
(c) Filip Železný, all rights reserved. Any use of this material
only with prior approval by the author.

1

mailto:zelezny@fel.cvut.cz

Symbolic Machine Learning

Filip Železný

Contents

1 A General Framework 4

1.1 Percepts and Actions . 4

1.2 Nonsequential Cases . 6

1.3 Batch Learning . 6

1.4 Rewards and Goals . 8

1.5 Environment States . 9

1.6 Agent States . 12

1.7 Nonsequential and Batch Cases with States 13

1.8 Prior Knowledge . 15

1.9 Hypothesis Representations . 16

1.10 Learning Scenarios . 16

2 On-line Concept Learning 17

2.1 Generalizing Agent . 22

2.2 The Subsumption Relation . 24

2.3 Extensions of the Generalizing Agent 25

2.4 Separating agent . 26

2

2.5 Hypothesis and Concept Classes 28

2.6 Version Space Agent . 29

2.7 The Mistake Bound Learning Model 30

3 Batch Concept Learning 32

3.1 Batch Learning with the Generalizing Agent 33

3.2 Batch Learning with Standard On-line Agents 34

3.3 Consistent Agent . 35

3.4 The PAC Learning Model . 36

4 Learning First-Order Logic Concepts 38

4.1 Generalizing Agent . 41

4.2 Generalization of Clauses . 45

3

1 A General Framework

1.1 Percepts and Actions

Agent Environment

Percepts

Actions

Figure 1: The basic situation under study.

• Discrete time
k = 1, 2, . . .

• Percepts
∀k : xk ∈ X

• Actions
∀k : yk ∈ Y

X and Y are finite.

A history is a sequence of alternating percepts and actions, i.e,

x1, y1, x2, y2, . . . , xk, yk

and is denoted as xy≤k. Similarly, xy<k = x1, y1, x2, y2, . . . , xk−1, yk−1. There
is a probability distribution µ on histories

µ(xy≤k) = µ(x1)µ(y1|x1)µ(x2|x1, y1) . . . µ(xk|xy<k)µ(yk|xk, xy<k) (1)

After the initial ‘kick-off’ x1 from the environment distributed according to
µ(x1), any percept xk generated by the environment at time k depends on the
entire preceding history xy<k according to

µ(xk|xy<k) (2)

Actions yk are determined by agent’s decision policy which also depends on
the history as well as the current percept and are distributed according to

4

µ(yk|xk, xy<k). We will assume that the policy is deterministic. Thus we iden-
tify the policy with function π : (X × Y)∗ ×X → Y , so

yk = π(xy<k, xk) (3)

This means that µ(yk|xy<k, xk) = 1 for yk = π(xy<k, xk) and 0 otherwise.

The following diagram illustrates the influences between the introduced vari-
ables.

y1

x1

y2

x2

y3

x3

Figure 2: Influence diagram for actions yk and percepts xk for 1 ≤ k ≤ 3 with
full lines indicating deterministic influences (via π) and dashed lines showing
probabilistic influences (via µ).

While we have yet to define what goals the agent should achieve through in-
teraction with the environment, obviously some histories will be “better” than
others in terms of the goal achievement. To maximize the probability (1) of
good histories, the agent cannot influence the conditional probability (2), which
is inherent to the environment, but it can follow a good policy (3). However,
the effect of actions proposed by the policy depends on (2) which is generally
not known to the agent. So the agent needs to recognize the environment by
experimenting with it. This is formally reflected by (3) where action yk depends
not only on the current percept xk but also on the history xy<k. So the agent
will generally make different decisions yk 6= yk′ for k > k′ even if xk = xk′

because the experience xy<k at time k is larger than experience xy<k′ at time
k′. This is our first reflection of learning.

How does the agent know how well it is doing? This information comes from
the environment through a specially distinguished part of the percepts, called
rewards. The remaining part of each percept contains observations. Formally,
X = O ×R, ok ∈ O, rk ∈ R ⊂ R, so

xk = (ok, rk) (4)

5

Since X is assumed finite, it follows that rewards have their finite minimum and
maximum.

The probability of xk in (2) can be written in terms of the marginals µO and
µR

µ(xk|xy<k) = µ(ok, rk|xy<k) =

µO(ok|rk, xy<k)µR(rk|xy<k) = µR(rk|ok, xy<k)µO(ok|xy<k)

which also makes it clear that ok and rk are in general not assumed mutually
independent, even if conditioned on xy<k.

1.2 Nonsequential Cases

Scenarios where current percepts depend on the history of previous percepts and
actions are called sequential. The framework described so far is maximally gen-
eral in that dependence is assumed on the entire history from k = 1 on. On the
other extreme are nonsequential scenarios. Here, observations are independent
of the history as well as the current reward, i.e.

µO(ok|rk, xy<k) = µO(ok) (5)

and thus o1, o2, . . . are mutually independent random variables sampled from
the same distribution µO (they are “i.i.d.”).

Rewards in the nonsequential case are assumed to depend only on the immedi-
ately preceding observation and the action taken on it, i.e.

µR(rk|ok, xy<k) = µR(rk|ok−1, yk−1) (6)

however, since yk−1 is functionally determined by the history xy<k−1 and per-
cept xk−1 = (ok−1, rk−1) through (3), we may rewrite (6) as

µR(rk|ok−1, rk−1, xy<k−1) (7)

which makes it clear that reward rk depends on previous rewards, and thus
rewards r1, r2, . . . are not i.i.d.. This is natural since if they were, it would
mean the agent never improves its performance.

1.3 Batch Learning

We will also consider a specific yet important nonsequential case called batch
learning consisting of two phases switching right after time K

6

y1

o1

r1

y2

o2

r2

y3

o3

r3

Figure 3: Influence diagram for actions yk, observations ok, and rewards rk for
1 ≤ k ≤ 3 with full lines indicating deterministic influences (via π) and dashed
lines showing probabilistic influences (via µ) in the nonsequential case.

• the learning (training, exploration) phase at k = 1, 2, . . .K

• the action (testing, exploitation) phase taking place in k = K+1,K+2, . . .

In the action phase, the agent no longer changes its decision making policy, so

if k, k′ > K and xk = xk′ then yk = yk′ (8)

and ignores rewards. So the action proposed by the policy depends only on
the current observation and the history only up to time K. So for k > K, (3)
changes here into

yk = π(xy≤K , ok) (9)

and (6, 7) change into

µR(rk|ok−1, yk−1) = µR(rk|ok−1, xy≤K) (10)

because due to (9), yk−1 is determined by ok−1 and xy≤K . The observation
ok−1 does not depend on rewards due to (5). So reward rk does not depend on
previous rewards rk′ , k > k′ > K. Another way to say this is that rewards in
the action phase are conditionally independent of each other, given the learning
phase history:

µR(rk, rk′ |xy<K) = µR(rk|xy<K)µR(rk′ |xy<K) (11)

The following figure illustrates the batch-learning situation.

7

xy≤K = o1, r1, y1, o2, r2, y2, . . . , oK , rK , yK

yK+1

oK+1

rK+1

yK+2

oK+2

rK+2

yK+3

oK+3

rK+3

Figure 4: Influence diagram for actions yk, observations ok, and rewards rk in the
action phase (k > K) of batch learning with full lines indicating deterministic
influences (via π) and dashed lines showing probabilistic influences (via µ). The
top row indicates the influence of the learning phase on the agent’s decisions in
the action phase.

We have observed that rewards rk, r
′
k (for any k, k′ > K) are mutually indepen-

dent given the learning phase xy<K . Note that they are also sampled from the
same distribution. This may seem to contradict (10) which stipulates that rk
depends on the observation ok−1 whereas rk′ depends on ok′−1. However, by
(5), ok−1 and ok′−1 are sampled from the same distribution µO. So we can ex-
press the distribution of rk (∀k > K) without conditioning on the observations
by marginalizing them away from the equation as follows

µR(rk|xy≤K) =
∑

ok−1∈O
µO(ok−1)µR(rk|ok−1, xy≤K) (12)

So rewards in the action phase indeed are i.i.d. according to the above distri-
bution conditioned only on the history of the learning phase.

1.4 Rewards and Goals

It has been obvious that the agent’s goal is to maximize rewards. Here we
formalize this goal. Since rewards come at each point of the history, we want
the agent to maximize their sum up to a finite time horizon k′ ∈ N

r1 + r2 + . . .+ rk′

8

or, more generally, maximize the discounted sum

∞∑
k=1

rkδk

where ∀k : δk ≥ 0 and
∑∞
i=1 δi < ∞. The latter condition guarantees that the

sum above converges, which is because the rk’s are bounded by a constant (c.f.
Section 1.1).

But since rewards are probabilistic, the agent should choose a sequence y≤k′ of
actions leading to a high expected cumulative reward∑

r≤k′

µR(r≤k′ |y≤k′)(r1 + r2 + . . .+ rk′)

or, in the discounted case

lim
k′→∞

∑
r≤k′

µR(r≤k′ |y≤k′)
k′∑
k=1

rkδk

where the first sum in both cases goes over all possible reward sequences r≤k′

(since R and k′ are finite, there is a finite number of them).

However, for the specific case of batch learning, we establish a more appropriate
learning goal. First, we do not care about maximizing rewards in the learning
phase as the purpose of this phase is to probe the environment even at the price
of possibly poor rewards. Second, in the action phase after time K, the rewards
rk, k > K are sampled independently from the same distribution (12) so we can
simply maximize their expectation with respect to this distribution∑

rk∈R
µR(rk|xy≤K)rk (13)

It is again obvious from the formula that the expected reward only depends on
the learning phase history xy≤K , after which the agent no longer changes its
action policy. Note also that the batch learning scenario allowed us to define an
objective (13) without the need to choose the parameters k′ or δk (k = 1, 2, . . .)
needed in the sequential scenario.

1.5 Environment States

With the exception of the non-sequential scenario, our framework has been very
general in that percepts xk generally depend on entire histories xy<k. In the real
world, many histories may be equivalent, i.e. leading to the same probabilities

9

of xk conditioned on action yk−1. This can be formalized through the notion
of environment state. Intuitively, the state acts as the environment’s ‘memory’
carrying all the information from the history, which is important for generating
percepts. To formalize this, we will assume there is a set E of all possible states,
and instead of 2, we will prescribe that percepts at time k only depend on the
state ek ∈ E at that time, i.e. they are generated according to

µ(xk|ek) (14)

But how are the states determined? We will first explore a principle, which—in
a sense–will turn out to be maximally general. In particular, assume that the
initial state e1 is fixed to an ‘empty’ (or ‘dummy’) value e1 = s∗ such that

µ(x1|s∗) = µ(x1) (15)

so the first percept is generated just as in (1). Afterwards, any state ek (k > 1)
is established probabilistically by the preceding state, the last percept, and the
last agent’s action through the following state update distribution

E(ek|ek−1, xk−1, yk−1) (16)

We said earlier that this principle was ‘maximally general.’ To say this more
precisely, for any environment generating percepts by (2), we can set up E and
E such that

µ(xk|ek) = µ(xk|xy<k) (17)

Indeed, if we allow E to be infinite, then there could simply exist a distinct state
for each possible history (there is an infinite number of possible histories for
unbounded k). Then we can instantiate the distribution (16) to the functional
dependence

ek = ek−1 ‖ (xk−1, yk−1) (18)

where ‖ denotes concatenation. As a result, ek will simply collect the entire
history and in (17), ek would be just a different name for xy<k.

However, we will make an important assumption, which will significantly sim-
plify the framework, that the number of possible states is bounded by a finite
constant Emax ∈ N which does not depend on k

|E| < Emax (19)

In practical tasks, there will be far fewer states than possible histories.

Moreover, we can afford an additional simplifying assumption which will further
lessen the generality of the framework, while keeping it able to encompass the
learning scenarios we are going to elaborate. In particular, we will assume
quite naturally that the influence between environment states and the emitted

10

percepts are single-directional in the sense that the percepts depend on states
by (14) but not vice versa, so we remove xk−1 from (16)

E(ek|ek−1, xk−1, yk−1) = E(ek|ek−1, yk−1) (20)

As we have discussed already, the finiteness of E means that the environment has
a ‘finite memory.’ Thus, from a current state e, one cannot in general identify
the entire preceding history of states and actions. However, the framework
as defined can still model environments that remember a bounded number of
previous states and actions. We will demonstrate this through an example with
a one-step memory.

Consider an environment with states E and update distribution E , and assume
that the current state ek does not allow to infer the previous state ek−1 or action
yk−1. Then we can always define an extended (yet still finite) set of states as

Eext = E × E × Y (21)

(with the latter two factors acting as memory) and an extended update distri-
bution

Eext {(ek, oldek, oldyk) | (ek−1, oldek−1, oldyk−1) , yk−1} (22)

such that

• ek is distributed according to E(ek|ek−1, yk−1)

• oldek = ek−1 and oldyk = oldyk−1, both with probability 1.

