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What is the “Deep Learning” ?

Deep learning

= both the classifiers and the features are learned automatically

classifier

» Typically not feasible, due to
high dimensionality

e Suboptimal, requires expert

knowledge, works in specific
domain only

image label
hand-engineering  classifier

image features label

(e.g. SIFT, SURF, HOG,

or MFCC in audio)

learning classifier
image features
(feature hierarchies)

Deep neural network

label




Deep learning omnipresent

= Besides the Computer Vision it is extremely successful in, e.g.
— Automatic Speech Recognition
» Speech to text, Speaker recognition
— Natural Language Processing
« Machine translation, Question answering
— Robotics / Autonomous driving
* Reinforcement learning
— Data Science / Bioinformatics

= Shift of paradigm in Computer Vision
» Large-scale image category recognition (ILSVRC’ 2012 challenge)

INRIA/Xerox 33%,
Uni Amsterdam 30%,
Uni Oxford 27%,
Uni Tokyo 26%,

Uni Toronto 16% (deep neural network) [Krizhevsky-NIPS-2012]




Examples of Deep learning in Computer Vision

= Image classification [Krizhevsky-NIPS-2012]
— Input: RGB-image
— Output: Single label (Probability Distribution over Classes)
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— ImageNet dataset (14M images, 21k classes, Labels by Amazon
Mechanical Turk)

— ImageNet Benchmark (1000 classes, 1M training images)


https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Examples of Deep learning in Computer Vision

= Object Detection
— Multiple objects in the image [RCNN, YOLO, ...]



https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.04402
http://openaccess.thecvf.com/content_ICCV_2017/papers/Busta_Deep_TextSpotter_An_ICCV_2017_paper.pdf

Examples of Deep learning in Computer Vision

(3D) Pose estimation
— [Hu-2018], [OpenPose]



https://arxiv.org/abs/1811.10742
https://github.com/CMU-Perceptual-Computing-Lab/openpose

Examples of Deep learning in Computer Vision

= Image Segmentation (Semantic/Instance Segmentation)

— Each pixel has a label [Long-2015], [Mask-RCNN-2017]
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Semantic segmentation Instance segmentation


https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1703.06870

Examples of Deep learning in Computer Vision

= Motion
— Tracking

— Optical Flow [Neoral-2018]
» Predict pixel level displacements between consecutive frames



https://arxiv.org/abs/1811.01602

Examples of Deep learning in Computer Vision

= Stereo (depth from two images)
= Depth from a single (monocular) image [Godard-2017]



http://visual.cs.ucl.ac.uk/pubs/monoDepth/

Examples of Deep learning in Computer Vision

Faces

— Recognition / Verification
— Gender/Age

— Landmarks, pose

— EXpression, emotions

Move your head slowly to
complete the circle.




Examples of Deep learning in Computer Vision

= Lip reading [Chung-2017]



https://arxiv.org/abs/1611.05358
https://youtu.be/5aogzAUPilE?t=12

Examples of Deep learning in Computer Vision

= Image-to-Image translation [Isola-2017]

Day to Night BW to Color

input output

= Deblurring, Super-resolution [Subrtova 2018]

e d
&

16x16 256x256 (predicted) 256x256 (ground-truth)



https://phillipi.github.io/pix2pix/
http://hdl.handle.net/10467/76125
http://hdl.handle.net/10467/76125
http://hdl.handle.net/10467/76125

Examples of Deep learning in Computer Vision

= Generative models
— Generating photo-realistic samples from image distributions
— Variational Autoencoders, GANs [Nvidia-GAN]

(Images synthetized by a random sampling)


https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://youtu.be/G06dEcZ-QTg

Examples of Deep learning in Computer Vision

= Action/Activity recognition
= Neural Style Transfer .
= |mage Captioning
= and many more...

