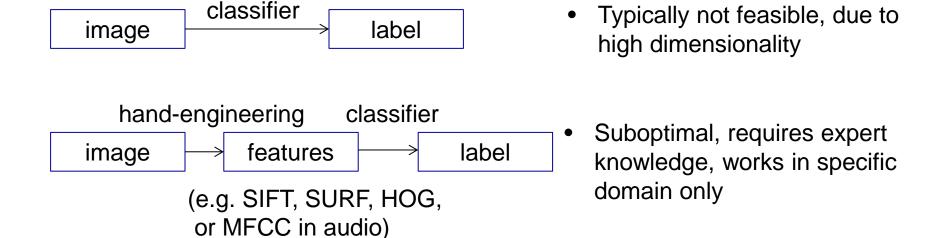
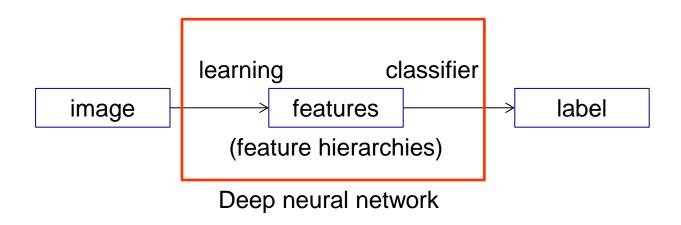
A Shallow Introduction into the Deep Machine Learning

Jan Čech

What is the "Deep Learning"?

- Deep learning
 - = both the classifiers and the features are learned automatically





Deep learning omnipresent

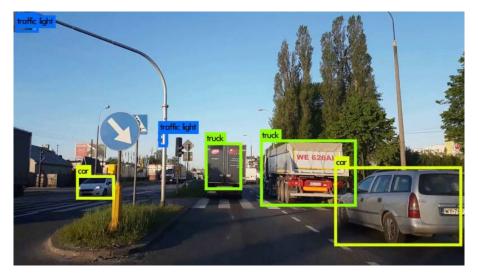
- Besides the Computer Vision it is extremely successful in, e.g.
 - Automatic Speech Recognition
 - Speech to text, Speaker recognition
 - Natural Language Processing
 - Machine translation, Question answering
 - Robotics / Autonomous driving
 - Reinforcement learning
 - Data Science / Bioinformatics
- Shift of paradigm in Computer Vision
 - Large-scale image category recognition (ILSVRC' 2012 challenge)

INRIA/Xerox 33%, Uni Amsterdam 30%, Uni Oxford 27%, Uni Tokyo 26%, 16% (deep neural network) [Krizhevsky-NIPS-2012] **Uni Toronto**

- Image classification [Krizhevsky-NIPS-2012]
 - Input: RGB-image
 - Output: Single label (Probability Distribution over Classes)

- ImageNet dataset (14M images, 21k classes, Labels by Amazon Mechanical Turk)
- ImageNet Benchmark (1000 classes, 1M training images)

- **Object Detection**
 - Multiple objects in the image [RCNN, YOLO, ...]



E.g. Face [Hu-Ramanan-2017], Text localization [Busta-2017]

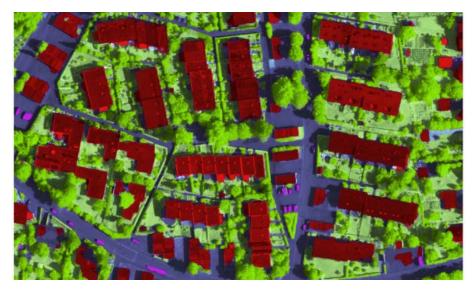
m |

(3D) Pose estimation

- [<u>Hu-2018</u>], [<u>OpenPose</u>]

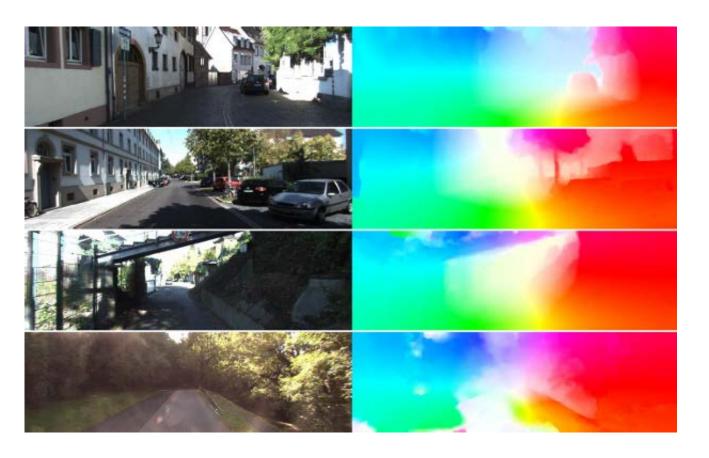
m

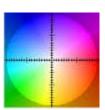
- Image Segmentation (Semantic/Instance Segmentation)
 - Each pixel has a label [Long-2015], [Mask-RCNN-2017]



Instance segmentation

- Motion
 - Tracking
 - Optical Flow [Neoral-2018]
 - Predict pixel level displacements between consecutive frames





- Stereo (depth from two images)
- Depth from a single (monocular) image [Godard-2017]

Faces

- Recognition / Verification
- Gender/Age
- Landmarks, pose
- Expression, emotions

...already in commerce

Lip reading [Chung-2017]

Image-to-Image translation [Isola-2017]

input

output

BW to Color input output

Deblurring, Super-resolution [Subrtová-2018]

16x16

256x256 (predicted)

256x256 (ground-truth)

- Generative models
 - Generating photo-realistic samples from image distributions
 - Variational Autoencoders, GANs [<u>Nvidia-GAN</u>]

(Images synthetized by a random sampling)

m |

Action/Activity recognition

- Neural Style Transfer
- Image Captioning
- and many more...