So the three components of the extended state correspond, respectively, to the
original state at current time k, the same at the previous time k − 1 and the
agent’s actions at time k − 1.

We will often model environments with a natural (interpretable) set of states E,
producing percepts that depend not only on the current state but also on the
state and agent’s action one-step back in history. We have just seen that such a
situation can still be modeled with the simple assumption (14) by extending E
towards a state set with a memory as in the above example. However, this leads
to some cumbersome notation as in (22). We will avoid these complications by
keeping the original state set E rather than extending it with memory for ek−1

and yk−1. Instead, we will add the latter two explicitly to the conditional part
of (14), thus obtaining

µ(xk|ek, ek−1, yk−1) (23)

Regarding the two components of the percepts xk, the observations will depend
only on the current state (and not on the previous one) and the last agent’s
action

µ(ok|ek, ek−1, yk−1) = µo(ok|ek, yk−1) (24)

11

and the reward will depend on the previous state (and not on the current one)
and the action taken immediately on it

µ(rk|ek, ek−1, yk−1) = µr(rk|ek−1, yk−1) (25)

The formulation (23)–(25) is convenient for interpretability and to avoid the
complex notation such as in (22). One should however keep in mind that with
a suitable definition of the state variable, it is possible to avoid the variables
ek−1, yk−1 in the conditional part and adhere to the simple prescription (14).

1.6 Agent States

A reasoning similar to the previous section applies to the agent, whose actions
generally depend on the entire history as in (3). Again, many histories can lead
to the same mapping from percepts to actions, for example because the agent
has built the same hypothesis about the environment throughout the different
histories. So analogically to the environmental states, we introduce the notion
of agent’s state a ∈ A and postulate that

|A| < Amax (26)

for some constant Amax ∈ N .

We adopt a counterpart of (14), meaning that the action will be determined by
the agent’s state, again through a functional prescription

yk = π(ak) (27)

The current action thus does not depend explicitly on the current percept xk.
This is because the latter can be simply stored as a part of the state equipped
with memory as can be shown through a reasoning very similar to that in the
previous section. However, the dependence on the current percept, and specif-
ically on its observation part, will be so typical that we will make it explicit.
Again, this will save us notational complications entailed by the need to mem-
orize percepts within states. We will thus use the formula

yk = π(ak, ok) (28)

Regarding the update rule, analogically to (20) we will assume that the state is
updated (deterministically) given the previous one and the current percept.

ak = A(ak−1, xk) (29)

This seems not fully analogical to (20) as the current percept, rather than the
previous one is taken into account. This is due to our setting of the agent-
environment communication, in which yk−1 is the last action taken before the

12

environment updates its state, whereas xk is the last percept received by the
agent for its state update.

The formalization using environment states and agent hypotheses results in the
agent and environment structures depicted in Fig. 5. The diagram of variable
influences is shown in Fig. 6.

Agent

a

A

π

k − 1

Environment

e

E

µ

k − 1

k − 1

x

y

Figure 5: The state-based scheme of agent-environment interaction according
to (14), (20) and (27), and (29). Full and dashed lines denote functional and
probabilistic influences, respectively. The k − 1 nodes denote a one-step time
lag. Note that we have introduced further dependencies through (23) and (28),
which are not shown in the picture. These dependencies can be avoided through
a reformulation of the state variable and the state update function.

1.7 Nonsequential and Batch Cases with States

Just like in the framework using entire histories, also with the formulation based
on states and hypotheses the situation simplifies a lot in the nonsequential case.
Here, the environment has no memory at all so the conditioning factors in (20)
and states are updated by i.i.d. sampling from the marginal distribution

E(ek) (30)

Furthermore, observations ok no longer depend on agent’s last action as in (24)
so given ek, an observation is sampled from

µO(ok|ek) (31)

Since ek’s are i.i.d., the ok’s are also i.i.d. from

µO(ok) =
∑
ek∈E

µO(ok|ek)E(ek) (32)

13

a1

y1

x1

e1

a2

y2

x2

e2

a3

y3

x3

e3

Figure 6: Influence diagram for states a, actions yk and percepts xk for 1 ≤ k ≤ 3
with full lines indicating deterministic influences (via π and A) and dashed lines
showing probabilistic influences (via µ and E). See caption to Fig. 5 for further
relevant remarks.

Rewards, given by (25), are however still generally non-i.i.d. as they depend on
the agent’s actions, which in turn depend on the evolving agent’s hypothesis.
Fig. 7 shows the complete set of influences in the nonsequential case.

A further simplification comes in the special batch-learning scenario of the non-
sequential case. While in the learning phase of the latter, the agent uses the
update rule (29), in the action phase it no longer updates its state, so

ak = aK ,∀k ≥ K (33)

This is illustrated in Fig. 8. Special attention is needed regarding the variables
at timeK. Reward rK (part of percept xK) is the last training reward, according
to which the last update is conducted towards the final hK . Observation oK
(another part of percept xK) is, however, the first testing observation.

Since yk−1 is determined by ok−1 and ak−1 through (28), we can rewrite (25)
as

µr(rk|ek−1, ok−1, ak−1) (34)

Because environment states ek and observations ok in the non-sequential setting
are i.i.d. (sampled from the respective distributions (30) and (32) independent
of k), we can marginalize the above as

µr(rk|ak−1) =
∑

ek−1∈E

∑
ok−1∈O

µr(rk|aK , ek−1, ok−1)µO(ok−1|ek−1)E(ek−1) (35)

14

h1

y1

o1

r1

e1

h2

y2

o2

r2

e2

h3

y3

o3

r3

e3

Figure 7: Influence diagram for hypothesis hk, actions yk, observations ok, and
rewards rk for 1 ≤ k ≤ 3 with full lines corresponding to deterministic influences
(via π and H) and dashed lines showing probabilistic influences (via µ and E)
in the nonsequential case.

In the testing phase (k > K) where ak is fixed to ak = aK , rewards rk are thus
i.i.d. according to the distribution µr(rk|aK) depending only on the final state
aK of training. This is analogical to the state-free formulation (12). Similarly
to (13), an agent operating in the batch-learning scenario with states will be
assessed by the expected reward in the testing phase∑

rk∈R
µR(rk|aK)rk (36)

so in the training phase, it should reach a state aK maximizing this quantity.

1.8 Prior Knowledge

• Implicit: the setting of A (“hard bias”) and A (“soft bias”)

• Explicit: the setting of a1 (“background knowledge”)

15

aK

yK+1

oK+1

rK+1

eK+1

yK+2

oK+2

rK+2

eK+2

yK+2

oK+2

rK+2

eK+2

Figure 8: Influence diagram for actions yk, observations ok, states ek, and re-
wards rk in the action phase (k > K) of batch learning with full lines indicating
deterministic influences (via π) and dashed lines showing probabilistic influ-
ences (via µ). The top row indicates the influence of the agent’s last state in
the training phase on the action phase. The dependence of rK+1 on eK and yK
is not shown.

1.9 Hypothesis Representations

See Fig. 9.

1.10 Learning Scenarios

1. on-line concept learning

2. batch concept learning

3. query-based and active learning (not covered here)

4. reinforcement learning

5. universal learning (not covered here)

16

H = look-up tables
π = find max value

H = propositional-logic theories
π = propositional resolution

H = relational-logic theories
π = first-order resolution

H = graphical probability models
π = probabilistic inference

H = graphical relational models
π = statistical-relational inference

H = Turing machine tape
π = Turing machine

Figure 9: Hypothesis representations and their corresponding policy classes
(interpreters) considered in this course. Arrow directions indicate increasing
expressiveness.

2 On-line Concept Learning

We first motivate the on-line concept learning scenario with an example, in
which the agent is an artificial scientist. The agent conducts repeated experi-
ments with a living cell, which represents the environment. In each experiment,
it observes two proteins of interest in the cell. More specifically, the agent de-
tects whether the proteins are present in the cell at all, and it also determines

17

whether they are in an active state (a special spatial conformation of a protein).
The agent suspects that these proteins (both or only one of them) initiate apop-
tosis (cellular suicide). After each observation of the proteins, it tries to predict
whether the cell will die or not. If the prediction is incorrect, the agent receives
a negative reward. This can be for example a cut-down on the agent’s salary by
the boss of the lab who is not happy with wrong biological predictions, in which
case the boss would be a part of the environment. However, we will simply
model such a reward with the number -1 for wrong predictions and with 0 for
correct predictions.

experiment
number

apoptosis
initiated

protein 1
present

protein 1
active

protein 2
present

protein 2
active

prediction reward

k ek o1
k o2

k o3
k o4

k yk rk
1 0 0 0 0 0 0 0
2 0 0 0 1 0 1 0
3 0 1 0 0 0 1 -1
4 1 1 1 0 0 0 -1
5 0 1 0 1 1 0 -1
6 1 1 1 1 0 1 0
7 1 1 1 0 0 1 0
8 0 1 0 1 1 0 0

(etc.)

Table 1: An on-line concept learning experiment.

Table 2 illustrates a history of such agent-environment interaction, in which
the agent eventually learns that apoptosis is induced if and only if protein 1
is present and it is in the active form. From time k = 5 on, the agent makes
correct predictions and is no longer punished with negative reward.

In the sequel, we will see how to model the illustrated scenario in our frameworks
and we will see examples of agents able to learn as the agent-scientist has in the
story above.

As Table 2 already indicated, the unknown variable guessed by the agent cor-
responds to the unknown state of the environment e. The variable is binary so
we set

E = { 0, 1 } (37)

We will accommodate (37) as a general assumption in the forthcoming text,
unless we specify otherwise. This is because the binary setting is the simplest
non-trivial one, to which richer state sets can usually be reduced.

The central assumption of concept learning is that the state ek is fully deter-
mined by the observation ok = (o1

k, o
2
k, . . .). In other words, an observation o

generated by state 0 cannot be generated by state 1 and vice versa. In terms of

18

the probability notation, this means that

µO(o|0)µO(o|1) = 0 (38)

i.e., at most one of the probabilities is non-zero. Note that although the state
is determined by the observation, the agent does not know how until it learns
such knowledge.

The set of observations which can be generated from state 1 is called the concept
C (of the environment)

C = { o ∈ O | µO(o|1) > 0 } (39)

and the observations coming from this concept are positive observations (or,
‘examples’) of it, while the remaining observations, i.e. those in O \ C are
termed negative. Since the environment states are partitioned into two classes
(positive and negative), the agent’s guessing is an act of classification and the
concept learning task is a special case of what is commonly termed classification
learning.

As we have indicated already, the agent guesses the current state through its
decision variable y ∈ Y . It is thus natural to set

Y = E = { 0, 1 } (40)

Whenever the agent makes an incorrect guess yk 6= ek, it will receive a unit nega-
tive reward−1 at the next time instant, so we instantiate (25), i.e., µR(rk+1|ek, yk)
to assign probability 1 to rk+1 such that

rk+1 =

{
0 if ek = yk

−1 otherwise
(41)

Note that now the rewards are determined functionally rather than probabilis-
tically, except for the first reward r1, which is immaterial and is still sampled
from the marginal µR(r1).

In a more general setting, the unit punishment −1 could be replaced by a
value (called loss) which could be different for the two different cases of ek 6=
yk possible in the present binary setting. Of course, in richer than binary
settings, more different mistake kinds exist. We will not bother here with such
generalizations.

The agent’s guesses are given by the policy (28) and at any time k they induce
a subset of observations analogical to the unknown concept C

C(ak) = { o ∈ O | π(ak, o) = 1 } (42)

C(ak) is the agent’s concept or the hypothesized concept. Note that we distin-
guish the concept C inherent to the environment for the agent’s concept C(ak)

19

O

C“positive examples” “negative examples”

C(ak)

Figure 10: A target concept C and a hypothesized concept C(ak).

at time k only by indicating the latter to be a function of the agent’s state ak. To
maximize rewards, the agent should evolve its state ak so that it hypothesized
concept co-incides with the target concept C, i.e. from some k on,

C(ak) = C (43)

If this is the case, the agent has identified the target concept. Figure 10 illus-
trates the setting.

A crucial question is how the agent’s state should be updated so that the guessing
accuracy improves. A simple idea would be to let the agent remember a finite
number of past observations and their true classes. When a new observation
comes, the agent would look up the most similar observation in this memory
and guess the class associated with it. Here, similarity could be for example
determined by the Hamming distance on the binary observation tuples.