a man sitting at a table  a large clock tower with a
with a plate of food clock on top
logprob: —-5.81 logprob: —8.56

a cat is sitting on a couch with a remote control
logprob: —-12._.45

https://cs.stanford.edu/people/karpathy/deepimagesent/generationdemo/



https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://deepart.io/

@iology: Resemblance to sensory processing in the brain @

" Needless to say that the brain is a neural network

dendrites nucleus NEURON

DY

~ 2e+11 neurons
~ le+14 synapses

axon

/ axon ending

myelin sheath

cell body

® Primary visual cortex V1

— Neurophysiological evidences that primary visual cells are sensitive to
the orientation and frequency (Gabor filter like impulse responses

— [Hubel-Wiesel-1959] (Nobel Price winners) — (-
» Experiments on cats with electrodes in the brain N

= A single learning algorithm hypothesis ?

— “Rewiring” the brain experiment [Sharma-Nature-2000]

« Connecting optical nerve into Al cortex (a subject was able to solve visual
tasks by using the processing in Al)

Stimulus



Presenter
Presentation Notes
Sharma-Nature-2000 (pokusy na fretkach. Fretky jsou po narozeni malo vyvinute, nervova spojeni jeste rostou)


History: (Artificial) Neural Networks

= Neural networks are here for more than 50 years
— Rosenblatt-1956 (perceptron)
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History: Neural Networks

Rumelhart and McClelland — 1986: sigmoid
— Multi-layer perceptron, Pl /,_
— Back-propagation (supervised training) e

o Differentiable activation function /

« Stochastic gradient descent

Empirical risk Compare outputs with
n correct answer to get
Qlw) = Z Q;(w), error signal
i=1
44 outputs
Update weights:
w:=w=aVQ;(w). hidden
layers

4% input vector

What happens if a network is deep?
(it has many layers)



N
What was wrong with back propagation? m
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= Local optimization only (needs a good initialization, or re-initialization)
* Prone to over-fitting
— too many parameters to estimate
— too few labeled examples
= Computationally intensive
=> Skepticism: A deep network often performed worse than a shallow one



What was wrong with backpropagation?

C3: f. maps 16 10x10
INPUT Z1: fealure maps S4: 1. maps 16@5x5

32632 P2z 52 1. maps C5: layer g layer OUTPUT
6@ rrr I"rr 30 e -
|_r r. Zip codes recognition,
F LeCun 1989

|
| Full Dc:nnjlection Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

= However nowadays:
— Weights can be initialized better (Use of unlabeled data)
— Large collections of labeled data available
* ImageNet (14M images, 21k classes, hand-labeled)
— Reducing the number of parameters by weight sharing
 Convolutional layers — [LeCun-1989]
— Novel tricks to prevent overfitting of deep nets
— Fast enough computers (parallel hardware, GPU)
=> Optimism: It works!



Deep convolutional neural networks Nt

= An example for Large Scale Classification Problem:

— Krizhevsky, Sutskever, Hinton: ImageNet classification with deep
convolutional neural networks. NIPS, 2012.

* Recognizes 1000 categories from ImageNet
» Outperforms state-of-the-art by significant margin (ILSVRC 2012)

S5
Stride of 4 Max pooling Max pooling

“Alex-Net”

« 5 convolutional layers, 3 fully connected layers
 60M parameters, trained on 1.2M images (~1000 examples for
each category)



)
Deep CNNs — basic building blogs @
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= A computational graph (chain/directed acyclic graph) connecting layers

— Each layer has: Forward pass, Backward pass
— The graph is end-to-end differentiable

Convolution PooIiug (.‘omllution Pooling Fully-connected

1. Input Layer
2. Intermediate Layers

1. Convolutions

2. Max-pooling

3. Activations
3. Output Layer
4. Loss function over the output layer for training



Convolutional layer

= |nput: tensor (WxHxD)
— “image” of size WxH with D channels
= Qutput: tensor (WxH'xD’)

= A bank of D’ filters of size (KxKxD) is convolved with the input to produce
the output tensor
— Zero Padding (P), extends the input by zeros
— Stride (S), mask shifts by more than 1 pixel
— KxKxDxD’ parameters to be learned dot product

