
Learning from Interpretations

B4M36SMU

In this tutorial, we will get familiar with the basics of first-order logic needed for this course. We will
briefly talk about the generalizing agent from the lecture in the context of inductive logic programming
(ILP). In particular, we will focus on learning from interpretations, that is learning hypothesis H such
that:

o |= H ∀o ∈ O+

o 6|= H ∀o ∈ O−

In other words, the target hypothesis is a model for all positive observations and is not a model for all
negative observations.

Motivation

What is the motivation for combining first-order logic (FOL) with machine learning? Is finite vector
representation expressive enough to represent all kinds of problems? Consider the following domains:

• graphs with the variable number of nodes, e.g. molecules

• relationship representation, e.g. taxonomies

• structured data, e.g. semantic tree of a sentence

Logic

This section contains basic definitions of elements of first-order predicate logic needed for this tutorial.
Term is a constant, variable, or a compound term. Constant symbols represent objects in the domain,

e.g. Adam. A variable ranges over the domain’s objects, e.g. x. A compound term is a function symbol,
e.g. fatherOf/1, applied on a-tuple of terms where a is its arity, e.g. fatherOf(Adam). Predicate
symbols express relations among objects in the domain of their attributes, e.g. sibling/2. An atom is a
predicate symbol of arity a applied to an a-tuple of terms, e.g. sibling(x,Adam). Literal is an atom or its
negation, e.g. ¬sibling(x,Adam). Formulae are constructed from literals using logical connectives (∧, ∨,
=⇒ ,. . .) and quantifiers (∀, ∃). A ground term, literal, clause, theory, etc., does not contain any variable.
A clause is a universally quantified disjunction of literals, e.g. ∀x, y : ¬sibling(Adam, x) ∨ sibling(x, y).
However, the quantifier part of a clause is often omitted. CNF is a conjunction of disjunction, e.g.
(sibling(x, y) ∨ ¬human(Eva) ∨ ¬human(Adam)) ∧ (¬human(x) ∨mortal(x)); see that the quantifier
part is also omitted.

A clause is range-restricted if any variable occurring in a positive literal of it, also occurs in a negative
literal of it, e.g. path(x, z) ∨ ¬path(x, y) ∨ ¬path(y, z). An st-clause is such a clause which has got at
most s literals, each one having at most t occurrences of predicates, functions, constants or variables;
e.g. edge(succ(E), x) is 1-4-clause.

Substitution is an assignment of terms to variables, e.g. θ = {x 7→ A, y 7→ f(A, z)}. By applying
a substitution to a clause, literal, or term, variables in clause, literal, or term are replaced by their
images in the substitution, e.g. consider previous θ and γ = l(x, y, w), then γθ = l(A, f(A, z), w). The
substitution θ for which γθ is ground is called grounding substitution. Unification is a process which
for two terms or atoms l1 and l2 finds such substitution θ that l1θ = l2θ; note that unification of two
expression does not need to exist, e.g. l1 = p(x) and l2 = q(A).

An interpretation defines which atoms are true and which are false. An interpretation o is a model of
clause γ (o |= γ) iff γ is true in the interpretation. The previous definition of an interpretation is rather
an informal one. In order to do it formally, we would have to define a universe U and a mapping which

1

maps each constant to an element of U ; for each predicate of arity a, it defines upon which a-tuple of
elements U it holds, etc. However, we do not need such formal formulation, because it is sufficient for
us to use Herbrand interpretations only. In Herbrand interpretations, each symbol maps to itself, i.e. it
uses Herbrand universe and part of the interpretation’s mapping is given, e.g. constant Adam maps to
Adam. Herbrand universe consists of all ground terms which can be composed constant and function
symbols. Herbrand base is a set of all ground atoms which can be formed out of predicate symbols and
terms from Herbrand universe.

Note that we use the notation in which constants start with uppercase while the rest (e.g. variables)
starts with lowercase. Constants may be seen as a special case of function symbols, precisely as function
symbols of arity 0. However, that is not the case of the provided codes for the ILP homework. Also note
that a predicate is defined by its name and arity; the same holds for a function.