We thus let the state act as a memory for a finite number m of observations
and their true classes.

ak = [(ok−m+1, ek−m+1) , . . . , (ok−1, ek−1) , (ok, yk)] (44)

The true class ek of observation ok can be determined at time k + 1 in the
obvious way, given the guess yk made for ok and the reward rk+1 received for
that guess. At time k the agent does not know rk+1 so for the newest observation
it just stores its own guess yk made according to the class of the most similar
observation among ok−m+1, . . . ok−1. In the state update step, the previous
guess is replaced by the actual true state and the less recent item is discarded
from ak.

The similarity based approach just explained assumes that similar observations
tend to have the same classes. Whether or not such an assumption is justified,
the approach hardly merits to be called learning as it rests in plain memo-
rization of observations. We would prefer an agent capable of generalizing the

20

observation towards a theory, or hypothesis prescribing how observations deter-
mine environment states. Such a hypothesis can, for example, take the form of
a set of logical rules, an equation, or a program in a programming language.

First consider that the agent’s state is fully defined by the agent’s current hy-
pothesis, which we denote hk, so

ak = hk (45)

Then the decision policy (28) becomes

yk = π(hk, ok) (46)

and it is then natural to view π as an interpreter (a logical inference mechanism,
an equation solver, a program interpreter, etc.) of hk, while ok plays the role of
input data for hk, according to which the decision is made. Similarly, (42) can
be rewritten into

C(hk) = { o ∈ O | π(hk, o) = 1 } (47)

and the equality (43) is rephrased as

C(hk) = C (48)

As can be expected, the state update function (29) should change the last hy-
pothesis hk−1 towards the current one hk whenever a wrong guess yk−1 was
made (recall that due to (41) such a wrong guess is indicated to the agent by
rk = −1). The change should lead to a correction of the hypothesis so that the
same mistake does not happen again. To conduct such an update step at time
k, we will need to known what the previous, wrongly classified observation ok−1

was. Since ok−1 is not an argument in (29), we need to memorize it within the
agent state. This means we cannot get rid completely of a memory component
of the agent state. So instead of (45) we rather consider the state to be a tuple
consisting of the memorized previous observation and the current hypothesis

ak = (ok, hk) (49)

The update rule (29) then takes the more specific form

A(ak−1, xk) = A
(

(ok−1, hk−1) , (ok, rk)
)

= (ok, hk) (50)

where hk is determined from hk−1, ok−1, and rk in a way depending on the
particular learning strategy. We will visit some strategies in the coming sections.

While we needed the memorized observation ok stored as part of the agent’s
state, this was just for the purpose of updating the hypothesis. To produce the
decision yk, the memorized observation is not needed so in the remainder of

21

this chapter, we will still use the notation (46)-(48) including hk rather than
ak = (ok, hk) as an argument.

For simplicity, we also will assume the observations to have binary components
(as in the running example in Table 2), so they will be n-tuples (n ∈ N) from

O = { 0, 1 }n (51)

2.1 Generalizing Agent

Recall the example from Table 2 and observe that the components of each
observation ok (columns 2-4) correspond to logical propositions such as “Protein
1 is present” and “Protein 1 is active”, which we can denote p1, . . . p4 (one
for each of the four observation columns), as customary in propositional logic.
Given (51), the values o1

k, . . . , o
4
k carry the logical (truth) values assigned to

these respective propositions at time k.

An idea then suggests itself, that the agent’s hypothesis hk would be a proposi-
tional logic formula built with truth-valued variables p1, . . . p4. Its truth value
for the assignment o1

k, . . . o
4
k to the variables would determine the decision yk.

For example, the hypothesis that apoptosis initiates if and only if protein 1 is
present and it is active would be written as

hk = p1 ∧ p2 (52)

If hk is a logical conjunction, then the decision policy (46) takes the more specific
form

yk = π(hk, ok) =

{
1 if ok |= hk

0 otherwise
(53)

where ok |= hk means hk is true given the truth-value assignments oi to variables
pi, 1 ≤ i ≤ n. More precisely, we say that positive (negative, respectively) literal
pi (¬pj) is consistent with observation ok if oik = 1 (oik = 0). Then, ok |= hk
holds if and only if all literals of conjunction hk are consistent with ok.

Let us design an agent that learns an unknown conjunction such as the above.
The plan is to start with the most specific hypothesis (a conjunction of all
literals, i.e. all propositional variables as well as their negations) and then
successively delete all literals inconsistent with the received observations. So
the initial hypothesis is gradually generalized towards the correct one.

In the present example, the agent has the initial hypothesis

h1 = p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 ∧ p3 ∧ ¬p3 ∧ p4 ∧ ¬p4 (54)

22

This is the most specific hypothesis as it conjoins all possible conditions (lit-
erals). At the same time, this conjunction can of course never be true as it is
self-contradictory. However, the agent’s strategy is to successively remove from
it all the literals that are inconsistent with the coming observations.

After the first percept has been received, i.e. for k > 1, the update rule (50)
determines hk according to

hk =

{
hk−1 if rk = 0

delete(hk−1, ok−1) otherwise
(55)

where

delete

∧
i∈I

pi
∧
j∈J
¬pj , (o1, o2, . . . , on)

 = (56)

∧
i ∈ I
oi = 1

pi
∧
j ∈ J
oj = 0

¬pj

So the delete function keeps exactly those literals from hk−1 which are consistent
with ok−1.

How do we know that through such an update rule the agent will indeed improve
its guessing so that eventually it will only be receiving non-negative rewards?
First, we need to assume that there indeed exists a ‘correct’ conjunction h∗. It
is correct in the sense that if hk = h∗, then (48) holds. In other words,

π(h∗, ok) = ek, ∀ok ∈ O (57)

To resolve the question, we need a few lemmas.

Lemma 2.1. ek = 1 if and only if all literals of h∗ are consistent with ok.

The above lemma follows directly from (53) and (57).

Lemma 2.2. Whenever delete(hk−1, ok−1) is called, ek−1 6= yk−1, and if ek−1 =
0, then all literals of hk−1 are consistent with ok−1.

Proof. To see why Lemma 2.2 is true, note that according to (55), rk 6= 0 when
delete is called. Due to (41), this means that ek−1 6= yk−1. So if ek−1 = 0 then
yk−1 = 1, but then due to (53), ok−1 |= hk−1 and so all literals of φk−1 are
indeed consistent with ok−1.

Lemma 2.3. delete(hk−1, ok−1) never removes a literal l ∈ hk−1 which is also
in h∗.

23

Proof. Assume for contradiction that it does remove a literal l ∈ h∗. First as-
sume ek−1 = 0. By Lemma 2.2, all literals of hk−1 are consistent with ok−1. But
because delete(hk−1, ok−1) keeps all literals of hk−1 consistent with ok−1, it does
not delete l, which is a contradiction. Now consider ek−1 = 1. Then by Lemma
2.1 all literals of h∗ including l must be consistent with ok−1. Again, since delete
keeps all consistent literals, it does not delete l, which is a contradiction.

The starting hypothesis (54) of the designed agent is set to contain all possible
literals, so h1 ⊇ h∗, where the inclusion is with respect to the sets of literals in
h1 and h∗. Furthermore, due to Lemma 2.3, we have

hk ⊇ h∗, ∀k ∈ N (58)

Given the above, the agent makes mistakes only on positive examples, and
the mistakes are corrected by removing at least one inconsistent literal, as the
following lemma formalizes.

Lemma 2.4. Assuming (54), whenever delete(hk−1, ok−1) is called, ek−1 = 1,
and the function deletes at least one literal from hk−1.

Proof. Due to Lemma 2.2, ek−1 6= yk−1. If ek−1 = 0 and yk−1 = 1 then by the
same lemma, all literals of hk−1 are consistent with ok−1. According to Lemma
2.1, ek−1 = 0 means that there is a literal in h∗ inconsistent with ok−1. But
due to (58), this inconsistent literal would also be contained in hk−1, which is a
contradiction. So we know that ek−1 = 1 and yk−1 = 0. According to (53), this
means that hk−1 contains a literal inconsistent with ok−1. Since delete, by (56),
keeps exactly all consistent literals, the inconsistent literal is removed.

Theorem 2.5. The generalizing agent makes at most 2n mistakes, i.e. the
cumulative reward is

k′∑
k=1

rk ≥ −2n (59)

for an arbitrary horizon k′ ∈ N .

Proof. Since the first agent’s conjunction has 2n literals by (54) and upon each
mistake, at least one literal is removed from from the conjunction by Lemma
2.4, the maximum number of mistakes is 2n.

2.2 The Subsumption Relation

It is instructive to view the generalization process as a path in the subsumption
lattice of conjunctions shown for two propositional symbols in Fig. 11. A lattice

24

is a partially ordered set where each two elements have their unique least upper
bound and the greatest lower bound. The subsumption order is given by the
subset relation

h1 ⊆ h2 (60)

This means that conjunction h1 precedes conjunction h2 if the latter contains
all literals of the former.

Recall from logic that a formula h1 entails another formula h2 if any model of
h1 is also a model of h2. We denote this as

h1 ` h2 (61)

It is obvious that h1 ⊆ h2 implies h2 ` h1 if h1 and h2 are conjunctions. How-
ever, the inverse implication does not hold. For example (observe Fig. 11), we
have both p1 ∧ ¬p1 ` p2 ∧ ¬p2 and p2 ∧ ¬p2 ` p1 ∧ ¬p1 simply because both of
the formulas are non-satisfiable and thus neither has a model. However, they do
not share any literal so the subset relation does not hold either way. Neverthe-
less, for satisfiable conjunctions (i.e., conjunctions other than ‘contradictions’)
h1, h2, h1 ⊆ h2 is equivalent to h2 ` h1.

While so far, we considered subsumption only conjunctions, the literal subset
relation (60) is obviously defined as well for disjunctions, i.e. clauses. However,
the relationship to logical entailment becomes inverted. More precisely, for two
clauses h1, h2, h1 ⊆ h2 implies h1 ` h2. Just like in the case of conjunctions,
we cannot claim equivalence between the two latter relations. For example p1 ∨
¬p1 ` p2∨¬p2. Again, the problem is with the atoms included both as a positive
and a negative literals. While in conjunctions they produced contradictions,
their presence in clauses make the latter tautologies, i.e. formulas true in any
interpretation. But analogically to conjunctions, h1 ⊆ h2 is equivalent to h2 `
h1 if h1, h2 are not tautologies.

Contradictory conjunctions and tautological clauses have one property in com-
mon. They contain a positive literal as well as the negation of the same literal.
Clauses, which have this property, are called self-resolving.1

d

2.3 Extensions of the Generalizing Agent

While the agent’s strategy has been designed to learn conjunctions, it can be
also made to learn disjunctions due to the equality

¬ (l1 ∨ l2 ∨ . . . ∨ ln) = ¬l1 ∧ ¬l2 ∧ . . . ∧ ¬ln (62)

1As the adjective self-resolving originates from the resolution principle, which is applied
on clauses and not on conjunctions, it is usually not associated with conjunctions.

25

∅

p1 ¬p1 p2 ¬p2

p1¬p1 p1p2 p1¬p2 ¬p1p2 ¬p1¬p2 p2¬p2

p1¬p1p2 p1¬p1¬p2 p1p2¬p2 ¬p1p2¬p2

p1¬p1p2¬p2

Figure 11: Subsumption lattice for conjunctions. The conjunction symbols ∧
are omitted for brevity. The curved arrows show how the agent generalizes its
initial conjunction in two steps following the successive observations (1, 0) and
(1, 1) carrying the respective truth values for p1 and p2. All conjunctions below
the dashed line are non-satisfiable.

where li are literals. So the agent only can simply learn the conjunction on the
right-hand side while inverting its decisions (i.e., replacing yk with 1 − yk.) to
adhere to the complementary concept on the left-hand side.

Other classes of logical formulas can also be reduced to conjunction and dis-
junction learning. Consider e.g. s-CNF (s ∈ N). These are conjunctions of
s-clauses. An s-clause is a disjunction of at most s-literals. For a finite set
of propositional variables, here is a finite number of s-clauses so the agent can
simply establish one new propositional variable for each possible s-clause a learn
a conjunction with these new variables. This reduction would even be efficient
if s is a small constant. Indeed, if n is the number of original variables, then the
number of possible clauses is

(
2n
s

)
, i.e., the number of s-combinations of literals

chosen from the set of n variables and their n negations. This number grows
exponentially with s and polynomially with n. A similar reduction can be used
to learn s-DNF.

2.4 Separating agent

In Section 2.1 we have designed the generalization agent able to learn a con-
junction while making only a finite number of mistakes. We have also seen that
through efficient conversions, such an agent can also learn disjunction, s-DNF’s
and s-CNF’s.

