Algebraic view of the generalization algorithm

- Denote C_n the set of monotone conjunctions over a set of n variables.
- ▶ Denote by \sqcup : $C_n \times C_n \rightarrow C_n$ the generalization operation.
 - By definition: $I \models \phi \sqcup \psi \iff (I \models \phi) \lor (I \models \psi)$.
 - For monotone conjunctions this can be implemented by taking the intersection of variables present.
- Transform each input interpretation to the most specific formula it models.
- ▶ Note that (C_n, \sqcup) is a monoid. It's isomorphic to $(2^A, \cup)$.
- The generalization algorithm is now only fold over the monoid.
- It's a monoid homomorphism from the list monoid, hence it can be implemented using map-reduce style parallelism.