Non-linear models. Basis expansion. Overfitting. Regularization.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

Non-linear models	2
Basis expansion	. 3
Two spaces.	. 4
Two spaces. Remarks	. 6
How to evaluate a predictive model?	7
Model evaluation	8
Training and testing error Overfitting	1(
Overfitting	11
Bias vs Variance	12
Crossvalidation	13
How to determine a suitable model flexibility	14
How to prevent overfitting?	15
Regularization	16
Ridge	. 17
Lasso	18
Summary	19
Competencies	20

Basis expansion

a.k.a. feature space straightening.

Why?

- Linear decision boundary (or linear regression model) may not be flexible enough to perform accurate classification (regression).
- The algorithms for fitting linear models can be used to fit (certain type of) *non-linear models*!

How?

- Let's define a new multidimensional image space *F*.
- **•** Feature vectors x are transformed into this image space F (new features are derived) using mapping Φ :

$$x \rightarrow z = \Phi(x),$$

 $x = (x_1, x_2, \dots, x_D) \rightarrow z = (\Phi_1(x), \Phi_2(x), \dots, \Phi_G(x)),$

while usually $D \ll G$.

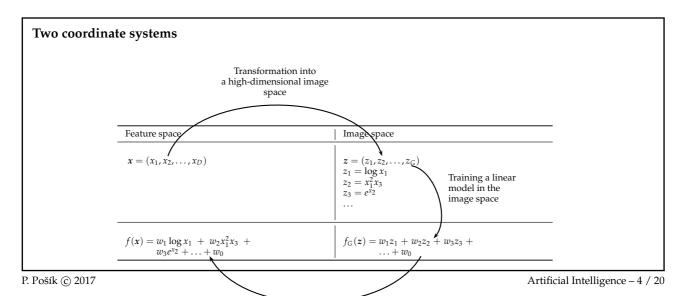
■ In the image space, a linear model is trained. However, this is equivalent to training a non-linear model in the original space.

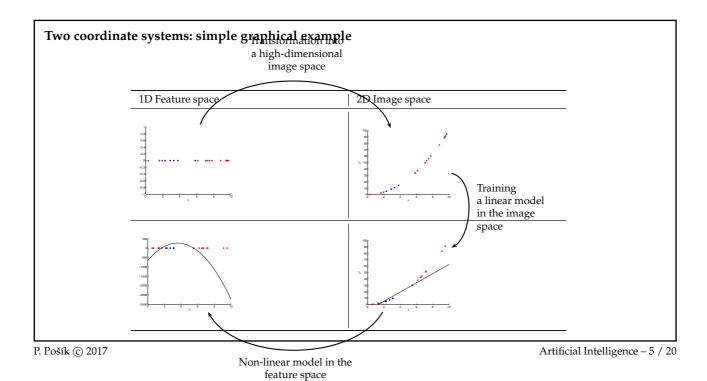
$$f_G(z) = w_1 z_1 + w_2 z_2 + \ldots + w_G z_G + w_0$$

$$f(x) = f_G(\Phi(x)) = w_1 \Phi_1(x) + w_2 \Phi_2(x) + \ldots + w_G \Phi_G(x) + w_0$$

P. Pošík © 2017

Artificial Intelligence – 3 / 20





Basis expansion: remarks

Advantages:

Universal, generally usable method.

Disadvantages:

- We must define what new features shall form the high-dimensional space *F*.
- The examples must be really transformed into the high-dimensional space *F*.
- When too much derived features is used, the resulting models are prone to overfitting (see next slides).

For certain type of algorithms, there is a method how to perform the basis expansion without actually carrying out the mapping! (See the next lecture.)

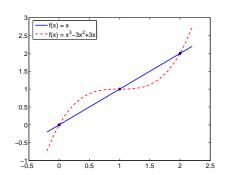
P. Pošík © 2017

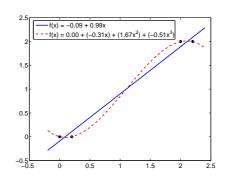
Artificial Intelligence – 6 / 20

Model evaluation

Fundamental question: What is a good measure of "model quality" from the machine-learning standpoint?

- We have various measures of model error:
 - For regression tasks: MSE, MAE, ...
 - For classification tasks: misclassification rate, measures based on confusion matrix, . . .
- Some of them can be regarded as finite approximations of the *Bayes risk*.
- Are these functions *good approximations* when measured on the data the models were trained on?





Using MSE only, both models are equivalent!!!

Using MSE only, the cubic model is better than linear!!!

A basic method of evaluation is *model validation on a different, independent data set* from the same source, i.e. on **testing data**.