deepart.io

a man sitting at a table with a plate of food logprob: -5.81

a large clock tower with a clock on top

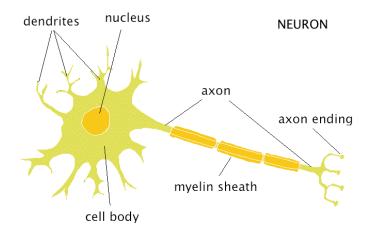
logprob: -8.56

a cat is sitting on a couch with a remote control logprob: -12.45

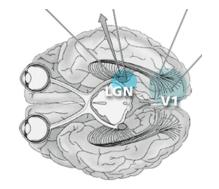
https://cs.stanford.edu/people/karpathy/deepimagesent/generationdemo/

Biology: Resemblance to sensory processing in the brain

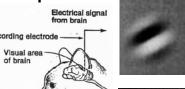
Needless to say that the brain is a neural network



- ~ 2e+11 neurons
- ~ 1e+14 synapses

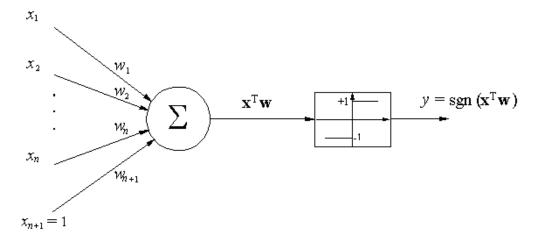


- Primary visual cortex V1
 - Neurophysiological evidences that primary visual cells are sensitive to the orientation and frequency (Gabor filter like impulse responses)
 - [Hubel-Wiesel-1959] (Nobel Price winners)
 - Experiments on cats with electrodes in the brain
- A single learning algorithm hypothesis?
 - "Rewiring" the brain experiment [Sharma-Nature-2000]
 - Connecting optical nerve into A1 cortex (a subject was able to solve visual tasks by using the processing in A1)

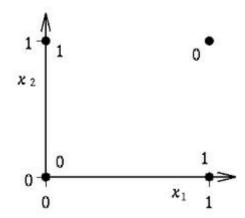


History: (Artificial) Neural Networks

- Neural networks are here for more than 50 years
 - Rosenblatt-1956 (perceptron)



Minsky-1969 (xor issue, => skepticism)

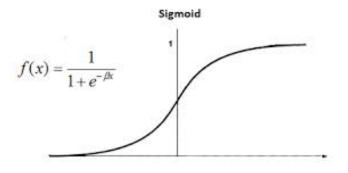


History: Neural Networks

m p

Rumelhart and McClelland – 1986:

- Multi-layer perceptron,
- Back-propagation (supervised training)
 - Differentiable activation function
 - Stochastic gradient descent

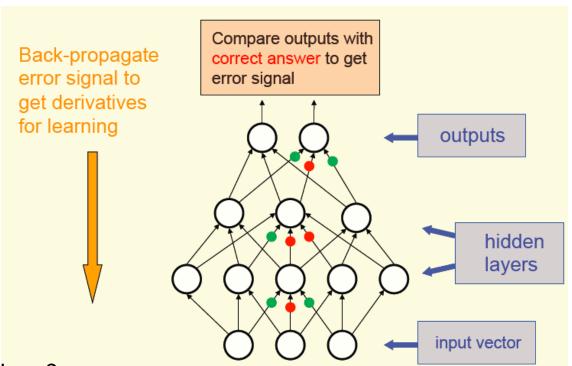


Empirical risk

$$Q(w) = \sum_{i=1}^{n} Q_i(w),$$

Update weights:

$$w := w - \alpha \nabla Q_i(w).$$



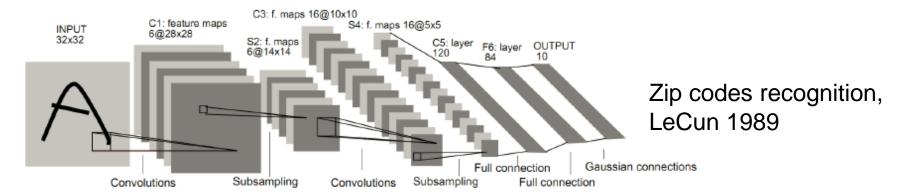
What happens if a network is deep? (it has many layers)

22

What was wrong with back propagation?

- Local optimization only (needs a good initialization, or re-initialization)
- Prone to over-fitting
 - too many parameters to estimate
 - too few labeled examples
- Computationally intensive
- => Skepticism: A deep network often performed worse than a shallow one

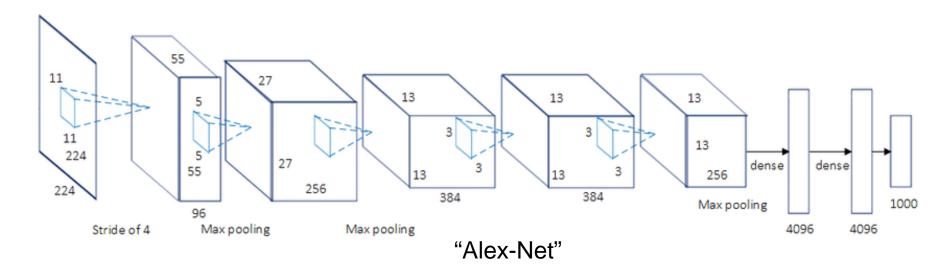
What was wrong with backpropagation?



- However nowadays:
 - Weights can be initialized better (Use of unlabeled data)
 - Large collections of labeled data available
 - ImageNet (14M images, 21k classes, hand-labeled)
 - Reducing the number of parameters by weight sharing
 - Convolutional layers [LeCun-1989]
 - Novel tricks to prevent overfitting of deep nets
 - Fast enough computers (parallel hardware, GPU)
- => Optimism: It works!