26

As an alternative example of a learning agent, we will demonstrate one using a
different strategy to achieve the same goal. This time, the agent’s hypothesis
hk will be represented by non-logical means. In particular, hk will define a
hyperplane in the O = { 0, 1 }n space (51) so C(hk) (47) will include exactly
those observations lying above the hyperplane.

Formally, hk is an n-tuple of integer values bounded by some constant q ∈ N ,
i.e. hk ∈ [0, 1, . . . , q]n, so

hk = [h1
k, h

2
k, . . . , h

n
k] (63)

The agent’s decision policy (46) is given by a threshold function applied on a
dot product

yk = π(hk, ok) =

{
1 if hk · ok > n/2

0 otherwise
(64)

The initial hypothesis is
h1 = (1, 1, . . . 1) (65)

And the update rule (50) is instantiated according to

hk =

hk−1 if rk = 0

update(2, hk−1, ok−1) if hk−1 · ok−1 ≤ n/2
update(0, hk−1, ok−1) if hk−1 · ok−1 > n/2

(66)

wherein the function update is defined such that for hk = update(α, hk−1, ok−1)
and each i = 1, 2, . . . n,

hik =

{
α · hik−1 if oik−1 = 1

hik−1 otherwise
(67)

This agent, which can be considered an integer counterpart of the popular per-
ceptron algorithm, learns a hyperplane. On the other hand, the generalization
agent from the previous section was designed to learn logical formulas, namely
conjunctions, disjunctions, s-DNF’s, and s-CNF’s. So how can we compare the
two agents?

Assume that the target concept C corresponds to a disjunction c consisting of
s literals made out of the variables p1, . . . pn. That is to say, µO(o|1) > 0 if and
only if o |= c. It is well known that disjunctions are linearly separable, so for a
sufficiently large q, there is a hyperplane h∗ such that (57) holds. This means,
that the agent can identify a target disjunction through its hypothesis, although
the latter is a hyperplane rather than a disjunction. The theorem below states
that is does so with a finite number of mistakes.

27

Theorem 2.6. The agent makes at most 2+2s lg n mistakes, i.e. the cumulative
reward is

k′∑
k=1

rk ≥ −2− 2s lg n (68)

for any horizon k′ ∈ N .

(proof omitted)

Just like the generalizing agent designed to learn conjunctions could easily be
modified to learn disjunctions, s-CNF’s, and s-DNF’s, also the separating agent
can be altered to learn conjunctions as well as the latter two classes by means
of the same reduction principles. So the two agents can in principle learn the
same concept classes. The difference is in the mistake bound. The latter agent
performs better when the number of variables n is larger than the number of
relevant variables s.

2.5 Hypothesis and Concept Classes

So far we have designed two exemplary learning agents, each with a different set
of hypotheses h it could express. We shall call the set of all hypotheses an agent
can express its hypothesis class denoted with the letter H and we will assume
H to be finite. For the generalizing agent, H consisted of all conjunctions made
of at most n variables. For the separating agent, H was the set of (q-bounded)
n-tuples of integers.

Considering (47), each hypothesis class induces a set of concepts

C(H) = { C(h) | h ∈ H } (69)

called a concept class.

The two agents exemplified so far used their update rules specifically designed
for their respective hypothesis classes. Can we design a more general learning
agent which could work with an arbitrary hypothesis class H?

Assume that H is rich enough to contain a hypothesis h matching the unknown
target concept C(h) = C (39). This assumption can be written as

C ∈ C(H) (70)

Under such an assumption, since H is finite, the agent can always try succes-
sively each element h ∈ H, discarding it as soon as a mistake is made (negative

28

reward received) using that hypothesis. In the worst case, the last hypothe-
sis remaining will match the target concept. This means that the maximum
number of mistakes made before identifying the target concept is

|H| − 1 (71)

This is a first indication of a dilemma we are going to face repeatedly in different
forms. In particular, given that C is unknown, the agent should posses a large
hypothesis space to maximize chances that (70) is satisfied. On the other hand,
a large hypothesis space entails a loose bound on the number of mistakes made
according to (71).

2.6 Version Space Agent

The general mistake bound (71) can be readily improved to lg |C| using the
version space strategy. Informally, its main idea is that on each observation, the
agent discards all hypotheses from the hypothesis class which are inconsistent
with the observation.

Before formalizing the principle, we will explain it by contrasting it to the gen-
eralization agent from Section 2.1. The latter agent worked with the hypothesis
class H of conjunctions made of at most n variables, i.e., at each time k, hy-
pothesis hk ∈ H. The main idea of the version-space agent is to keep at each
time k the subset of all hypotheses from H which are consistent with all the
observations received so far.

So instead of (72), the version-space agent’s state is given as

ak = (ok,Hk) (72)

where ok is again the memorized observation and Hk is a set of hypotheses, also
called the version space.

Decisions are determined by voting among all hypotheses in Hk. Assuming that
H consists of logical formulas, this is formalized as

yk = π(Hk, ok) =

{
1 if | { hk ∈ Hk | ok |= hk } | > |Hk|/2
0 otherwise

(73)

The agent starts with the full hypothesis space

H1 = H (74)

The hypothesis update step takes a form slightly different from (50), in partic-
ular

A(ak−1, xk) = A
(

(ok−1,Hk−1) , (ok, rk)
)

= (ok,Hk) (75)

29

where Hk is obtained by deleting all hypotheses inconsistent with ok−1, i.e.

Hk =

{
{ h ∈ Hk−1 | ok−1 |= h } if ek−1 = 1

{ h ∈ Hk−1 | ok−1 6|= h } if ek−1 = 0
(76)

where ek−1 is determined as ek−1 = |yk−1 +rk| (check that this equality is true)
and yk−1 = π(Hk−1, ok−1). To see that the latter expression can be evaluated at
the hypothesis update step, note that both Hk−1 and ok−1 are indeed available
at that step according to (76).

In (73) and (76) we used the relation |= assuming that hk is a logical formula
and ok provides the truth-values for its atoms (variables). If this was not the
case, we could assume more generally that hypotheses provide a mapping hk :
O → { 0, 1 }. Then in the two formulas, ok |= hk (ok 6|= hk, respectively) would
be replaced by hk(ok) = 1 (hk(ok) = 0).

Assume that H is rich enough so that (70) is true. Then the following theorem
holds.

Theorem 2.7. The agent makes at most lg |H| mistakes, i.e. the cumulative
reward is

k′∑
k=1

rk ≥ − lg |H| (77)

for any horizon k′ ∈ N .

Proof. To see why the theorem holds note that the agent decides by the majority
of hypotheses fromHk. So if a mistake is made, at least half of the hypotheses in
Hk are deleted. In the worst case, the last remaining hypothesis is correct.

Once again, a dilemma is observed in that H should be large enough so that (70)
is satisfied. However, the size |H| also increases the mistake bound (77). The
latter mistake bound is logarithmic, which is certainly a significant improvement
over (71) good but the computational demands for storing Hk (containing a
potentially large number of hypotheses) can be prohibitive.

2.7 The Mistake Bound Learning Model

The linear mistake bounds we obtained for the generalizing and separating
agents indicate that these agents are indeed able to learn well the conjunc-
tive and disjunctive concepts but also other kinds of concepts (namely, s-DNF
and s-CNF) that can be reduced to the latter. We will now generalize the no-
tion of ‘good on-line learning.’ We say that an agent learns class H on-line (in

30

the mistake-bound model) if it makes at most poly(n) of mistakes in the on-line
scenario provided that (70) holds. Here, poly is a polynomial and n is the size
of observations. With our setting (51), the size of observations is the number n
of binary values making up the observations.

By Theorems 2.5 and 2.6, the generalizing and separating agents learn H on-
online when H are conjunctions, disjunctions, s-DNF or s-CNF (for a constant
s). By Theorem 2.7, for an arbitrary class H, the version-space algorithm has
a mistake bound lg |H| as long as (70) holds true. If furthermore |H| is at most
exponential in n, the agent necessarily learns H on-line, because the mistake
bound lg |H| is then polynomial. The condition ‘at most exponential’ above
seems rather permissive. But note that |H| may easily be super-exponential.
The extreme example of such a situation is the class H such that (70) is true
for any possible concept C, C ⊆ O. Since |O| = | { 0, 1 }n | = 2n, we have
|H| ≥ 2|O| = 22n , so |H| is super-exponential.

Furthermore, we refine the definition into a stricter form. An agent that learns
hypothesis class H on-line is said to learn it efficiently if it spends at most
polynomial time (in n) between the receipt of a percept and the generation of
the next action.

It is quite easy to verify that both the generalizing and separating agents learn
their hypothesis classes efficiently. However, the version-space agent is evidently
not efficient if |H| is super-polynomial in n as it has to visit each element of
H during the update (76). Say H are conjunctions. There are 2n literals, each
of which can be present or absent in a conjunction so there are |H| = 22n

conjunctions and the version-space agent does not learn conjunctions efficiently.
We could reduce the size of H realizing that conjunctions containing the same
atom both in a positive literal and a negative literal are unsatisfiable and can
be discarded. Then we would derive |H| as follows. We have n atoms, each of
which may be positive, negative, or absent in a conjunction. Thus there are 3n

conjunctions in total, which grows slower than 22n but still exponentially.

What about a lower bound on the number mistakes made? Of course, there is
no such bound in the general case as we cannot rule out a history where the
agent is simply lucky and makes all guesses right. But we can provide a lower
bound on a (upper) mistake bound depending on the assumptions of the latter.

The latter can be established using the notion called VC-dimension of a hypoth-
esis class. We say that a set of observations O′ ⊆ O is shattered by hypothesis
class H if

{O′ ∩ C(h) | h ∈ H } = 2O
′

(78)

which means that the set of observations can be partitioned in all possible
ways into two classes by the hypotheses from H. The Vapnik-Chervonenkis
Dimension (or VC-dimension) of H, written VC(H), is the cardinality of the

31

largest set O′ ⊆ O that is shattered by H.

Theorem 2.8. Assume an agent deciding by (46) where hk ∈ H. No upper
bound on the number of mistakes made by the agent is smaller than VC(H).

Proof. We can assume C ∈ C(H), i.e. the target concept to be expressible
through an ag

For any sequence of agent’s decisions y1, y2, . . . , yVC(H) there exists a h ∈ H
according to which all these decisions are wrong.

3 Batch Concept Learning

We will maintain the assumption of concept learning (38), that is, no observation
can be generated from two different states of the environment. For simplicity,
we will continue working in the binary setting (40), i.e. the environment has
only two different states and the agent can make only two different actions.
Also, the observations are still assumed to be binary (51). Finally, rewards are
still determined according to (41), i.e., −1 is a punishment for a wrong guess.

However, instead of the on-line setting, we will now study concept learning in the
batch framework we defined in Section 1.7. Since observations are i.i.d. here, we
can express the probability distribution of reward rk+1 by (35) as µr(rk+1|ak),
only depending on the current agent’s state. Considering that the decision for
an observation ok is made only using the hypothesis component hk of the state
ak (46), this is the same as writing µr(rk+1|hk). As follows from (41), µr(−1|hk)
is the probability that the decision yk = π(hk, ok) is wrong, i.e., yk 6= ek. We
will call this probability the error of hk

err(hk) = µr(−1|hk) (79)

Remind that the agent’s goal in the batch setting is to reach at the end of the
training phase (i.e., at time K), a state aK which maximizes the expected reward
(36). Again, since only the hypothesis component of the agent’s state determines
the decision, the expected reward is

∑
rk∈R µR(rk|hK)rk. This expectation is

equal to −err(hK) as can be easily seen realizing that rewards can be only 0 or
-1.

So the goal of batch learning can be equivalently stated as arriving at a hy-
pothesis hK minimizing the error. A natural question of interest is how the
algorithms we designed for on-line concept learning in the sequential scenario

32

would perform in terms of the error. Evidently, the bounds on the number of
mistakes we established in Theorems 2.5, 2.6, and 2.7 do not translate to any
bound on err(hK) as there is no guarantee that the mistakes will happen in the
learning phase (k ≤ K) where the agent still can fix its hypothesis.

But unlike in the on-line learning case, the batch case inherits the non-sequential
assumptions (30) and (32), meaning that states and observations are sampled
i.i.d. according to distributions that do not change with k. They prevent the
environment from ‘adversarial’ behavior, for example, one where the training
phase would only contain ‘easy’ examples and the ‘hard’ ones would be kept for
the testing phase. As we will see, in this scenario we can indeed bound err(hK)
for particular learning agents, although we will be able to do it only with certain
probability smaller than 1.

3.1 Batch Learning with the Generalizing Agent

Consider the generalizing agent as described in Section 2.1 working in the learn-
ing phase (k ≤ K) of the batch scenario just as it worked in the on-line scenario.

