
Project 4 - Reinforcement Learning

B4M36SMU

Monday 7th May, 2018

In your last assignment, you will implement an agent capable of playing a simplified version
of blackjack game (sometimes called 21-game). The complete rules are in detail explained on
Wikipedia [1]. However, in our project, we will restrict ourselves only to a simplified version.

The game is played with a standard deck of 52 cards, which is shuffled. Your goal is to score
more than the dealer; however, you do not want to get over 21. At the beginning, you are given
two cards and see one card that the dealer has. You can decide whether you draw one more
card or stop playing. Once you stop playing, it is dealer’s turn. The dealer has to follow a fixed
strategy — as long as the sum of his cards is less than 17, he has to draw a card. Dealer stops
when this condition becomes false.

Face cards (Jack, Queen, and King) have value 10. Ace can be counted as 1 or 11.
At the end of the game, the player loses if the value of his cards exceeds 21. We call this

situation bust. The player loses even if the dealer busts too. If the dealer busts and player not,
the player wins. If neither the player nor the dealer busts, the winner is determined by the
value of cards. The player with a higher sum of cards wins. Equal sums mean tie.

1 Implementation

We will use OpenAI Gym [2] library as an environment for the game. You can find the environ-
ment implementation in file blackjack.py. File carddeck.py contains a model of card, card
deck, and player hand. After each step, your agent will get an observation as an instance of
BlackjackObservation class and a reward. In a terminal state, you get reward 1 for winning,
−1 for losing and 0 for a tie. In any other state, you get zero as a reward. You are not allowed
to modify files blackjack.py and carddeck.py. The same holds for file main.py above the
comment stating that you cannot modify the code.

In file randomagent.py you may find a dummy agent that makes decisions completely at
random. File dealeragent.py contains an implementation of a fixed strategy identical to
the strategy of the dealer. You are encouraged to check those two files and reuse the code
as you want. File tdagent.py should contain your implementation of passive reinforcement
learning agent that learns utility estimates using temporal difference. File sarsaagent.py

should contain your implementation of SARSA. In file evaluation.py, you may find some
ideas on how to compare various agents. You may modify the code as you want to; however, it
is not a requirement.

2 Problem Specification

1. (3 points, mandatory)
Propose three possible nontrivial reasonable1 ways how to define the state in the game.

1For example you cannot expect points for a representation with two states - sum of values of cards is ≤ 21
and > 21.

1



2. (1.5 points)
For each state space representation from 1, estimate the overall number of states.

You cannot just guess a number; you have to justify it somehow (e.g., by calculation).
You do not need to provide an exact number; however, your estimate should not be too
far from the true count. If you are not sure how to calculate the number of states, you
can write a program that counts them for you and submit the code together with your
report.

3. (2 points, mandatory)
Pick one of the state space representations you proposed in 1. Explain why you consider

it the best one and answer the following questions. Does this representation capture all
information that can be used for agent decision? Or is there any simplification? If yes, will
the simplification influence the result (final policy, utility values)? If yes, how much will
the result be influenced? Can you use exact methods (value iteration/policy iteration) to
solve the game? If yes, how? If not, why?

4. (1 point, file tdagent.py)
Modify your implementation of a passive reinforcement learning agent that learns utility

estimates using temporal difference method. Take your implementation from the lab and
make it work in the blackjack environment. Use policy that is identical to dealer’s policy2

and estimate value of each state.

You should have a working implementation of the agent after the following tutorials. Be-
cause you will be working on the implementation in the lab, there is some cooperation
allowed. Therefore the scoring for this point is low, and you will get points mostly for
being able to use implementation you already have. You are not allowed to cooper-
ate when you are modifying your implementation to work with the blackjack
environment.

If you are not sure what you should implement, you may want to read chapter 21.2.3 in
AIMA book [3] or chapter 6.1 in book [4].

5. (4 points, mandatory, file sarsaagent.py)
Implement SARSA algorithm.

SARSA implementation must be your own work. This means for example that if you
cooperated in the lab on the implementation of passive reinforcement learning agent, you
have to write the code again by yourself.

If you are not sure what you should implement, you may want to read chapter 21.3.2 in
AIMA book [3] or chapter 6.4 in book [4].

6. (1.5 points)
Compare how successful various strategies are.

Compare the random strategy (provided), the dealer strategy (provided), the result from 4
and the strategy learned by SARSA. You can answer for example the following questions.
What is their expected or average utility? How fast do algorithms implemented in 4 and 5
learn? Does the learned utility contradict your intuition? What is the utility for drawing
a card when you have club nine, diamond jack and spades two in your hand and dealer has
club four? What is utility of situation when you have diamond ace and spades five and
dealer spades ace? Is it better to draw a card in this situation or not? Did your utility
values/q values converge? Does strategy learned by SARSA follow the recommendation
on the bottom of [1]?

2Draw a card if and only if sum of your cards is less than 17.

2



3 Submission and Evaluation

• All students must work individually. Cooperation on anything else than lab part of task
4 is strictly forbidden.

• Upload the results to https://cw.felk.cvut.cz/brute/

• Strict deadline is Monday 28th May, 2018 11:59 pm

• Submit all source code and a pdf report with answers to questions 1, 2 3 and 6.

• The solution must be compatible with Python version ≥ 3.5.

• The project is worth 13 points total. You are required to do all parts marked as mandatory
to successfully finish the project and to have a chance of getting an assessment.

• A penalty for late submission is -3 points for each day of delay.

• Be sure that your state representation follows the assumptions from the lecture. If it
only seems to work, it is not enough. Also, make sure that all assumptions needed for
convergence are true and the parameter settings are reasonable. Failing this will cost you
points unless you explicitly state that you violated the assumptions and explain why you
can do that.

• You have to submit the assignment before going to finals. In the case that you want to
take finals before the project deadline, please email me (petr.rysavy@fel.cvut.cz) and
I will grade your work ASAP.

• Should you have any questions or you found a bug in code or project specification, feel
free to email me and/or ask for a consultation.

References

[1] https://en.wikipedia.org/wiki/Blackjack

[2] https://gym.openai.com/

[3] Russell, Stuart and Norvig, Peter. Artificial Intelligence. ”A modern approach.” Prentice-
Hall, Egnlewood Cliffs 25 (1995): 27.
http://books.google.com/books?id=8jZBksh-bUMC

[4] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1.
No. 1. Cambridge: MIT press, 1998.
https://mitpress.mit.edu/books/reinforcement-learning

3

https://cw.felk.cvut.cz/brute/
mailto:petr.rysavy@fel.cvut.cz
https://en.wikipedia.org/wiki/Blackjack
https://gym.openai.com/
http://books.google.com/books?id=8jZBksh-bUMC
https://mitpress.mit.edu/books/reinforcement-learning

	Implementation
	Problem Specification
	Submission and Evaluation