Deep convolutional neural networks

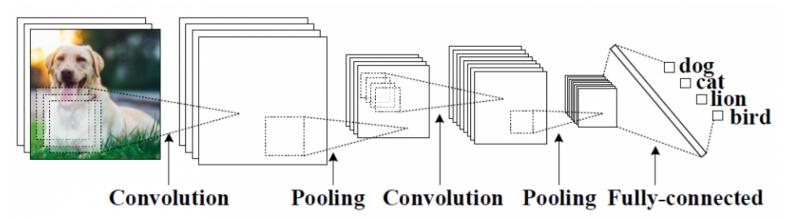
- An example for Large Scale Classification Problem:
 - Krizhevsky, Sutskever, Hinton: ImageNet classification with deep convolutional neural networks. NIPS, 2012.
 - Recognizes 1000 categories from ImageNet
 - Outperforms state-of-the-art by significant margin (ILSVRC 2012)



- 5 convolutional layers, 3 fully connected layers
- 60M parameters, trained on 1.2M images (~1000 examples for each category)

Deep CNNs – basic building blogs

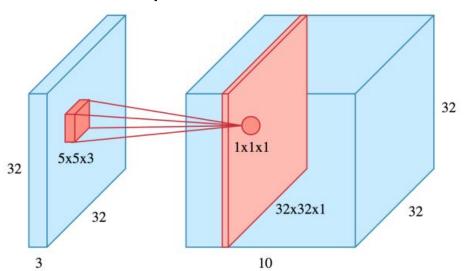
- A computational graph (chain/directed acyclic graph) connecting layers
 - Each layer has: Forward pass, Backward pass
 - The graph is end-to-end differentiable

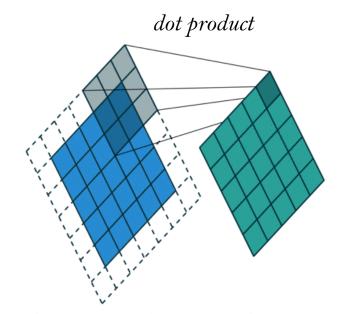


- Input Layer
- 2. Intermediate Layers
 - Convolutions
 - Max-pooling
 - Activations
- Output Layer
- 4. Loss function over the output layer for training

Convolutional layer

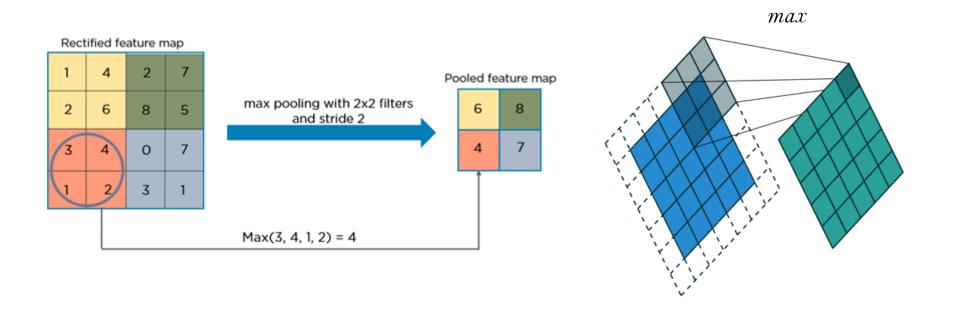
- Input: tensor (WxHxD)
 - "image" of size WxH with D channels
- Output: tensor (W'xH'xD')
- A bank of D' filters of size (KxKxD) is convolved with the input to produce the output tensor
 - Zero Padding (P), extends the input by zeros
 - Stride (S), mask shifts by more than 1 pixel
 - KxKxDxD' parameters to be learned





Max-pooling layer

- Same inputs ($W \times H \times D$) and outputs ($W' \times H' \times D$) as convolutional layer
- Same parameters: Mask Size (K), Padding (P), Stride (S)
- Same sliding window as in convolution, but instead of the dot product, pick maximum
- Non-linear operation
- No parameters to be learned

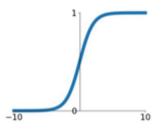


Activation functions

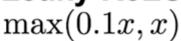
- Non-linearity, applied to every singe cell of the tensor
- Input tensor and output tensor of the same size

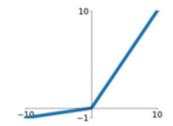
Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



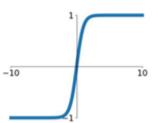
Leaky ReLU





tanh

tanh(x)

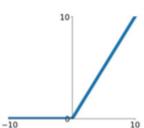


Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

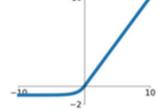
ReLU

 $\max(0, x)$



ELU

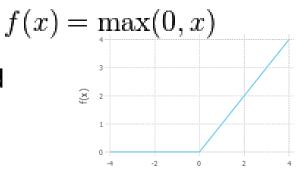
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



- ReLU is the simplest (used in the AlexNet, good baseline)
- Saturating non-linearity (sigmoid, tanh) causes "vanishing" gradient

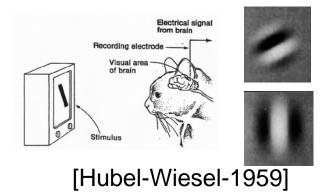
Deep convolutional neural networks

- Additional tricks: "Devil is in the details"
 - Rectified linear units instead of standard sigmoid
 - => Mitigate vanishing gradient problem
 - Convolutional layers followed by max-pooling
 - Local maxima selection in overlapping windows (subsampling)
 - => dimensionality reduction, shift insensitivity
 - Dropout
 - 50% of hidden units are randomly omitted during the training, but weights are shared in testing time
 - Averaging results of many independent models (similar idea as in Random forests)
 - => Probably very significant to reduce overfitting
 - Data augmentation
 - Images are artificially shifted and mirrored (10 times more images)
 - => transformation invariance, reduce overfitting



Deep convolutional neural networks

- The training is done by a standard back-propagation
- enough labeled data: 1.2M labeled training images for 1k categories
- Learned filters in the first layer
 - Resemble cells in primary visual cortex