Denote by Pr(l) the probability that literal l ∈ hk is deleted by (56) while
updating to hk+1. Since the agent makes mistakes only on positive examples,
this means that ok is positive and l is inconsistent with it. Observations are
i.i.d. in the non-sequential batch setting so Pr(l) does not depend on k.

According to (55), deletion from hk takes place if and only if rk+1 = −1. So
considering (79), err(hk) is equal to the probability that some of the literals in
hk get deleted, which in turn can be bounded by the sum

err(hk) ≤
∑
l∈hk

Pr(l) (80)

We have no more than 2n literals in hk so if Pr(l) ≤ ε/2n (ε ∈ R) for each of
them then err(hk) ≤ ε. Let us fix an arbitrary ε and let us call a literal bad if
Pr(l) > ε/2n.

Consider a bad literal l from h1 (54). The probability that it will still be in h2

(i.e., that it will ‘survive’ the first observation) is 1−Pr(l). Appealing again to
the i.i.d. character of observations, the probability of l ∈ hk+1 is then

(1− Pr(l))k <
(

1− ε

2n

)k
(81)

There are at most 2n bad literals so the probability that some of them is in
hk+1 is at most

2n
(

1− ε

2n

)k
(82)

33

To work with this upper bound easily, we make use of the inequality 1−x ≤ e−x
which holds for x ∈ [0; 1], to obtain

2n
(

1− ε

2n

)k
≤ 2ne−k

ε
2n (83)

So hypothesis hk+1 of the generalizing agent in the learning phase (k < K) has
err(hk+1) ≤ ε with probability at least 1− 2ne−k

ε
2n , and specifically for hK we

can state the following theorem.

Theorem 3.1. The probability that the generalizing agent’s hypothesis hK has
error err(hK) ≤ ε is at least 1− 2ne−m

ε
2n where m = K − 1.

3.2 Batch Learning with Standard On-line Agents

We define a standard on-line agent as one that uses a single hypothesis to deter-
mine its decisions (46), and changes the hypothesis if and only if it makes the
wrong decision. This includes the generalizing and separating agents as follows
from the update rules (55) and (66). On the other hand, the version-space agent
is not standard for obvious reasons.

The next lemma will enable us to accommodate any standard on-line learning
agent for the batch learning scenario with a probabilistic bound on the error of
the learned hypothesis.

Lemma 3.2. If a standard on-line agent retains a hypothesis hk for q steps
(hk = hk+1 = . . . hk+q), then err(hk) ≤ ε with probability at least 1− e−qε.

Proof. The probability that the standard agent retains a bad hypothesis (i.e.,
one for err(hk) > ε) on receiving an observation is the probability 1 − err(hk)
that the bad hypothesis produces a correct decision for that observation. Since
err(hk) > ε, the probability is at most 1 − ε. The probability of keeping the
hypothesis over q i.i.d. observations is thus at most (1 − ε)q, and we already
know that (1 − ε)q ≤ e−qε. Otherwise, i.e. with probability at least 1 − e−qε,
the hypothesis was not bad, i.e err(hk) ≤ ε.

So the rule is: wait until hk = hk+1 = . . . hk+q happens and then keep hk
with the probabilistic error bound. The question is how to guarantee that the
event indeed happens within the learning phase, i.e. k + q ≤ K. If we have
a mistake bound M for the agent, we know that the standard agent makes at
most M hypothesis changes. In this case we set the learning phase long enough,
in particular K = Mq, to guarantee that one of the hypotheses in the learning
phase survives at least q observations.

34

3.3 Consistent Agent

Here we design a general agent working with an arbitrary hypothesis space.
This is analogical to the version space agent we studied in the on-line setting.

We first adapt the version space agent from on-line learning to batch learning.
In the learning phase, the agent works just as in the on-line setting. When the
phase ends, i.e. k = K, the agent updates its state for the last time according
to (76), and then selects an arbitrary hypothesis hK from HK .

Once again, let us call a hypothesis h ∈ H bad if err(h) > ε. The probability
that a particular bad hypothesis h ∈ H is in HK is at most (1 − ε)m ≤ e−εm

where2 m = K − 1. The probability that some bad hypothesis from H (74) is
in HK is at most |H|e−εm. So the probability that no bad hypothesis survives
and thus err(hK) ≤ ε whichever hK the agent has picked from HK , is at least
1− |H|e−εm.

Maintaining the sets H1,H2, . . . along the course of learning can certainly be
prohibitive as the latter can be very large sets. A behavior equivalent to the
described version-space strategy can however be obtained without maintaining
the version spaces.

In particular, the consistent agent collects all observations seen during the train-
ing phase along with their true classes in its memory without updating its hy-
pothesis. Only at the end of the training phase, it picks from its hypothesis
class a hypothesis consistent with all the collected observations.

Formally, the agent has state

ak =
(
(o1, e1, . . . , ok−1, ek−1), hk) (84)

for time k = 1, 2, . . .K − 1. Here, hk is just any ‘dummy’ hypothesis that
makes yk = π(hk, ok) = 0 for any observation ok ∈ O (e.g., an unsatisfiable
formula). With yk = 0 the agent can indeed determine the true classes in
(84) as ek = −rk+1. Only at time K, the agent finds any hypothesis hK ∈ H
consistent with the collected set, i.e. π(hK , ok) = ek for all k < K. Analogically,
to the reasoning above, we have that

Theorem 3.3. The probability that the consistent agent’s hypothesis hK has
error err(hK) ≤ ε is at least 1− |H|e−εm where m = K − 1.

2Remind that oK is the first testing observation (its true class ek cannot be determined at
time K). So m = K − 1 is the number of observations with known class (label) received in
the training phase. In other words, m is the number of labeled training examples received by
the agent.

35

The first component of the agent’s state at time K, i.e.

o1, e1, . . . , om, em (85)

is called the training set. Unlike the version space agent, the consistent agent
does not store large hypothesis spaces and so it obviously consumes less memory.
On the other hand, finding a hypothesis hK consistent with the training set may
be computationally hard, and potentially intractable.

The generalizing agent from Section 2.1 can be formally viewed as a consistent
agent simply by letting it delete inconsistent literals after all training observa-
tions have been received, rather than deleting them on-line. Thus the bound
1 − |H|e−εm from Theorem 3.3 applies to this agent, wherein |H| = 22n is the
number of conjunctions which can be made out of 2n literals. The latter bound
is asymptotically (for growing m) higher (better) than 1− 2ne−m

ε
2n from The-

orem 3.1. This is interesting given that the latter theorem was derived for the
specific agent rather than for a class of agents as in the case of Theorem 3.3.
The reason for that is the rather loose bound (80) we adopted to derive Theorem
3.1. Note that the formula in the latter theorem is ‘stronger’ in the sense that
it is a lower bound on the probability that the learned conjunction will contain
no bad literal, which is a sufficient but not necessary condition for err(hK) ≤ ε.

3.4 The PAC Learning Model

Agent probably approximately correctly (PAC) learns class H (in the batch set-
ting) if at the end of the training phase it produces hK such that err(hK) ≤ ε
with probability at least 1 − δ, and K − 1 = m ≤ poly(n, 1/δ, 1/ε), where poly
is a polynomial.

“probably approximately learns” = “PAC-learns” (C for correctly)

It PAC-learns the class efficiently if it spends at most polynomial (in the same
variables) time between the receipt of a percept and the generation of the next
action in the training phase.

Theorem 3.4. The generalizing agent efficiently PAC-learns conjunctions.

Proof. Efficiency is obvious: at most 2n unit steps (going over literals) for each
of m = K−1 observations. From Theorem 3.1, the probability that err(hK) > ε
is at most 2ne−m

ε
2n . It remains to determine how many observations m are

needed to make the probability smaller than a given δ and see if the result is

36

polynomial.

δ > 2ne−m
ε
2n

δ

2n
> e−m

ε
2n

ln
δ

2n
> −m ε

2n
2n

ε
ln

2n

δ
≤ m

So the required m = K − 1 is indeed polynomial in n, 1/ε and 1/δ.

Theorem 3.5. Any standard agent learning (efficiently) a concept class C on-
line, has a counterpart which (efficiently) PAC-learns C.

Proof. The agent makes at most M < poly(n) updates, i.e. max number of
mistakes.

Its batch counterpart works as follows.

Set q = 1
ε ln 1

δ

If before M updates have been made, each hypothesis survived for less than
q steps, then the last one (which makes no mistakes) is found in at most Mq
steps, and is kept as hK . Both M and q are polynomial.

If some of them survived for at least q steps, than according to lemma (3.2), its
error is less than ε with probability at least

1− e−qε = 1− e−ε 1
ε ln 1

δ = 1− δ (86)

This hypothesis found with less than Mq (poly) steps, will be kept as hK .

So a negative batch (PAC) result also means a negative on-line result.

Theorem 3.6. If (70) holds and |H| is at most exponential in n then the
consistent agent PAC-learns H.

Proof. By Theorem (3.3), probability that err(h) > ε is at most |H|e−εm and
we need this to be smaller than δ. The required m is then set as

|H|e−εm < δ

e−εm < δ
|H|

37

m ≥ 1
ε ln |H|δ

Since |H| is at most exponential in n, ln |H| is at most polynomial in it, so
setting m to the right-hand side of the above inequality means that m <
poly(1/ε, 1/δ, n).

Also, s-CNF and s-DNF learnable by poly reduction to conjunctions.

4 Learning First-Order Logic Concepts

We now revisit the agent-scientist from Section 2, although the agent will now
be in a slightly different situation. In particular, it will investigate chemical
compounds, that is, structures such as

and learn to predict for each compound whether it is toxic or safe. The impor-
tant distinction from the story captured in Table 2 is that there is now no ob-
vious way to encode structure such as the above through tuples o = (o1, o2, . . .)
of truth values. Here, observations are graphs and we need a language more
expressive than propositional logic to describe such graphs, and also to form
hypotheses about them. To this end, we will use the language of first-order
predicate logic.

First, we will simplify the situation by abstracting from the parts not important
for studying the learning principles. In particular, we will ignore the types
of chemical elements in the vertices and also the bond types (single, double).
We will simply assume that observations are oriented3 graphs, that is, directed
graphs in which no two vertices are connected in both directions. We will assign
unique numbers to vertices so that the latter can be addressed later. This is
exemplified in Table 2.

3Orientation of edges may e.g. correspond to charge distribution along the bonds; we
assume oriented edges as their representation is simpler in logic than that of non-oriented
edges.

38

Negative observations (e = 0)
o1 o2 o3

11 12

14 13

21 22

23 24

31 32

33 34

Positive observations (e = 1)
o4 o5 o6

41 42

43 44

51 52

53

61

62
63

64

65

66
67

68

Table 2: Graphical observations from which the agent should learn to classify
new observations as negative or positive.

Encoding the graphs shown in Table 2 through the language of predicate logic
is straightforward. For each graph, we will simply list all of its edges as ground
facts of the binary predicate edge. So, for example, the second negative obser-
vation will be represented as

o2 = { edge(21, 22), edge(22, 23), edge(23, 21), edge(23, 24) } (87)

and the second positive observed compound will be encoded as

o5 = { edge(51, 52), edge(52, 53) } (88)

Note that this representation is perfectly analogical to the one used in Sec-
tion 2.1. In the latter, the observations (51) were truth values assigned to
propositional symbols. In (87) and (88) we implicitly assign truth values to all
possible ground facts of edge/2 by including exactly those ground facts which
hold true, i.e. listing all edges actually in the graph. In both cases, the truth
value assignment is called an interpretation. In the present first-order context,
interpretations such as those shown above, which assign truth values directly to
ground atoms of the logical language, are called Herbrand interpretations.

Naturally, for more complex problems, the vocabulary of predicates would in-
clude more predicates than just edge/2, and an interpretation would define the
truth values of all ground facts of all the predicates.

Returning to the example in Table 2, we would like to design an agent able to
learn what patterns are common for only the positive observations (safe com-
pounds) so that such patterns can be used for classifying compounds observed

39

x y

z

x y

z

Figure 12: Each negative and no positive observation from Table 2 contains one
of these two kinds of triangles.

in the future. As we are also intelligent agents, we observe that none of the
safe compounds (and each of the toxic ones) contains a triangle. As edges are
directed, a triangle may take one of the two forms shown in Fig. 12.