P. Pošík © 2017

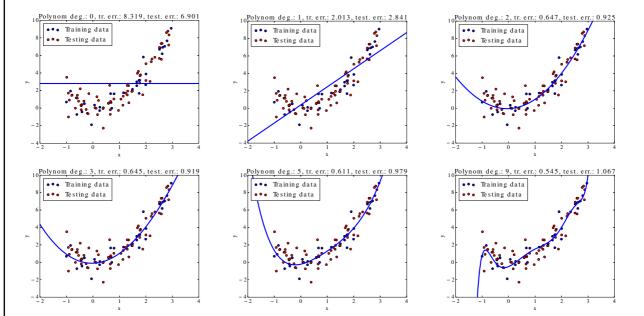
Artificial Intelligence – 8 / 20

Validation on testing data

Example: Polynomial regression with varrying degree:

$$X \sim U(-1,3)$$

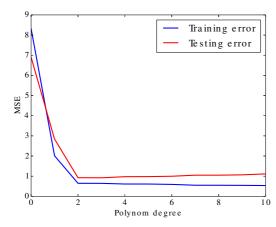
$$Y \sim X^2 + N(0,1)$$



P. Pošík © 2017

Artificial Intelligence – 9 / 20

Training and testing error



- The *training error* decreases with increasing model flexibility.
- The *testing error* is minimal for certain degree of model flexibility.

P. Pošík © 2017

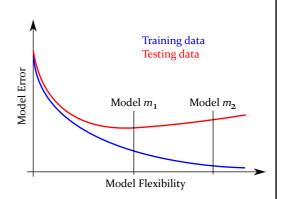
Artificial Intelligence - 10 / 20

Overfitting

Definition of overfitting:

- Let *M* be the space of candidate models.
- Let $m_1 \in M$ and $m_2 \in M$ be 2 different models from this space.
- Let Err_{Tr}(*m*) be an error of the model *m* measured on the training dataset (training error).
- Let Err_{Tst}(*m*) be an error of the model *m* measured on the testing dataset (testing error).
- We say that m_2 is overfitted if there is another m_1 for which

 $\operatorname{Err}_{\operatorname{Tr}}(m_2) < \operatorname{Err}_{\operatorname{Tr}}(m_1) \wedge \operatorname{Err}_{\operatorname{Tst}}(m_2) > \operatorname{Err}_{\operatorname{Tst}}(m_1)$



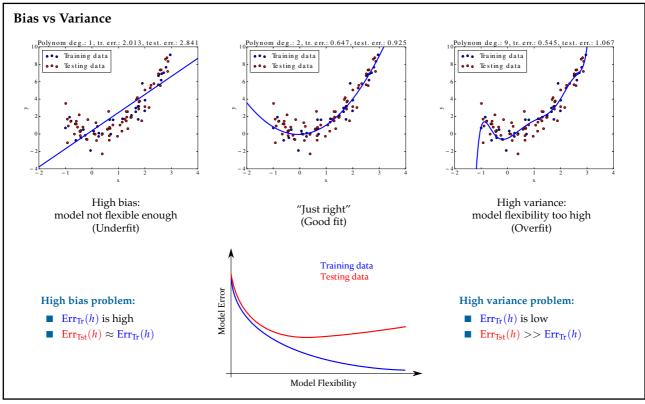
- "When overfitted, the model works well for the training data, but fails for new (testing) data."
- Overfitting is a general phenomenon *affecting all kinds of inductive learning* of models with tunable flexibility.

We want models and learning algorithms with a good generalization ability, i.e.

- we want models that encode only the relationships valid in the whole domain, not those that learned the specifics of the training data, i.e.
- we want algorithms able to find only the relationships valid in the whole domain and ignore specifics of the training data.

P. Pošík © 2017

Artificial Intelligence – 11 / 20



P. Pošík © 2017 Artificial Intelligence – 12 / 20

Crossvalidation

How to estimate the true error of a model on new, unseen data?

Simple crossvalidation:

- Split the data into training and testing subsets.
- Train the model on training data.
- Evaluate the model error on testing data.

K-fold crossvalidation:

- \blacksquare Split the data into k folds (k is usually 5 or 10).
- In each iteration:
 - Use k 1 folds to train the model.
 - Use 1 fold to test the model, i.e. measure error.

Iter. 1	Training	Training	Testing
Iter. 2	Training	Testing	Training
Iter. k	Testing	Training	Training

- \blacksquare Aggregate (average) the k error measurements to get the final error estimate.
- Train the model on the whole data set.