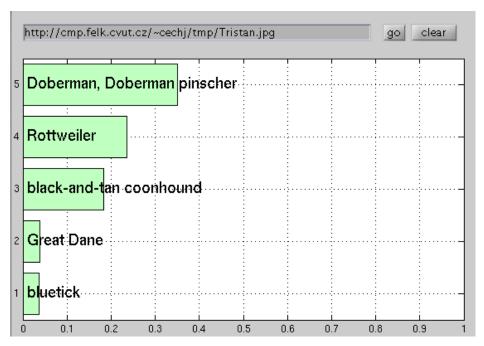


Learned first-layer filters

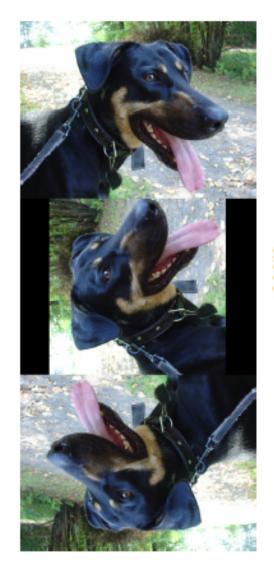
- Training time:
 - 5 days on NVIDIA GTX 580, 3GB memory (Krizhevsky, today faster)
 - 90 cycles through the training set
- Test time (forward step) on GPU
 - Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/
 - 5 ms/image in a batch mode

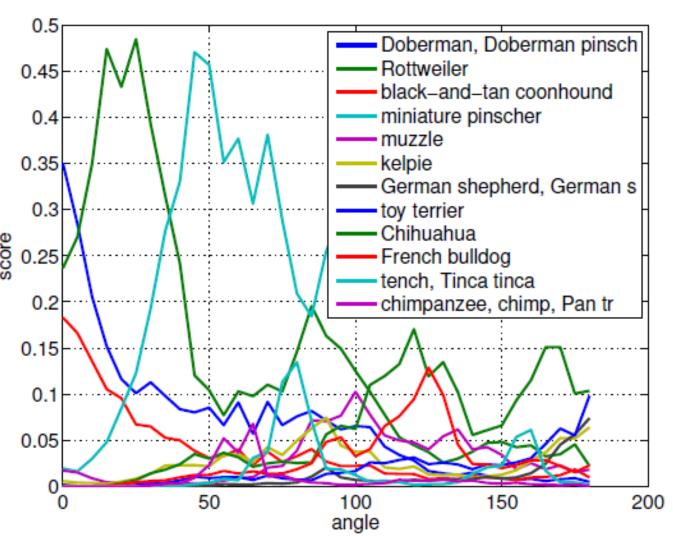
Early experiments 1: Category recognition

- Implementation by Yangqing Jia, 2013, http://caffe.berkeleyvision.org/
 - network pre-trained for 1000 categories provided
- Which categories are pre-trained?
 - 1000 "most popular" (probably mostly populated)
 - Typically very fine categories (dog breeds, plants, vehicles...)
 - Category "person" (or derived) is missing
 - Recognition accuracy subjectively surprisingly good...

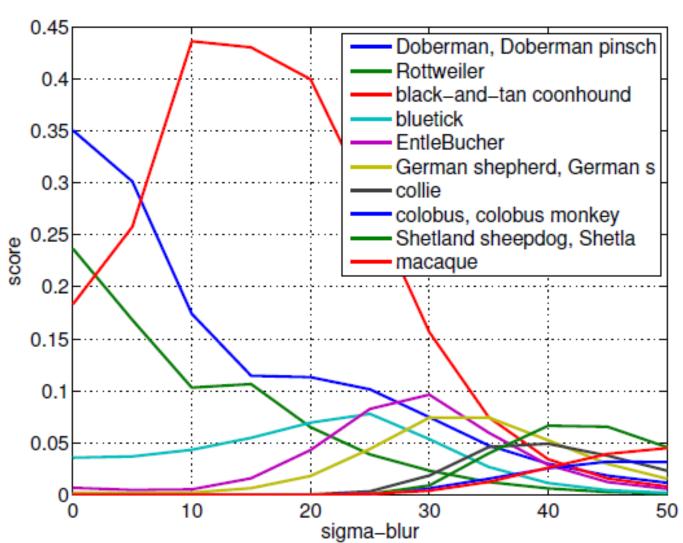


Sensitivity to image rotation

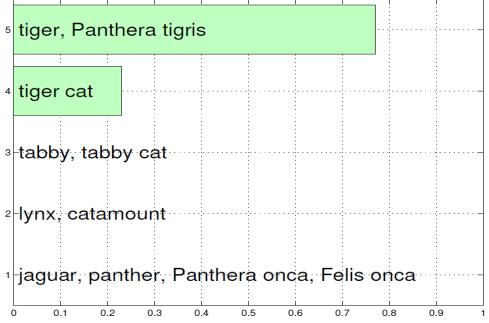


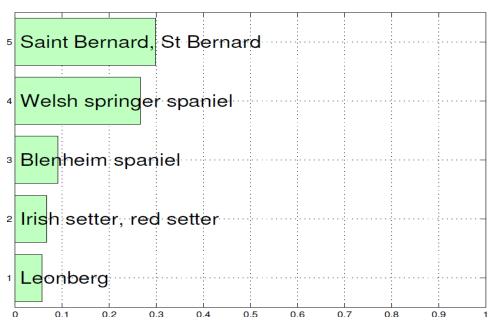


Sensitivity to image blur



It is not a texture only...





Early experiments 2: Category retrieval

•

- 50k randomly selected images from Profimedia dataset
- Category: Ocean liner

Early experiments 2: Category retrieval

Category: Restaurant (results out of 50k-random-Profiset)

Early experiments 2: Category retrieval

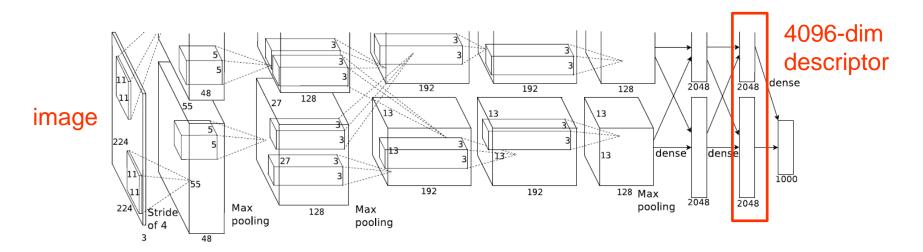
m p

Category: stethoscope (results out of 50k-random-Profiset)