Any other oriented triangle is isomorphic to one of the two shown in the figure.
The following formula γ1 in predicate logic expresses that a graph does not
contain the first (left) kind of triangle

γ1 = ∀x, y, z : ¬edge(x, y) ∨ ¬edge(y, z) ∨ ¬edge(z, x) (89)

In the logical representation of graphs, this means that e.g. the negative inter-
pretation o2 above will not be a model of this formula. Indeed o2 6|= γ1 since
there exists a substitution θ, namely

θ = { x 7→ 21, y 7→ 22, z 7→ 23 } (90)

making all the literals in γθ false with respect to o2, since all of edge(21, 22),
edge(22, 23), and edge(23, 21) are in o2. Analogically, o3 6|= γ1, so the third
negative example is also ‘eliminated’ by γ1. However, the formula does not
eliminate o1 – indeed o1 |= γ1. This observation does not contain the first kind
of triangle shown in Fig. 12. However, it contains the second one, which is in
turn eliminated by the formula

γ2 = ∀x, y, z : ¬edge(x, y) ∨ ¬edge(z, x) ∨ ¬edge(z, x) (91)

As before, we can check easily that o1 6|= γ2 using either the substitution θ =
{ x 7→ 14, y 7→ 11, z 7→ 13 } or the substitution θ = { x 7→ 12, y 7→ 14, z 7→ 13 }.

In summary, the conjunction
γ1 ∧ γ2 (92)

eliminates all negative observations. On the other hand, both γ1 and γ2 are
true in all the positive observations (there is no substitution to x, y, z making
all literals of γ1 or γ2 false in them), so indeed the above conjunction perfectly
discriminates between the positive and negative observations.

Note that in a substitution, different variables can map to the same term. So
e.g. γ1 would also be false in interpretations which we did not intend such as

o′ = { edge(1, 1), edge(1, 2), edge(2, 1) } (93)

40

as with the substitution

θ = { x 7→ 1, y 7→ 1, z 7→ 2 } (94)

all literals γ1θ = ¬edge(1, 1) ∨ ¬edge(1, 2) ∨ ¬edge(2, 1) are false with respect
to o′. Similarly, one can check easily that γ2 is false e.g. in interpretation
o′′ = { edge(1, 2), edge(2, 1) }. This would be a problem if o′ or o′′ were positive
observations, since they would be eliminated incorrectly by γ1 ∧ γ2. There is
an apparent reason why o′ or o′′ should be classified as positive (safe): these
observations do not contain a proper triangle. However, note that neither o′ or
o′′ represent an oriented graph as they contain mutually inverse edges and thus
they cannot come as observations at all.

4.1 Generalizing Agent

In the illustrative example above, the formulas γ1 and γ2 were first-order logic
clauses, that is, universally quantified disjunctions of first-order logic literals.
Thus (92) is a first-order logic CNF. We will design an agent able to learn such
CNF’s in the on-line scenario. A a CNF is a logical formula whose truth-value for
a given observation can be determined, we naturally adopt the decision policy
as defined in (53).

We will keep the basic concept-learning assumptions, i.e. observations uniquely
map (39) to binary states (37). Note that these assumptions fit well the illus-
trative example above. Also, a reward will punish an incorrect prediction just
as was done through (41). Observations, however, will no longer be tuples of
truth values as in (51). They will take the form of (Herbrand) interpretations
of maximum cardinality n. In the illustrative graph example above, n is the
number of edges in the largest observed graph.

Recall the generalizing agent from Section 2.1, whose strategy was to gradually
remove all constituents of it hypothesized conjunction inconsistent with the
received observations. The agent’s initial hypothesis (54) conjoined all possible
atoms using the variables p1, p2 . . . pn fixed before the learning session. So these
n variables determined the size of the the initial conjunction and n was a suitable
measure of the learning-task complexity.

The present agent will follow an analogical strategy, except that first-order
clauses—rather than propositional literals—will form the hypothesized conjunc-
tion. So the initial hypothesis should take the form

h1 =
∧
γ∈Γ

γ (95)

where Γ is the set of all clauses the agent can express. Here, the situation
becomes more complex as Γ is not determined simply by a set of n variables,

41

but rather by a finite set of first-order predicates P and a finite set of functions
F . So in the running example, P would contain only the binary predicate edge,
and F would contain constants4 at least those occurring in the observations (see
Table 2).

Although we requested that both P and F be finite, in general this does not
guarantee Γ to be finite. In particular, Γ is infinite when functions of arity 1
of greater are in F . E.g., in the running example, we can consider a function
next mapping a vertex onto another vertex. Its purpose is irrelevant, it could
for example encode some linear order on vertices. Importantly, such a function
would give rise to an infinite set of first-order atoms including edge(1, next(1)),
edge(next(1), next(next(1))), and so on. This of course means that also Γ is
infinite.

We do need Γ finite for (95) to make sense. We will do it by requesting that
the number of literals in any γ ∈ Γ is no greater than s ∈ N , and each of the
literals contains at most t ∈ N occurrences of predicates, functions or variables.
A clause complying with these constraints is called an st-clause. Clearly, Γ is
finite under such a constraint.

Let us return to the notion of complexity of a particular learning task, which in
the propositional-logic version of the generalizing agent was simply the number
of propositional variables n determining the size of each observation. In the
current context, n is again the size of the largest observation, which is now a
Herbrand interpretation. However, besides n, the task size is now also deter-
mined by the number of predicates and functions available, i.e., |P |, |F |. So,
when we say that the present agent learns in the mistake-bound learning model
(c.f. Section 2.7), its mistake bound must be polynomial each of the three
quantities n, |P |, and |F |.

Finally, we can elaborate how the present agent will update its hypothesis from
observations. The hypothesis update function will be the same as in (55)-(56),
except the delete function is different:

delete

(∧
i∈I

γi, o

)
=

∧
i ∈ I
o |= γi

γi (96)

In other words, on receiving an observation o, the agent keeps exactly all clauses
consistent with that observation.

Does this agent learn conjunctions of st-clauses on-line? Since the agent follows
the same strategy as the generalizing agent for propositional conjunctions (Sec-

4Recall from logic that constants are a special case of functions, namely functions of arity
0.

42

tion 2.1), i.e., deleting inconsistent clauses from the curent conjunction, starting
with the maximal conjunction, Lemma 2.4 applies. That is to say, the agent
makes errors only on positive observations. Also, using Theorem 2.5 (in which
we replace the number 2n of literals to the number |Γ| of clauses in the con-
junction), we get that the agent makes at most |Γ| mistakes. Now the question
is whether |Γ| is polynomial in the size of the problem, i.e, in n, |P |, and |F |.

To determine |Γ|, we first examine the number of different atoms and liter-
als, and then the number |Γ| of different st-clauses. Each atom has exactly 1
predicate symbol chosen out of |P | symbols, and at most t − 1 other symbols
in arguments. Each can be chosen out of |F | function symbols or it can be
a variable. An st-clause can have at most st variables. So there are at most
|P |(|F |+ st)t−1 different atoms, and 2|P |(|F |+ st)t−1 literals. A st-clause com-
bines at most s literals, so the number of all st-clauses can be estimated as

s∑
i=1

(
2|P |(|F |+ st)t−1

i

)
≤

s∑
i=1

[
2|P |(|F |+ st)t−1

]i
= poly(|P |, |F |) (97)

and so is polynomial in the size of the learning task. So indeed, the agent learns
conjunctions of range-restricted st-clauses on-line.

Does it also learn efficiently, i.e. does it spend at most polynomial time at each
hypothesis update step? That depends on whether the relation o |= γ in (96)
can be determined efficiently. Unfortunately, this is not the case for general
st-clauses. However, the test can be made efficient if we adopt yet another
restriction on clauses, in particular, the range-restriction.

A clause is range-restricted if any variable occurring in a positive literal of it,
also occurs in a negative literal of it. So clauses γ1 and γ2 from the previous
section are examples of range-restricted 3, 3-clauses. The range restriction here
follows simply from the fact that the clauses have no positive literals at all.

We recall from elementary first-order logic that o |= γ does not hold if and only
if there is a ground instance5 γθ of γ such that

1. atoms of all negative literals of γθ are in o, and

2. no positive literal of γθ is in o

Consider for example a clause γ = ¬edge(x, y)∨¬edge(y, z)∨path(x, z), which
can be rewritten as

edge(x, y) ∧ edge(y, z)→ path(x, z) (98)

5that is, a clause obtained from γ by substituting each of its variables to some ground
term. A ground term does not contain variables. The substitution θ for which γθ is ground,
is called a grounding substitution.

43

Note that we did not write the quantification ∀x, y, z in the prefix of γ. In
first-order clauses, all variables are universally quantified, and therefore the
quantifier part need not be marked explicitly. We will not indicate quantifiers
in clauses further in the text, assuming their implicit universal quantification.

Interpretation o = { edge(a, b), edge(b, c) } is not a model of γ (o 6|= γ). Indeed
the following ground instance γθ of γ

edge(a, b) ∧ edge(b, c)→ path(a, c) (99)

where θ = { x 7→ a, y 7→ b, z 7→ c } has both the atoms corresponding to its
negative literals, i.e. edge(a, b) and edge(b, c), in o but the positive literal
path(a, c) is not in o. However, the interpretation

o = { edge(a, b), edge(b, c), path(a, c) } (100)

is a model of γ.

So to determine o |= γ, the agent first finds all substitutions θ satisfying condi-
tion 1, and then checks if each of them satisfies condition 2.

The first stage can be arranged as a tree search. The agent starts with the set
A = { a1, a2, . . . } of atoms corresponding to γ’s negative literals. At level i of
the tree, atom ai is unified with some element of o in multiple possible ways cor-
responding to branches leading to level i+ 1. The unification grounds a subset
of variables present in A. When all variables in A have been grounded, the cor-
responding search node is a successful leaf representing a grounding substitution
θ.

We illustrate this with the clause (98) and interpretation (100). The γ’s negative
literals A = { edge(x, y), edge(y, z) } are unified with o as shown in Fig. 13. In
this example, only one grounding substitution exists and is found. We observe
that the search tree has, in general, at most s levels and branching factor at
most n, so it has at most ns vertices. The atom in each vertex has at most
t arguments so the tree can be searched in at most tns time units, which is
polynomial in n.

The second stage is easy due to range-restriction. Due to the latter assumption,
any substitution θ resulting from the tree search, which makes all negative
literals ground, also makes all positive literals ground. Thus checking for each
ground positive literal whether or not it is in o (i.e. verifying condition 2) can
be done in in at most sn unit steps, which is therefore polynomial.

So the agent efficiently learns conjunctions of range-restricted st-clauses on-line.

Due to Theorem 3.5, the agent also efficiently PAC-learn this hypothesis class.

44

edge(x, y), edge(y, z)

edge(a, b), edge(b, z) edge(b, c), edge(c, z)

edge(a, b), edge(b, c)

successful leaf

no unification possible

edge(x, y) 7→ edge(a, b) edge(x, y) 7→ edge(b, c)

edge(b, z) 7→ edge(b, c)

Figure 13: By searching this tree, the substitution { x 7→ a, y 7→ b, z 7→ c } is
found unifying all the negative literals of (98) with elements of (100).

4.2 Generalization of Clauses

So far, observations o ∈ O the agent received from the environment were ground
data encoded through logical interpretations. The latter were simply truth-
assignment to propositional variables (which can be perceived as data features),
or, in the first-order case, sets of observed ground facts. Now we consider a
more interesting situation where observations are akin more to knowledge than
data. Informally, the difference is that knowledge captures patterns from which
multiple ground data can be inferred.

A natural way to encode pieces of knowledge in logic is through formulas. In
the previous section it was convenient to adhere to clauses as a specific type
of formulas, to represent learned knowledge. To represent observations through
formulas, we will again stick to clauses.

To exemplify the situation through a simple example, consider that the envi-
ronment tells the agent two principles through two positive observations (e1 =
e2 = 1)

o1 = male(x) ∧ female(y) ∧ parent(x, y)→ daughter(y, x) (101)

o2 = female(x) ∧ parent(ann, x)→ daughter(x, ann) (102)

Both observations represent a rule that is true in the natural real-world interpre-
tation. But neither of them reflects the entire truth — the rules are not general
enough. The agent’s goal is to find a joint generalization of the observations,
which in this case would be

h∗ = female(x) ∧ parent(y, x)→ daughter(x, y) (103)

45

The fact that h∗ is indeed more general than both o1, o2 are a logical consequence
of h∗, i.e. they are entailed by h∗, which we write as

h∗ ` o1 (104)

h∗ ` o2 (105)

Obviously, there are multiple clauses h satisfying (104),(105). Another option
would be e.g.

h = parent(y, x)→ daughter(x, y)

which in the real-world is an over-generalization. To prevent it, the agent should
make sure that the hypothesized clause h does not entail negative observations.
The environment could e.g. provide the negative example (e3 = 0),

o3 = parent(jack, john)→ daughter(john, jack) (106)

It is indeed entailed by h, indicating the latter is an over-generalization.

