are transformed into this image space F (new features are derived) using mapping ®:
x = z=3>0(x),
x=(x1,x2,...,xp) — z=(D1(x), Pa(x),..., Dg(x)),
while usually D < G.
B In the image space, a linear model is trained. However, this is equivalent to training a non-linear model in the original space.
fe(z) = wiz1 +wazp + ... + wgzg + wo
f(x) = fo(@(x)) = w11 (x) + waPa(x) + ... + wePc(x) + wo
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Two coordinate systems
Transformation into
a high-dimensional image
space
Feature spac;/ Imagdgpace
x = (x1,%2,...,%p) z=(21,22,.-.,2g)
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? _ x(;ixl Training a linear
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Non-linear model in the
feature space



Two coordinate systems: simple graphisal sxample

a high-dimensional
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Non-linear model in the
feature space

Basis expansion: remarks

Advantages:

B Universal, generally usable method.

Disadvantages:
B We must define what new features shall form the high-dimensional space F.
B The examples must be really transformed into the high-dimensional space F.
B When too much derived features is used, the resulting models are prone to overfitting (see next slides).

For certain type of algorithms, there is a method how to perform the basis expansion without actually carrying out the mapping!
(See the next lecture.)
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How to evaluate a predictive model? 7 /20

Model evaluation

Fundamental question: What is a good measure of “model quality” from the machine-learning standpoint?
B We have various measures of model error:
B For regression tasks: MSE, MAE, . ..
B For classification tasks: misclassification rate, measures based on confusion matrix, ...
B Some of them can be regarded as finite approximations of the Bayes risk.
B Are these functions good approximations when measured on the data the models were trained on?
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—1() = ~0.09 + 0.99x
- = =f(x) = 0.00 + (~0.31x) + (1.67%%) + (-0.51x")
1.5f
il
05
ok
-1 *0.8
-0.5 0 0.5 1 15 2 25 -0.5 0 0.5 1 15 2 25
Using MSE only, both models are equivalent!!! Using MSE only, the cubic model is better than linear!!!

A basic method of evaluation is model validation on a different, independent data set from the same source, i.e. on testing data.
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Validation on testing data

Example: Polynomial regression with varrying degree:
X ~U(-1,3)
Y ~ X*+N(0,1)

Polynom deg.: 0, tr. err.: 8.319, test. err.: 6.901

1 Polynom deg.: 0.647, test. err.: 0.925

10
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Training and testing error

— Training error

— Testing error

0 2 4 6 8 10
Polynom degree

B The training error decreases with increasing model flexibility.
B The testing error is minimal for certain degree of model flexibility.
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Overfitting
Definition of overfitting:
B Let M be the space of candidate models. A
B Letm; € Mand my € M be 2 different models from this space. Training data
B Let Errpy (m) be an error of the model m measured on the training Testing data

dataset (training error).
W Let Errpg (1) be an error of the model m measured on the testing
dataset (testing error).

Model m, Model m,,
B We say that m is overfitted if there is another 117 for which

Model Error

ErrTr(m2) < ErrTr(ml) A ErrTst(MZ) > ErrTst(ml)

Model Flexibility

B “When overfitted, the model works well for the training data, but fails for new (testing) data.”
B Opverfitting is a general phenomenon affecting all kinds of inductive learning of models with tunable flexibility.

We want models and learning algorithms with a good generalization ability, i.e.
B we want models that encode only the relationships valid in the whole domain, not those that learned the specifics of the training
data, i.e.
B we want algorithms able to find only the relationships valid in the whole domain and ignore specifics of the training data.
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Bias vs Variance

Polynom deg.: 1, tr. err.: 2.013, test. err.: 2.841 tholynom deg.: 2, tr. err.: 0.647, test. err.: 0.925

Training data o Training data
d
eee Testing data 8rleee Testing data
o
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Polynom deg.: 9, tr. err.: 0.545, test. err.: 1.067
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High bias: High variance:

model not flexible enough (] éitorglgfﬂt) model flexibility too high
(Underfit) (Overfit)
Training data
Testing data
High bias problem: High variance problem:

B Errp(h) is high
B Errp(h) =~ Errg(h)

B Errp(h) is low
B Errpg(h) >> Errg(h)

Model Error

Model Flexibility
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Crossvalidation
How to estimate the true error of a model on new, unseen data?
Simple crossvalidation:

B Split the data into training and testing subsets.
B Train the model on training data.
B Evaluate the model error on testing data.