37

Early experiments 3: Similarity search

- Indications in the literature that the last hidden layer carry semantics
 - Last hidden layer (4096-dim vector), final layer category responses (1000-dim vector)
 - New (unseen) categories can be learned by training (a linear) classifier on top of the last hidden layer
 - Oquab, Bottou, Laptev, Sivic, CVPR, 2014
 - Girshick, Dphanue, Darell, Malik, CVPR, 2014
 - Responses of the last hidden layer can be used as a compact global image descriptor
 - Semantically similar images should have small Euclidean distance



Early experiments 3: Similarity search

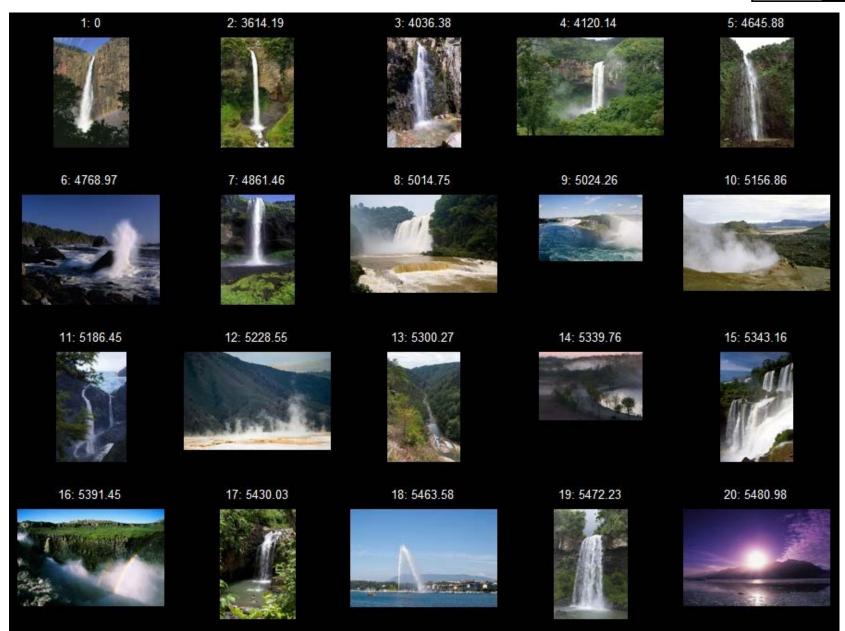
- Qualitative comparison: (20 most similar images to a query image)
 - 1. MUFIN annotation (web demo), http://mufin.fi.muni.cz/annotation/, [Zezula et al., Similarity Search: The Metric Space Approach.2005.]
 - Nearest neighbour search in 20M images of Profimedia
 - Standard global image statistics (e.g. color histograms, gradient histograms, etc.)
 - Caffe NN (last hidden layer response + Euclidean distance),
 - Nearest neighbour search in 50k images of Profimedia