There is however another way to prevent over-generalization. Recall that in
Sections 2.1 and 4.1 we devised agents that did not need negative observations
as they made the smallest possible generalization steps starting from the most
specific hypothesis. If the smallest possible generalization had already been
over-general, it simply meant that the target concept had no exact match in
the agent’s hypothesis space, i.e. (48) was not true. Here we will also design an
agent making the smallest possible generalization steps.

To build the agent, we would like to adopt a policy based on entailment between
clauses such as used in (104,105), which would thus be π(h, o) = 1 if and only
if h ` o. Unfortunately, ` is undecidable for general clauses γ, o.

Recall that in Section 2.2 we discussed syntactic subsumption between proposi-
tional clauses as an ‘approximation’ of the entailment relation. Syntactic sub-
sumption is also defined for first-order clauses, is decidable, but is more involved
than in the propositional case.

In the first-order case, clause γ1 is said to θ-subsume clause γ2 if there is a
substitution θ such that γ1θ ⊆ γ2 where ⊆ is with respect to the sets of literals
on either side. This is denoted as

γ1 ⊆θ γ2

For example, h∗ ⊆θ o1 with θ = { x 7→ y, y 7→ x } as indeed

{ ¬female(y),¬parent(x, y), daughter(x, y) }
⊆

{ ¬male(x),¬female(y),¬parent(x, y), daughter(x, y) }

Similarly, h∗ ⊆θ o2 with θ = { y 7→ ann }.

46

Two clauses γ1, γ2 are said to be subsume-equivalent, denoted γ1 ≈θ γ2 if γ1 ⊆θ
γ2 and γ2 ⊆θ γ1. Clause γ1 strictly subsumes clause γ2, written as γ1 ⊂θ γ2 if
γ1 ⊆θ γ2 but γ2 6⊆θ γ1.

Lemma 4.1. The relations ⊆θ,≈θ,⊂θ are transitive, i.e. if γ1 ⊆θ γ2 and
γ2 ⊆θ γ3, then γ1 ⊆θ γ3 (and analogically for the other two relations).

As in the propositional setting, subsumption implies entailment, that is to say
γ1 ⊆θ γ2 implies γ1 ` γ2, as discussed in Section 2.2. But again, the reverse im-
plication holds only if γ1 and γ2 are not self-resolving. An important difference
from the propositinal setting is that a first-order self-resolving clause need not
be a tautology. For instance, consider the non-tautological clause

γ1 = natural(x)→ natural(s(x))

which can be interpreted to express that a successor of a natural number is also
a natural number. Evidently, γ1 logically entails

γ2 = natural(x)→ natural(s(s(x)))

That is, γ1 ` γ2, however, γ1 ⊆θ γ2 does not hold.

Note that in the above example, none of o1, o2, γ are self-resolving so the decid-
able relation ⊆θ is indeed equivalent to ` for any pair of these clauses.

Clause γ3 is a generalization of clauses γ1 and γ2 if γ3 ⊆θ γ1 and γ3 ⊆θ γ2.

Clause γ3 is a least general generalization of clauses γ1 and γ2 if it is their
generalization and there is no other generalization γ4 of the same clauses such
that γ3 ⊂θ γ4.

There may be multiple least general generalizations of one pair of clauses, but
such generalizations are mutually subsume-equivalent. For example p(x) and
p(x) ∨ p(y) are both least general generalizations of p(a) and p(b), and indeed
p(x) ≈θ p(x) ∨ p(y).

We shall now discuss how to compute a least general generalization of two
clauses. The core of the procedure is the anti-unification procedure which can
be seen as a complement to the unification procedure known from the first-order
logic resolution algorithm. Before exposing the algorithm, we need to establish
a few notions.

Two atoms are compatible if they have the same predicate symbol and arity.
Two literals are compatible if they have the same sign, predicate symbol, and
arity.

Let a be an atom of arity n. The position [i] in a is the i-th argument place in
a. The position [i1, i2, . . . k, l] is the l-th argument place in the term occurring

47

Algorithm 1 Anti-unification of two compatible atoms
Require: Atoms a, b compatible with each other and not sharing a variable

1: i = 0; θ := ∅; σ := ∅ . a counter and two substitutions
2: v1, v2, . . . : variables not appearing in a or b
3: while a 6= b do
4: Let p be the leftmost position where a and b differ and s and t be the terms at this

position in a and b, respectively.
5: if for some j (1 ≤ j ≤ i), vjθ = s and vjσ = t then . variable already assigned
6: put vj to position p in both a and b . replace the terms with that variable
7: else
8: i := i+ 1
9: put vi to position p in both a and b . replace the terms with a new variable

10: θ := θ ∪ { vi 7→ s }, σ := σ ∪ { vi 7→ t } . store assignment of vi
11: end if
12: end while
13: return a

i atom a θ atom b σ
0 p(x, f(a, b, g(b, a)), h(a)) ∅ p(y, f(b, a, g(a, a)), s(a)) ∅
1 p(v1, f(a, b, g(b, a)), h(a)) {v1 7→ x} p(v1, f(b, a, g(a, a)), s(a)) {v1 7→ y}
2 p(v1, f(v2, b, g(b, a)), h(a)) {v1 7→ x,

v2 7→ a}
p(v1, f(v2, a, g(a, a)), s(a)) {v1 7→ y,

v2 7→ b}
3 p(v1, f(v2, v3, g(b, a)), h(a)) {v1 7→ x,

v2 7→ a,
v3 7→ b}

p(v1, f(v2, v3, g(a, a)), s(a)) {v1 7→ y,
v2 7→ b,
v3 7→ a}

4 p(v1, f(v2, v3, g(v3, a)), h(a)) {v1 7→ x,
v2 7→ a,
v3 7→ b}

p(v1, f(v2, v3, g(v3, a)), s(a)) {v1 7→ y,
v2 7→ b,
v3 7→ a}

5 p(v1, f(v2, v3, g(v3, a)), v4) {v1 7→ x,
v2 7→ a,
v3 7→ b,

v4 7→ h(a))}

p(v1, f(v2, v3, g(v3, a)), v4) {v1 7→ y,
v2 7→ b,
v3 7→ a

v4 7→ s(a)}

Table 3: An example of the anti-unification steps as conducted by Alg. 1.

at position [i1, i2, . . . k] in a. For example, the variable x occurs at positions
[1] and [2, 2, 1] in atom a = p(x, f(c, g(x, d))). By putting variable y to position
[2, 2] of a, we change a into p(x, f(c, y)).

Position u is left of position v if u precedes v in the lexical order, e.g. [1, 3, 5] is
left of [1, 4].

The anti-unification of two compatible atoms is an atom produced by Algo-
rithm 1. Note that if the two input atoms share a variable, the latter should
be renamed in one of the atoms. An example of the steps conducted by the
Algorithm is shown in Tab. 3.

Now we shall see how to use the anti-unification algorithm defined for atoms to
get a least general generalization defined for clauses. We first define the selection
set, which picks all pairs of compatible literals from two input clauses.

48

The selection set Sel(γ1, γ2) of two clauses γ1, γ2 is thus defined as

Sel(γ1, γ2) = { (l,m) | l ∈ γ1,m ∈ γ2, l is compatible with m }

In the next theorem, clauses are converted into atoms using the selection set and
using

∨
formally as a predicate symbol so that the anti-unification procedure

can be applied on such atoms. The resulting atom is then converted back to a
clause.

Theorem 4.2. Let γ1, γ2 be clauses and let
∨

(a1, a2, . . . , an) be the anti-unification
of atoms

∨
(l1, l2, . . . , ln) and

∨
(m1,m2, . . . ,mn) where

{(l1,m1), (l2,m2), . . . (ln,mn)} = Sel(γ1, γ2)

Then a1 ∨ a2 ∨ . . . ∨ an, denoted lgg(γ1, γ2), is a least general generalization of
γ1 and γ2.

(Proof omitted)

Consider an example using o1, o2 from the beginning of this section. Here, the
selection set is

Sel(o1, o2) = {(¬female(y),¬female(x)),
(¬parent(x, y),¬parent(ann, x)),
(daughter(y, x), daughter(x, ann))}

The anti-unification of∨
(¬female(y),¬parent(x, y), daughter(y, x))

and ∨
(¬female(x),¬parent(ann, x), daughter(x, ann))

is ∨
(¬female(v1),¬parent(v2, v1), daughter(v1, v2))

So the lgg(o1, o2) is

¬female(v1) ∨ ¬parent(v2, v1) ∨ daughter(v1, v2)

which can be transcribed into an equivalent but nicer form

female(x) ∧ parent(y, x)→ daughter(x, y)

The exemplified process can be visualized in a matrix form as in Table 4.

We state some basic properties of lgg without a proof.

49

¬female(x) ¬parent(ann, x) daughter(x, ann)
¬male(x)
¬female(y) ¬female(v1)
¬parent(x, y) ¬parent(v2, v1)
daughter(y, x) daughter(v1, v2)

θ σ

y x v1

x ann v2

Table 4: Visualizing the lgg algorithm in a matrix form. The coordinates of the
non-empty matrix entries correspond to the selections of compatible literals and
the entries represent the anti-unified literals. The table to the right stores the
substitutions established by successive anti-unifications of literals.

Lemma 4.3. Let γ1, γ2, γ3 be clauses. Then

1. If γ1 ⊆θ γ2, then lgg(γ1, γ2) ≈θ γ1

2. (commutativity) lgg(γ1, γ2) ≈θ lgg(γ2, γ1)

3. (associativity) lgg(lgg(γ1, γ2), γ3) = lgg(γ1, lgg(γ2, γ3))

Property 1 means simply that the least general generalization of a clause with
a more general clause is just the more general clause or its equivalent.

Due to the commutative and associtative properties, an lgg of a finite set of
clauses can be obtained by a repeated application of lgg to arbitrary clause-pairs
from the set, always replacing the chosen pair with its lgg, until the set has only
one element. Due to the two properties, the order of such lgg applications is
irrelevant. Hence we can design an agent for learning from clauses which does
not need to collect all clausal observations before jointly generalizing them. In
other words, we can design an on-line learning agent for clausal observations,
and need not resort to the batch-learning setting.

At each time instant k, the agent’s hypothesis hk is single clause. It makes a
positive decision if and only if the current observation is subsumed by hk,

yk = π(hk, ok) =

{
1 if hk ⊆θ ok
0 otherwise

(107)

So e.g. if hk is the clause γ from (103) then observations (101) and (102) are
decided positively, whereas o3 (106) or another negative observation such as

o4 = male(x) ∧ female(y)→ daughter(y, x)

would be decided negatively since hk 6⊆θ o3, hk 6⊆θ o4.

The agent starts with the initial clause that just copies the first positive ob-
servation. For simplicity and without loss of generality we assume that the

50

first observation o1 is positive (otherwise we would just let the agent discard
observations until the first positive one comes). So

h1 = o1 (108)

The hypothesis update rule is similar to those used by the generalizing agents
considered in Sections 2.1 and 4.1, as prescribed by (55)-(56) and (96), respec-
tively. However, the former two agents generalized by deleting literals or clauses
(respectively) from their hypothesized conjunction, whereas the present agent
will generalize the hypothesized clause using the lgg operator. So, referring to
the general update rule (50), we let

hk =

{
hk−1 if rk = 0

lgg(hk−1, ok−1) otherwise
(109)

For the current agent, we can show that the hypothesized clause is changed
only after a making a wrong decision on a positive observation. In other words,
the agent—just like both of the generalizing agents we have seen so far—never
makes mistakes on negative observations.

To demonstrate this, we adopt again the assumption that there indeed exists a
clause h∗, which is correct in the sense that if hk = h∗, then (48) holds.

Now we realize a fact analogical to Lemma 2.3.

Lemma 4.4. Assuming (108), the clause hk produced by lgg(hk−1, ok−1) in
(109) satisfies for all k = 1, 2, . . .

h∗ ⊆θ hk (110)

The lemma says that the agent never ‘over-generalizes’ by skipping over the tar-
get clause in terms of generality. This can be shown by mathematical induction.

Proof. In the inductive step, we assume that for hk−1 in (109) it holds h∗ ⊆θ
hk−1, and will show that this implies h∗ ⊆θ hk.

First consider that ek−1 = 0. If lgg was called in (109), then rk 6= 0, so the
previous decision must have been wrong, i.e. 0 = ek−1 6= yk−1 = 1. By (107),
this in turn implies that hk−1 ⊆θ ok−1. From Lemma 4.3 (Item 1) we then have
that hk = lgg(hk−1, ok−1) ≈θ hk−1, in other words hk and hk−1 are subsume-
equivalent. But then the assumption h∗ ⊆θ hk−1 implies h∗ ⊆θ hk.