K-fold crossvalidation:
B Split the data into k folds (k is usually 5 or 10).
B In each iteration:
B Use k — 1 folds to train the model.
B Use 1 fold to test the model, i.e. measure error.

Iter.1 | Training | Training Testing
Iter. 2 | Training | Testing | Training
Iter. k Testing Training | Training

B Aggregate (average) the k error measurements to get the final error estimate.
B Train the model on the whole data set.

Leave-one-out (LOO) crossvalidation:

B k = |T|, ie. the number of folds is equal to the training set size.
B Time consuming for large |T|.
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How to determine a suitable model flexibility

Simply test models of varying complexities and choose the one with the best testing error, right?
B The testing data are used here to tune a meta-parameter of the model.
B The testing data are used to train (a part of) the model, thus essentially become part of training data.
B The error on testing data is 10 longer an unbiased estimate of model error; it underestimates it.
B A new, separate data set is needed to estimate the model error.

Using simple crossvalidation:
1. Training data: use cca 50 % of data for model building.
2. Validation data: use cca 25 % of data to search for the suitable model flexibility.
3. Train the suitable model on training + validation data.
4. Testing data: use cca 25 % of data for the final estimate of the model error.

Using k-fold crossvalidation

1. Training data: use cca 75 % of data to find and train a suitable model using crossvalidation.
2. Testing data: use cca 25 % of data for the final estimate of the model error.

The ratios are not set in stone, there are other possibilities, e.g. 60:20:20, etc.
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How to prevent overfitting?

1. Feature selection: Reduce the number of features.

B Select manually, which features to keep.
B Try to identify a suitable subset of features during learning phase (many feature selection methods exist; none is perfect).

2. Regularization:

B Keep all the features, but reduce the magnitude of their weights w.
m Works well, if we have a lot of features each of which contributes a bit to predicting y.
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Regularization

16 / 20

Ridge regularization (a.k.a. Tikhonov regularization)

Ridge regularization penalizes the size of the model
coefficients:

B Modification of the optimization criterion:

1 IT| X § 2 D 2
Jaw) = 17 X (0 = o)) )

B The solution is given by a modified Normal equation
w* = (XTX+al)"1XTy
B Asa — 0, whidge — OLS,

B Asa — oo, wridse 5 (.

OLS - ordinary least squares. Just a simple multiple linear regression.

Training and testing errors as functions of regularization

parameter:
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Lasso regularization

Lasso regularization penalizes the size of the model
coefficients:

B Modification of the optimization criterion:

7|

D
LY (59 () b )
d=1

J(w) = =
|T‘ i=1

B Asa — oo, Lasso regularization decreases the number of
non-zero coefficients, effectively also performing feature
selection and creating sparse models.

Training and testing errors as functions of regularization
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Summary 19 /20

Competencies

After this lecture, a student shall be able to ...
B explain the reason for doing basis expansion (feature space straightening), and describe its principle;
B show the effect of basis expansion with a linear model on a simple example for both classification and regression settings;
B implement user-defined basis expansions in certain programming language;
B list advantages and disadvantages of basis expansion;
]

explain why the error measured on the training data is not a good estimate of the expected error of the model for new data, and
whether it under- or overestimates the true error;

B explain basic methods to get unbiased estimate of the true model error (testing data, k-fold crossvalidation, LOO
crossvalidation);
B describe the general form of the dependency of training and testing errors on the model complexity /flexibility / capacity;
B define overfitting;
W discuss high bias and high variance problems of models;
B explain how to proceed if a suitable model complexity must be chosen as part of the training process;
B list 2 basic methods for overfitting prevention;
B describe the principles of ridge (Tikhonov) and lasso regularizations and their effects on the model parameters.
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