MUFIN results

Early experiments 3: Similarity search

m

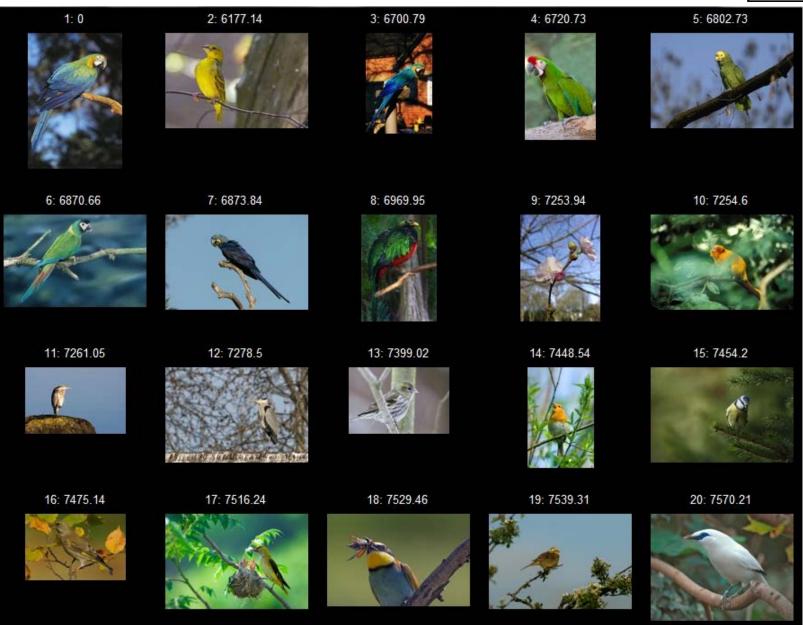
40



43

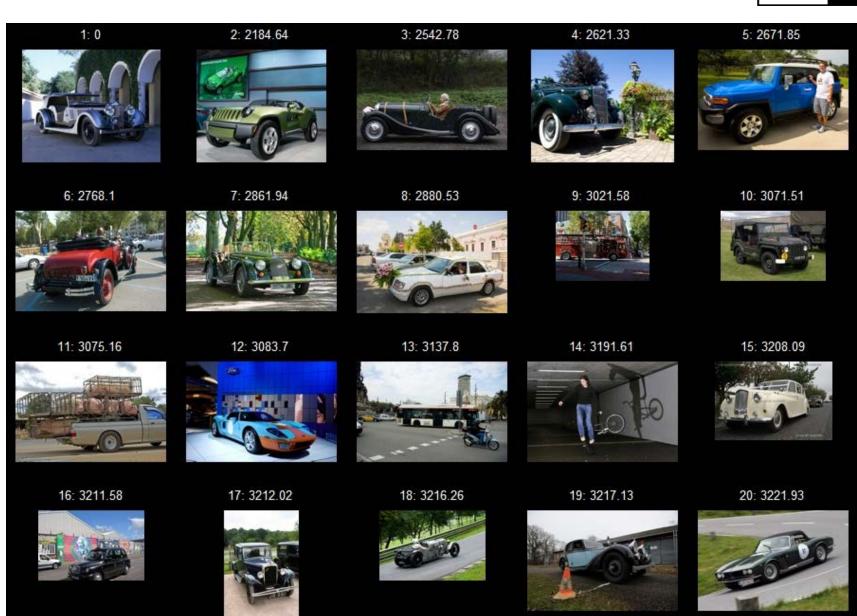
m p

44



Caffe NN results

Early experiments 3: Similarity search



m p

48

m p

50

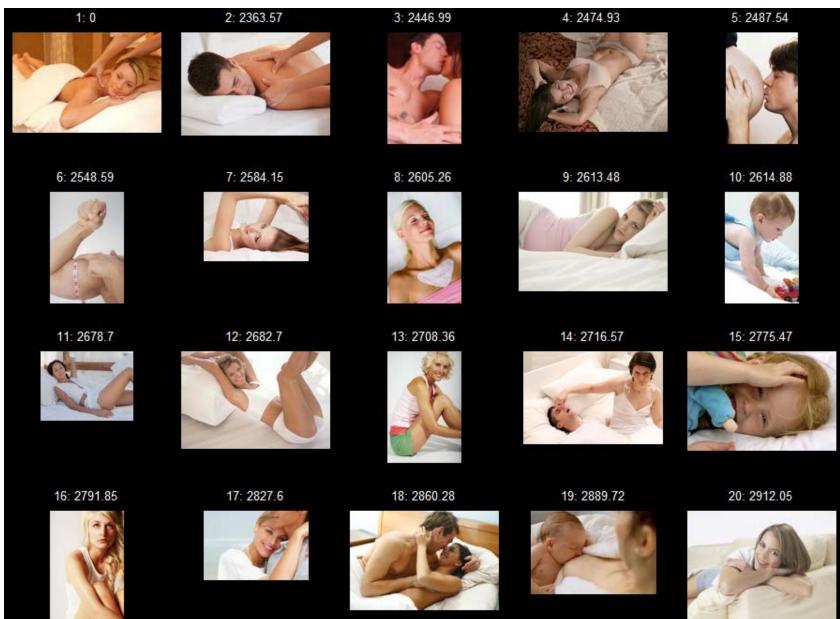
6: 3477.87

20: 3979.94

m p

Caffe NN results

Early experiments 3: Similarity search



m

54

Novel tricks

- Network initialization
 - Mishkin, Matas. All you need is a good init. ICLR 2016
 - Weights initialization: zero mean, unit variance, orthogonality
- Batch normalization
 - Iosse, Szegedy. Batch Normalization: Accelerating Deep Network
 Training by Reducing Internal Covariate Shift. NIPS 2015

Zero mean and unit variance weights are "supported" during training

to avoid vanishing gradient

- ⇒ Small sensitivity to learning rate setting (can be higher, faster training
 - 10 times fewer epochs needed)
- ⇒ Regularizer (dropout can be excluded/smaller) (better optimum found)

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

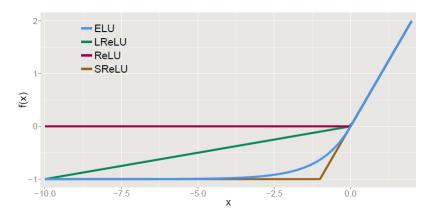
Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Exponential Linear Units (ELU) [Clevert et al., ICLR 2016]

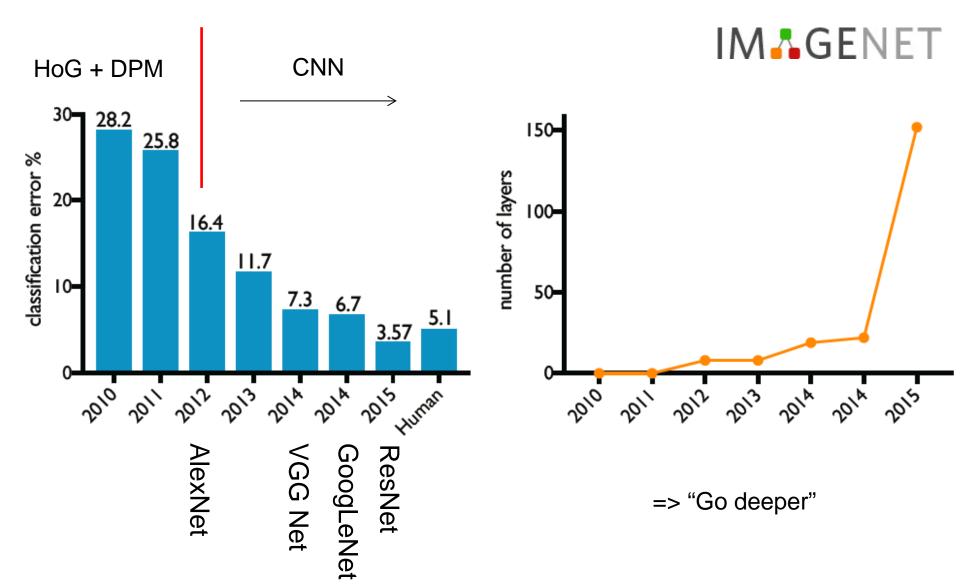
$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$



- Self normalizing properties, batch normalization unnecessary
- Faster training reported
- ADAM optimizer [Kingma and Ba, ICLR 2015]
 - = (ADAptive Moments)
 - Often improves over SGD (with momentum),
 - Low sensitivity on learning rate setting

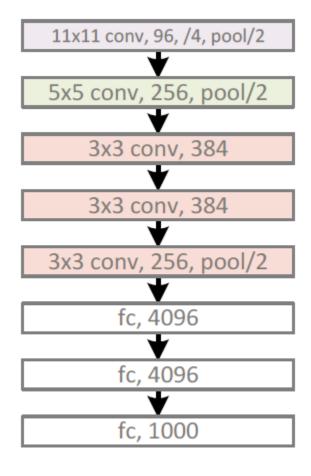
60

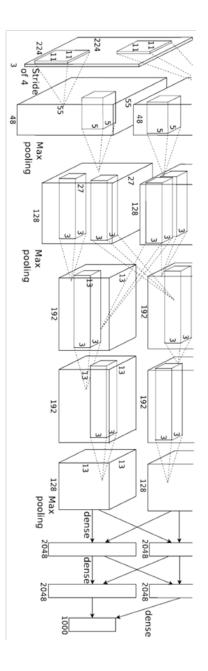
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)



