
Symbolic Machine Learning - Student project 1

March 26, 2017

1 Batch learning of s-CNF

The task of the student is to implement an agent which will interact with an
oracle (“environment”) an eventually learn a s-CNF concept that is hidden in
the oracle. Randomly chosen ε, δ ∈ [0, 1] are provided to the agent when it is
initialized. The oracle engages in the following session with the agent. Here
xk = (ok, rk) is what the environment says (an observation provided to agent,
and a reward), and yk is what the agent says.

o1 =(n, s)

r1 =0

Oracle samples s, n ∈ N randomly but reasonably
(w.r.t. resources, instructor’s responsibility), and a
random s-CNF, i.e a CNF with no more than s literals
in any clause, involving no more than n propositional
variables.

y1 = m

Agent requests m examples, which will be the remaining
length of the training phase. The agent has to do a
PAC-theoretical calculation to work out m.

o2 =(v1, v2, . . . , vn)

r2 =0

vi ∈ {0; 1} are truth values of propositional symbols
pi in an example sampled i.i.d from the uniform
distribution on {0; 1}n

y2 = y

y ∈ {0; 1} is the truth value predicted for o2 (target
CNF false or true with assignment o2) by agent’s
current model.

o3 =(v1, v2, . . . , vn)

r2 =r
vi just like for o2. r = 1 if y2 was correct, r = 0 other-
wise.

and so on until stepK = m+2. rK is the last reward communicated to the agent.
oK is the first testing example. The testing phase rewards rK+1, rK+2, . . . are
not revealed to the agent (it receives e.g. a blank symbol instead - implemented
as a None object) so it cannot update its model any longer. The testing phase

1



continues until some time K ′ where

Âcc =
1

K ′ −K − 1

K′∑
k=K+1

rk

converges, and then the oracle says oK′ = stop. (This is implemented by the
method has more samples of the oracle returning False.)

The session is a success if Âcc ≥ 1− ε.

The sessions are repeated until the relative frequency of success converges to Ŝ.

The project is a success if Ŝ ≥ 1 − δ. In the case of success, the full score is
achieved if the number of examples requested is at most (roughly) the number
predicted by PAC theory. With more examples requested, score should go down.

The anticipated learning algorithm first establishes its own propositional vari-
ables p′1, p

′
2, . . . each equivalent to one possible clause made out of p1, p2, . . . pn

(there is only O(ns) of such clauses) and then uses the standard procedure for
learning monotone conjuctions on the p′1, p

′
2, . . . variables.

2 Implementation

The student is provided an archive file with the following files inside:

• tutorial3.py – a modified file used on the third tutorial with classes for
conjunctive and disjunctive concepts,

• cnf.py – a file with the implementation of j-CNF concept without a learn-
ing method,

• oracle.py – the implementation of the oracle,

• project1.py – an executable file which runs and evaluates the interaction

of the agent with the oracle, i.e. it computes the values Âcc and Ŝ and

• agent.py – the implementation of the agent itself which the student is
supposed to complete.

The code in agent.py contains a code skeleton of a class called Agent. The
student must implement a method of that class called interact with oracle

which takes one parameter – an instance of OracleSession defined in oracle.py.
The requirements for the implementation are the following: The agent should
first call the request parameters method of the oracle which returns a tuple
(n, s) = o1. Then the agent should call the request dataset method with
an integer parameter m. The method returns a single initial observation o2.
Finally, the agent should then call the OracleSession.predict method with

2



a Boolean parameter indicating the prediction for the last observation until
the condition OracleSession.has more samples is no longer satisfied. The
OracleSession.predict method returns a tuple containing a new observation
ok and reward rk−1 ∈ {0, 1, None} for the last prediction. The reward is None

iff the agent is in the testing phase, i.e. k > m. An observation ok ∈ {0, 1}n is
represented as a 1-D numpy array of Booleans of length n. The student must
NOT interact with the oracle in any other way than using the methods men-
tioned here. Specifically, it is forbidden to access (read or write) any attributes
of the OracleSesssion instance. The student may include additional files be-
sides agent.py, but must not modify the other provided files. Please submit
the project as an archive file containing all the files.

The student may run the file project1.py to test their implementation. How-
ever, whether the number of requested samples m was good will be determined
by the instructor after the work is submitted. Specifically, m should be gener-
ated by a theoretically derived formula for PAC-learnability of s-CNF.

The student is allowed to use any functions from the Python standard library
and also the numpy library, but no other external libraries. The solution must
be compatible with Python version ≥ 3.5. Hint: The itertools module from
the standard Python library may come handy.

The student may optionally submit a report along the source code, documenting
whatever may not be clear from the source code.

3 Scoring

The project is worth 12 points. (Out of the 50 available during the course.)
Correct implementation of the learning algorithm makes for 7 points. (Manda-
tory) Correct formula for m makes for 3 points. (Mandatory) If the student
implements the online version of the algorithm (i.e. not storing observations in
memory) he or she earns additional 2 points. (Optional)

3