For more information see [1, 2].

Exercise

• What is the difference between a term and an atom, e.g. fatherOf(Adam) and human(Adam)?

• Is the clause p(x, y) ∨ ¬p(x, z) range-restricted?

• Is the st-clause p(x, y) ∨ p(A,B) ∨ p(f(A), f(x)) ∨ ¬q(f(x,A), B) a 3-3-clause?

• Show Herbrand universe and base for constants C = {A,B} and predicate P = {p/1}.

• Show Herbrand universe and base for constants C = {A,B}, functions F = {f/2} and predicates
P = {p/1}.

• Given theory Φ = {¬edge(x, y) ∨ edge(y, x),¬edge(x, x)} find two Herbrand interpretations, from
which the first one is a model of Φ and the second is not.

• Unify γ1 = edge(x,C) with γ2 = edge(A,B).

• Unify γ1 = path(x, f(x)) with γ2 = path(g(y), y).

Θ-subsumption

One of the core concepts of ILP is θ-subsumption1. We say that γ1 θ-subsumes γ2, γ1 ⊆θ γ2, iff there
exists substitution θ such that γ1θ ⊆ γ2 in the sense of literals. For example, for γ1 = p(x, y) and
γ2 = p(A, z) it holds that γ1 ⊆θ γ2. To check this by the definition, firstly find a substitution, e.g.
θ = {x 7→ A, y 7→ z}, and check the sets of literals, e.g. γ1θ = {p(A, z)} ⊆ {p(A, z)} = γ2. Note here that
the = relation is a little bit overloaded, meaning that a clause is the same as a set of literals it contains.
On the contrary, γ2 6⊆θ γ1. But in general, it may happen that two clauses are subsume-equivalent, i.e.
γi ≈θ γj iff γi ⊆θ γj and γj ⊆θ γi.

Exercise

List all pairs s.t. γ1 ⊆θ γ2 from the following clauses:

(a) p(x)

(b) q(y) ∨ p(y)

(c) p(A) ∨ p(B) ∨ p(z)

(d) q(A)

(e) q(x) ∨ p(z) ∨ q(z)
1We will need this concept in the following labs.

2

Generalizing Agent

In order to have our agent being able on-line efficiently PAC-learn, as explained in the lectures [3], we
need two things for the agent to be polynomial. Firstly, Γ must be polynomial in the size of the problem,
i.e, in |P|, |F|, and |C|. Secondly, the update step must take at most polynomial time, thus the relation
|= must be computable in polynomial time as well.

For deciding whether o |= γ, it is enough to find one grounding substitution θ for which the following
holds: i) all negative literals of γθ are in o and ii) no positive literal of γθ is in o. It is a hard task in
generall, but in our range-restricted case, it can be decided in polynomial time as shown in the lecture.
The algorithm, suited for our setting, therefore firstly finds all substitutions θ for which negative literals
of γθ are in o. Among these substitutions, it searches for one which violates the second condition, i.e.
no positive literal of γθ is in o. The first part can be organized as a tree search whose leaves have γθ
with some substitution θ; however, we are only interested in leaves with grounding substitutions, i.e. the
leaves with ground clauses. The tree search for finding ground substitutions processes as follows given
γ, θ and o

1. if γθ is ground, end the tree search; test whether γθ |= o

2. select one non-ground literal l from γ which consists of atom a

∀ag ∈ o
if a and ag can be unified, then repeat the search with γθ′ where θ′ = unify(aθ, ag)

Note that while searching a grounding substitution, we may select literal l (step 2) from negative
literals only. This is possible because the input γ is a range-restricted clause. Thus, a substitution
grounding negative literals grounds positive literals as well.

References

[1] Luc De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.

[2] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of inductive logic programming.
Vol. 1228. Springer Science & Business Media, 1997.

[3] Filip Želený and Jǐŕı Kléma. SMU textbook. 2017.

3