Leave-one-out (LOO) crossvalidation:

- \blacksquare k = |T|, i.e. the number of folds is equal to the training set size.
- lacksquare Time consuming for large |T|.

P. Pošík © 2017 Artificial Intelligence – 13 / 20

How to determine a suitable model flexibility

Simply test models of varying complexities and choose the one with the best testing error, right?

- The testing data are used here to *tune a meta-parameter* of the model.
- The testing data are used to train (a part of) the model, thus essentially become part of training data.
- The error on testing data is *no longer an unbiased estimate* of model error; it underestimates it.
- A new, separate data set is needed to estimate the model error.

Using simple crossvalidation:

- 1. Training data: use cca 50 % of data for model building.
- 2. Validation data: use cca 25 % of data to search for the suitable model flexibility.
- 3. Train the suitable model on training + validation data.
- 4. $\textit{Testing data:}\ use\ cca\ 25\ \%\ of\ data\ for\ the\ final\ estimate\ of\ the\ model\ error.$

Using k-fold crossvalidation

- 1. Training data: use cca 75 % of data to find and train a suitable model using crossvalidation.
- 2. Testing data: use cca 25 % of data for the final estimate of the model error.

The ratios are not set in stone, there are other possibilities, e.g. 60:20:20, etc.

P. Pošík © 2017

Artificial Intelligence – 14 / 20

How to prevent overfitting?

- 1. Feature selection: Reduce the number of features.
 - Select manually, which features to keep.
 - Try to identify a suitable subset of features during learning phase (many feature selection methods exist; none is perfect).
- 2. Regularization:
 - \blacksquare Keep all the features, but reduce the magnitude of their weights w.
 - Works well, if we have a lot of features each of which contributes a bit to predicting *y*.

P. Pošík © 2017

Artificial Intelligence – 15 / 20

Ridge regularization (a.k.a. Tikhonov regularization)

Ridge regularization penalizes the size of the model coefficients:

■ Modification of the optimization criterion:

$$J(w) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - h_w(x^{(i)}) \right)^2 + \alpha \sum_{d=1}^{D} w_d^2.$$

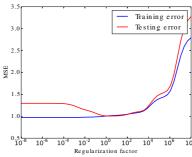
■ The solution is given by a modified Normal equation

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X} + \alpha \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

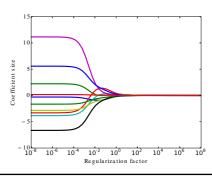
- As $\alpha \to 0$, $w^{\text{ridge}} \to w^{\text{OLS}}$.

OLS - ordinary least squares. Just a simple multiple linear regression.

Training and testing errors as functions of regularization parameter:



The values of coefficients (weights w) as functions of regularization parameter:



P. Pošík © 2017

Artificial Intelligence – 17 / 20

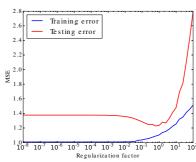
Lasso regularization

Lasso regularization penalizes the size of the model coefficients:

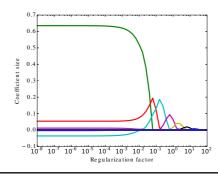
■ Modification of the optimization criterion:

$$J(w) = \frac{1}{|T|} \sum_{i=1}^{|T|} \left(y^{(i)} - h_w(x^{(i)}) \right)^2 + \alpha \sum_{d=1}^{D} |w_d|.$$

As α → ∞, Lasso regularization decreases the number of non-zero coefficients, effectively also performing feature selection and creating sparse models. Training and testing errors as functions of regularization parameter:



The values of coefficients as functions of regularization parameter:



P. Pošík © 2017

Summary 19 / 20

Competencies

After this lecture, a student shall be able to ...

- explain the reason for doing basis expansion (feature space straightening), and describe its principle;
- show the effect of basis expansion with a linear model on a simple example for both classification and regression settings;
- implement user-defined basis expansions in certain programming language;
- list advantages and disadvantages of basis expansion;
- explain why the error measured on the training data is not a good estimate of the expected error of the model for new data, and whether it under- or overestimates the true error;
- explain basic methods to get unbiased estimate of the true model error (testing data, k-fold crossvalidation, LOO crossvalidation);
- describe the general form of the dependency of training and testing errors on the model complexity/flexibility/capacity;
- define overfitting;
- discuss high bias and high variance problems of models;
- explain how to proceed if a suitable model complexity must be chosen as part of the training process;
- list 2 basic methods for overfitting prevention;
- describe the principles of ridge (Tikhonov) and lasso regularizations and their effects on the model parameters.

P. Pošík © 2017

Artificial Intelligence – 20 / 20