Next consider that ek−1 = 1. Considering (107), h∗ ⊆θ ok−1 since h∗ is correct.
Recall that for induction we assumed h∗ ⊆θ hk−1. Assume now for contradiction

51

that h∗ 6⊆θ hk = lgg(hk−1, o
′
k−1). But then lgg would not be a least general

generalization, as follows from the definition of the latter (see on page 47) by
identifying hk−1, ok−1, hk, h

∗ (in this order) with γ1, γ2, γ3, γ4 in the definition.
But that contradicts Theorem 4.2. So we have again that h∗ ⊆θ hk.

We have proven the inductive step and it remains to prove the base case, i.e.
that h∗ ⊆θ h1. But this follows immediately from (108), the fact that o1 is
assumed to be positive, and (107).

Now we are ready to show a lemma analogical to Lemma 2.4. In particular the
current agent makes wrong decisions only for positive observations, and each
such error leads to a new hypothesis that is strictly more general than (i.e.,
strictly subsumes) the previous one.

Lemma 4.5. Assuming (108), if rk 6= 0, then ek−1 = 1 and hk ⊂θ hk−1.

Proof. To see that ek−1 = 1, assume for contradiction that ek−1 = 0 (i.e., ok−1

was a negative observation). If rk 6= 0 (i.e. yk−1 was a wrong decision) then
ek−1 6= yk−1 = 1. Then by (107), hk−1 ⊆θ ok−1. From Lemma 4.4, we also
have h∗ ⊆θ hk−1. Due to transitivity of subsumption (Lemma 4.1), this means
h∗ ⊆θ ok−1. But then according to (107), ok−1 was a positive observation, which
is a contradiction.

Since ek−1 = 1 and rk 6= 0, we have yk−1 = 0, so by (107), hk−1 6⊆θ ok−1.
Because hk = lgg(hk−1, ok−1) is a generalization of both of its arguments, hk ⊆θ
hk−1 and hk ⊆θ ok−1. Given that hk−1 6⊆θ ok−1 and hk ⊆θ ok−1, it cannot
be that hk−1 ≈θ hk. So the subsumption hk ⊆θ hk−1 must be strict, i.e.
hk ⊂θ hk−1.

Lemma 4.4 established that the agent makes a strict generalization upon each
mistake yet it never over-generalizes. It was exactly this reasoning that made us
able to prove a mistake bound (Theorem 2.5) for the agent in Section 2.1, which
also applied to the agent in Section 4.1. For these agents, the maximum number
of generalization steps, and correspondingly the mistake bound, was 2n and |Γ|,
respectively. These numbers were finite. Unfortunately, we cannot apply the
same reasoning for the current agent, as the number of strict generalization
steps from the initial clause towards the more general target clause does not
have such a general finite bound. Indeed, consider for example the following
infinite series of clauses6 for n = 2, 3, . . .

γn =
∨

1≤i,j≤n,i 6=j

p(xi, xj)

6Example adopted from Nienhuys-Cheng, de Wolf: Foundation of Inductive Logic Pro-
gramming, Springer 1998

52

So e.g.

γ2 = p(x1, x2) ∨ p(x2, x1)

γ3 = p(x1, x2) ∨ p(x2, x1) ∨ p(x1, x3) ∨ p(x3, x1) ∨ p(x2, x3) ∨ p(x3, x2)

and so on. We leave it to the reader to verify that γ2 ⊂θ γ3 ⊂θ

Now let the target clause h∗ be h∗ = γ2. For any finite number M ∈ N , the envi-
ronment can present a sequence o1 = γM+3, o2 = γM+2, o3 = γM+1, . . . oM+1 =
γ3 of M + 1 positive observations to the agent, causing it to generalize after
each observation, therefore making M + 1 mistakes. Thus no finite number M
is a mistake bound for the current agent.

The example above follows from the fact that we do not bound the maximum
size of clauses included in the lattice of clauses induced by the lgg operator.
The simple lattice we encountered earlier (Fig. 11) could also contain infinite
paths if we alleviated the size bound 2n on the conjunctive elements in it. An
intricacy distinguishing the subsumption lattice of size-unbounded first-order
clauses from the latter lattice is that the infinite path γ2 ⊂θ γ3 ⊂θ . . ., which
grows in size (number of literals in γn), in fact connects two small elements in
the lattice. More precisely

p(x1, x2) = γ2 ⊂θ γ3 ⊂θ . . . ⊂θ p(x1, x1)

Again, we leave it to the reader to verify that indeed γn ⊂θ p(x1, x1) for any
n ≥ 2. So, speaking informally, the clause subsumption lattice is not just
infinitely large but also infinitely dense.

Finally we will explore how the clausal formalism allows to build an agent that
does not start learning from ‘scratch’, i.e. zero initial knowledge, but rather
possesses some prior (‘background’) knowledge that just needs to be extended
for making correct decisions. We motivate this situation through the following
example where the environment provides two positive observations

o1 = female(x) ∧ father(y, x)→ daughter(x, y) (111)

o2 = female(x) ∧ mother(y, x)→ daughter(x, y) (112)

Because father(y, x) and mother(y, x) are not mutually compatible, the present
agent would generalize o1, o2 using lgg into

female(x)→ daughter(x, y)

which is clearly unsatisfactory. Consider, however, that the agent has back-
ground knowledge in the form of a set of clauses (i.e., a clausal theory) B:

father(x, y)→ parent(x, y) (113)

mother(x, y)→ parent(x, y) (114)

53

Knowing B, the agent should be able to generalize o1, o2 into (103). More
precisely, the agent starts with background knowledge only h1 = B and should
extend this knowledge towards the hypothesis hk by learning the additional
clause h∗ (103) such that

hk = B ∪ {h∗} ` ok (115)

for all positive examples ok (i.e., for ∀k such that ek = 1) and

hk = B ∪ {h∗} 0 ok (116)

for all negative examples ok (i.e., for ∀k such that ek = 0).

Once again, the consequence relation ` in Equations (115) - (116) is generally
undecidable and we thus need to reformulate the task using the approximation
by θ-subsumption. To do so, note that if γ1 ⊆θ γ2 then the formula γ1θ → γ2

is a tautology, i.e.
` γ1θ → γ2 (117)

For example p(x) ⊆θ p(a)∨q(y) so ` p(a)→ (∀y : p(a)∨q(y)). We shall account
for background knowledge B by making (117) relative to it, i.e.

B ` γ1θ → γ2 (118)

So here γ1θ → γ2 is a tautological consequence of (is entailed by) B rather than
being a tautology.

This leads us to the following definition. We say that clause γ1 θ-subsumes
clause γ2 relative to clause set B, written γ1 ⊆Bθ γ2 if there is a substitution
θ such that (118) holds. Clauses γ1, γ2 are subsume-equivalent relative to B if
γ1 ⊆Bθ γ2 and γ2 ⊆Bθ γ1; we denote this as γ1 ≈Bθ γ2.

Furthermore, we define relative least general generalization (with respect to B)
just as least general generalization (page 47), except that we replace the relation
⊆θ with ⊆Bθ in the definition.

We wanted to base the notion of relative generalization on θ-subsumption to
avoid the undecidable relation `. It seems we have not succeeded in so doing
as (118) still contains the latter relation. The good news is that according to
the following theorem, in the special case that B contains only ground facts,
relative subsumption can be easily converted to plain subsumption.

Theorem 4.6. Let γ1, γ2 be clauses and B a finite set of ground facts. Then
rlggB(γ1, γ2) is a relative least general generalization of γ1, γ2 with respect to B,
where

rlggB(γ1, γ2) = lgg(γ1 ∨l∈B ¬l, γ2 ∨l∈B ¬l)

(Proof omitted)

54

d(c, b) ¬m(a) ¬p(a, b) ¬f(b) ¬p(b, c) ¬f(c)
d(b, a) d(v1, v2)
¬m(a) ¬m(a)
¬p(a, b) ¬p(a, b) ¬p(v2, v1)
¬f(b) ¬f(b) ¬f(v1)
¬p(b, c) ¬p(v3, v4) ¬p(b, c)
¬f(c) ¬f(v4) ¬f(c)

Table 5: Computation of the lgg of clauses (122,123) visualized as in Table 4.

θ σ new variable
b c v1

a b v2

b a v3

c b v4

Table 6: Assignment of new variables to terms in clause (122) (θ column) and
terms in clause (123) (σ column) to new variables during the lgg computation
as shown in Table 5.

Note that this theorem excludes, for example, the clauses (113, 114) we used as
background knowledge in the motivating example as they are not ground facts.
Instead, we shall exemplify the theorem with simpler background knowledge
describing ground family relationships for persons we identify for brevity with
constants a, b, c, using predicates m/1, f/1, p/1 with the informal meaning male,
female, and parent of (respectively).

B = { m(a), p(a, b), f(b), p(b, c), f(c) } (119)

The agent should again learn the definition of the daughter relation. Equipped
with background knowledge B, it receives the first positive observation of the
daughter relation expressed through predicate d/2

o1 = d(b, a) (120)

and thus forms its first hypothesized clause h1 = o1 = d(b, a). Once the second
positive observation

o2 = d(c, b) (121)

has been received, the agent should update its hypothesis as h2 = rlggB(h1, o2).
According to Theorem 4.6, this can be computed as the lgg of the clauses

d(b, a) ∨ ¬m(a) ∨ ¬p(a, b) ∨ ¬f(b) ∨ ¬p(b, c) ∨ ¬f(c) (122)

d(c, b) ∨ ¬m(a) ∨ ¬p(a, b) ∨ ¬f(b) ∨ ¬p(b, c) ∨ ¬f(c) (123)

55

The lgg computation is shown in Table 5 in the same way as was done in Table
4. Table 6 shows the two substitutions created in the process. The resulting
clause is

h2 = d(v1, v2)←m(a) ∧ p(a, b) ∧ p(v2, v1) ∧ f(b)∧
f(v1) ∧ p(v3, v4) ∧ p(b, c) ∧ f(v4) ∧ f(c)

While this is a correct relative least general generalization, it is evidently re-
dundant. Informally, the ground facts appearing in the body of the clause (the
conjunctive part to the right of ←) can be deleted as they are true due to B.
Also, the body literals whose all variables do not appear in the head of the clause
(to the left of ←) are redundant. Speaking precisely, h2 is subsume-equivalent
(relative to B) to the clause

h′2 = d(v1, v2)← p(v2, v1) ∧ f(v1) (124)

which indeed represents the desired learned hypothesis. In formal notation,
h2 ≈Bθ h′2. To prove this equivalence relation, we need to prove h2 ⊆Bθ h′2 and
h′2 ⊆Bθ h2.

The latter relation, which by definition (page 54) transcribes into

B ` (h′2θ → h2)

is evident, because h′2 ⊂ h2, implying h′2 ` h2. So h′2θ → h2 is a tautology for
θ = {}, meaning it is true in any model, not just in any model of B.

To demonstrate h2 ⊆Bθ h′2, i.e.

B ` (h2θ → h′2)

we set θ = { v3 7→ v2, v4 7→ v1 }. Then

h2θ = d(v1, v2)← m(a) ∧ p(a, b) ∧ p(v2, v1) ∧ f(b) ∧ f(v1) ∧ p(b, c) ∧ f(c)

In any model of B, all of the ground literals of h2θ are true so by deleting them,
we get a clause logically equivalent to h2θ. But such a clause is exactly h′2 so
h2θ → h′2 becomes h′2 → h′2 which is satisfied trivially.

The conversion of h2 into h′2 as shown above is an example of clause reduction.

We say that a clause γ is reduced if for no clause γ′, γ′ ⊂ γ, γ′ ≈θ γ. A reduced
clause γ′ is a reduction of a clause γ if γ′ ≈θ γ.

Similarly, a clause γ is reduced with respect to B if for no clause γ′, γ′ ⊂ γ,
γ′ ≈Bθ γ. A clause γ′ which is reduced with respect to B is a reduction of γ with
respect to B if γ′ ≈Bθ γ.

56

	A General Framework
	Percepts and Actions
	Nonsequential Cases
	Batch Learning
	Rewards and Goals
	Environment States
	Agent States
	Nonsequential and Batch Cases with States
	Prior Knowledge
	Hypothesis Representations
	Learning Scenarios

	On-line Concept Learning
	Generalizing Agent
	The Subsumption Relation
	Extensions of the Generalizing Agent
	Separating agent
	Hypothesis and Concept Classes
	Version Space Agent
	The Mistake Bound Learning Model

	Batch Concept Learning
	Batch Learning with the Generalizing Agent
	Batch Learning with Standard On-line Agents
	Consistent Agent
	The PAC Learning Model

	Learning First-Order Logic Concepts
	Generalizing Agent
	Generalization of Clauses