CNN architectures

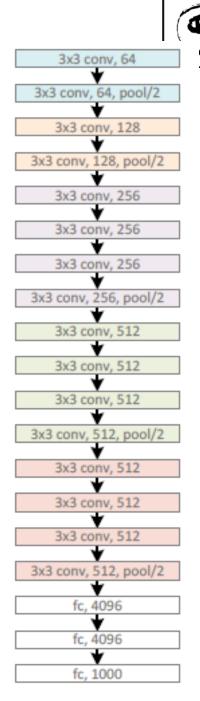
- **AlexNet**
 - [Krishevsky et al., NIPS 2012]



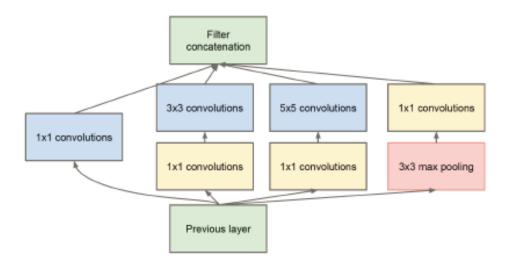


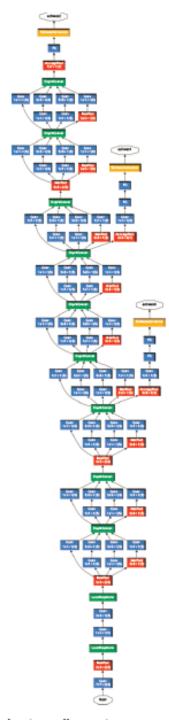
62

- VGG Net: VGG-16, VGG-19
 - [Simonyan and Zisserman, ICLR 2015]
 - Deeper than AlexNet
 - Smaller filters (3x3 convolutions), more layers
 - => Same effective receptive field, but more "non-linearity



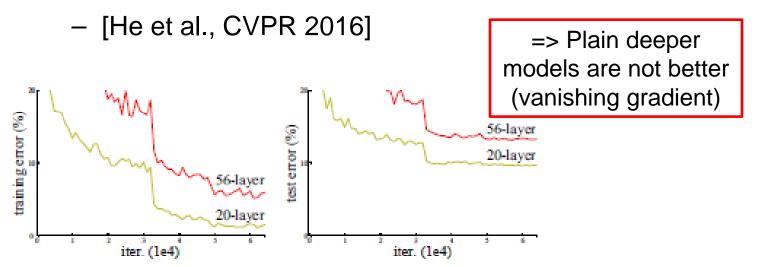
- GoogLeNet
 - [Szegedy et al., CVPR 2015]
 - 22 layers, No Fully-Connected layers
 - Accurate, much less parameters
 - "Inception" module (Net in net)



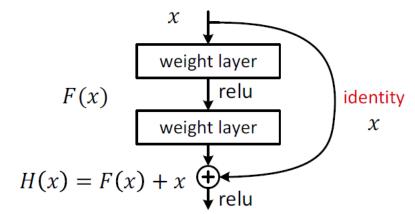


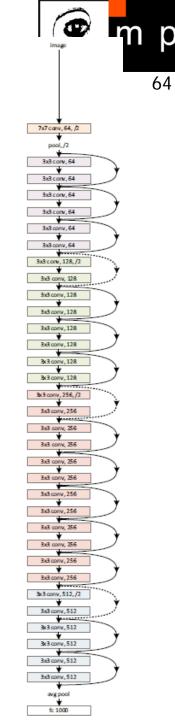
CNN architectures

ResNet

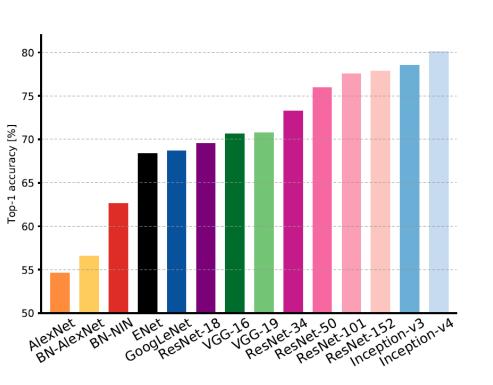


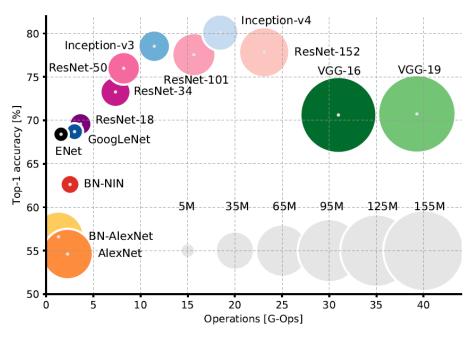
Residual modules, 152 layers





CNN models (comparison)





 [Canziani et al., An Analysis of Deep Neural Network Models for Practical Applications, 2017. arXiv:1605.07678v4]

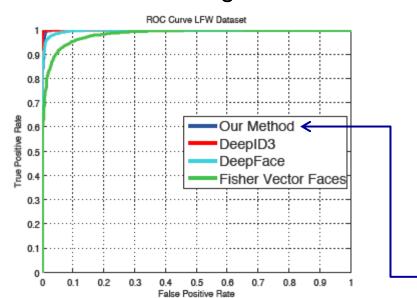
Face interpretation problems

- Face recognition, face verification
 - Architecture similar to AlexNet very deep CNN (softmax at the last layer)

[Taigman-ECVV-2014] DeepFace: Closing the Gap to Human-Level Performance in Face Verification (authors from Facebook)

[Parkhi-BMVC-2015] Deep Face recognition (authors from Oxford Uni)

- 2.6M images of 2.6k celebrities, trained net available

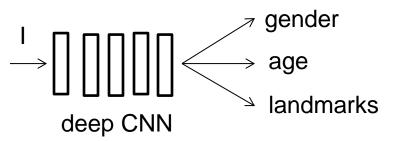


No.	Method	# Training Images	# Networks	Accuracy
1	Fisher Vector Faces		-	93.10
2	DeepFace (Facebook)	4 M	3	97.35
3	DeepFace Fusion (Facebook)	500 M	5	98.37
4	DeepID-2,3	Full	200	99.47
5	FaceNet (Google)	200 M	1	98.87
6	FaceNet+ Alignment (Google)	200 M	1	99.63
7	(VGG Face)	2.6 M	1	98.78

 Face represented by penultimate layer response, similarity search, large scale indexing

Face interpretation problems

- Facial landmarks, Age / Gender estimation
 - Multitask network
 - Shared representation
 - Combination of both classification and regression problems



Age estimation – How good the network is?

- Our survey
 - ~20 human subjects, ~100 images of 2 datasets

MORPH dataset

True: 22, MAE: 18.8

True: 36, MAE: 17.8

True: 33, MAE: 16.3

True: 22, MAE: 16.1

True: 25, MAE: 16.0

IMDB dataset

True: 25, MAE: 0.5

True: 66, MAE: 1.0

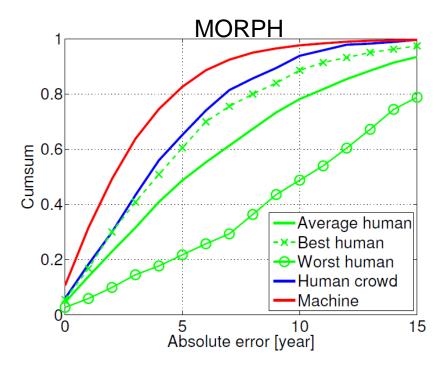
True: 29, MAE: 1.0

True: 19, MAE: 1.0

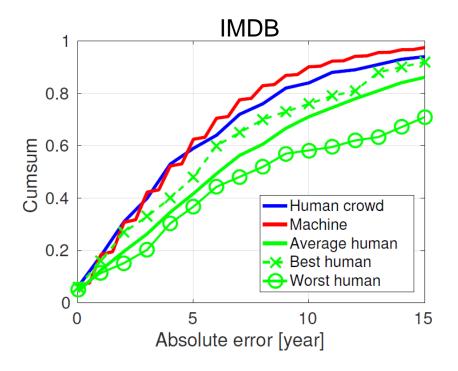
True: 43, MAE: 1.0

Age estimation – How good the network is?

Better than average human...



	MAE	CS5	MaxAL
Average human :	6.8	48.6	24.1
Human crowd :	4.7	65.1	19.0
Machine :	3.2	82.6	26.0



		MAL	CSS	MAXAE
Average human	:	8.2	41.7	31.5
Human crowd	:	5.7	59.0	21.0
Machine	:	5.1	62.5	42.7

- [Franc-Cech-IVC-2018]
- Network runs real-time on CPU

Predicting Decision Uncertainty from Faces

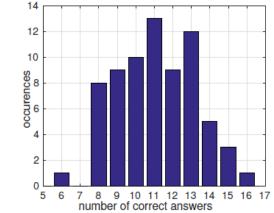
70

- [Jahoda, Vobecky, Cech, Matas. Detecting Decision Ambiguity from Facial Images. In Face and Gestures, 2018]
- Can we train a classifier to detect uncertainty?

Training set: 1,628 sequences

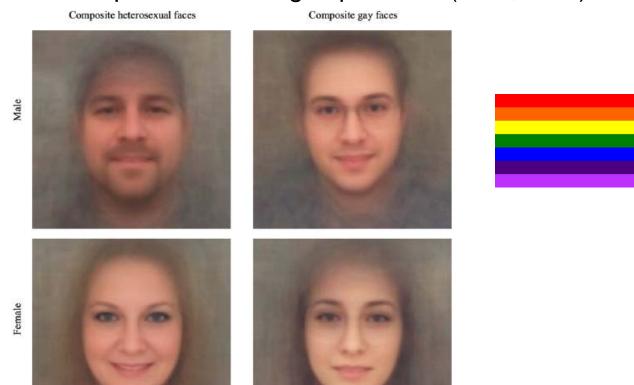
Test set: 90 sequences

- CNN 25% error rate, while human volunteers 45%



Sexual Orientation from Face Images

- [Wang and Kosinki. Deep Neural Networks can detect sexual orientation from faces. Journal of Personality and Social Psychology, 2017]
- Better accuracy than human in (gay vs. heterosexual)
 - 81% accuracy (for men),
- average human accuracy (61%)
- 71% accuracy (for women)
- average human accuracy (54%)
- Accuracy further improved if 5 images provided (91%, 83%)



General recipe to use deep neural networks

- Recipe to use deep neural network to "solve any problem" (G. Hinton 2013)⁷²
 - Have a deep net
 - If you do not have enough labeled data, pre-train it by unlabeled data;
 otherwise do not bother with pre-initialization
 - Use rectified linear units instead of standard neurons (sigmoid)
 - Use dropout to regularize it (you can have many more parameters than training data)
 - If there is a spatial structure in your data, use convolutional layers

Novel:

- Use Batch Normalization [Ioffe-Szegedy-NIPS-2015]
- ReLU => ELU
- Adaptive Optimizers (ADAM)
- Various architectures (AlexNet, VGG, GoogLeNet, ResNet)

Experience:

 Data matters (the more data the better), transfer learning, data augmentation

Conclusions

- CNNs efficiently learns the abstract representation (shared among classes)
- Low computational demands for running, Training needs GPU
- Many "deep" toolboxes: Caffe (Berkeley), MatconvNet (Oxford), TensorFlow (Google), Theano (Montreal), Torch, ...
- NNs are (again) in the "Golden Age" (or witnessing a bubble), as many practical problems seem solvable in near future
- Explosion of interest of DNN in literature, graduates get incredible offers, start-ups appear all the time

Do we understand enough what is going on? http://www.youtube.com/watch?v=LVLoc6FrLi0

Further Resources

- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016
- Available <u>on-line</u> for free.
- Lectures / video-lectures
 - Stanford University course on Deep Learning (cs231n)
 - MIT lectures on Introduction in Deep Learning (MIT 6.S191)
- Various blogs and on-line journals
 - Andrej Karpathy (blog)
 - Distill (distill.pub)