32

1x1x1

3 5x5x3

32 32x32x1 32




Max-pooling layer m

27
Same inputs (WxHxD) and outputs (W'xH’xD) as convolutional layer
Same parameters: Mask Size (K), Padding (P), Stride (S)

Same sliding window as in convolution, but instead of the dot product,
pick maximum

Non-linear operation
No parameters to be learned

max
Rectified feature map
1 4 Pooled feature map
9 e max pooling with 2x2 filters 6
and stride 2 l
4 o | 7 4 7

Max(3, 4,1, 2)=4




Activation functions

(®

Non-linearity, applied to every singe cell of the tensor

Input tensor and output tensor of the same size

Leaky RelL U
max (0.1, x)

Sigmoid |
o(z) = 1+é—m

tanh
tanh(x) o o

RelLU
max (0, x)

-10 10

Maxout
max(wi x + by, ws « + be)

;ilz(ew —1)

10

1 10

10

x>0
r<0 - 1o

RelLU is the simplest (used in the AlexNet, good baseline)
Saturating non-linearity (sigmoid, tanh) causes “vanishing” gradient



N
Deep convolutional neural networks @

Additional tricks: “Deuvil is in the details” f(z)= }1131{!], 7)

— Rectified linear units instead of standard sigmoid
=> Mitigate vanishing gradient problem

— Convolutional layers followed by max-pooling |
* Local maxima selection in overlapping windows (subsampllng)
=> dimensionality reduction, shift insensitivity

— Dropout

* 50% of hidden units are randomly omitted during the training, but
weights are shared in testing time

» Averaging results of many independent models (similar idea as in
Random forests)

=> Probably very significant to reduce overfitting

— Data augmentation
* Images are artificially shifted and mirrored (10 times more images)
=> transformation invariance, reduce overfitting



)
Deep convolutional neural networks @

= Supervised training
— The training is done by a standard back-propagation
— enough labeled data: 1.2M labeled training images for 1k categories

— Learned filters in the first layer
* Resemble cells in primary visual cortex

[Hubel-Wiesel-1959] Learned first-layer filters

® Training time:
— 5 days on NVIDIA GTX 580, 3GB memory (Krizhevsky, today faster)
— 90 cycles through the training set
= Test time (forward step) on GPU
— Implementation by Yangqing Jia, http://caffe.berkeleyvision.org/
— 5 ms/image in a batch mode



http://caffe.berkeleyvision.org/
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Early experiments 1. Category recognition @
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Implementation by Yangqing Jia, 2013, http://caffe.berkeleyvision.org/

— network pre-trained for 1000 categories provided
Which categories are pre-trained?
— 1000 “most popular” (probably mostly populated)
— Typically very fine categories (dog breeds, plants, vehicles...)
— Category “person” (or derived) is missing
— Recognition accuracy subjectively surprisingly good...

|http:,.f,fcmp.felk.cvut.czf~cechj,ftmp,.fTristan.jpg ﬁj clear
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http://caffe.berkeleyvision.org/

Sensitivity to image rotation
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Sensitivity to image blur

score
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It is not a texture only...
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Early experiments 2. Category retrieval

50k randomly selected images from Profimedia dataset
Category: Ocean liner




Early experiments 2. Category retrieval

Category: Restaurant (results out of 50k-random-Profiset)
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Early experiments 2. Category retrieval

= (Category: stethoscope (results out of 50k-random-Profiset)

1 2 3 4
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Early experiments 3: Similarity search m

38
= Indications in the literature that the last hidden layer carry semantics
— Last hidden layer (4096-dim vector), final layer category responses
(1000-dim vector)

— New (unseen) categories can be learned by training (a linear)
classifier on top of the last hidden layer

 Oquab, Bottou, Laptev, Sivic, CVPR, 2014
» Girshick, Dphanue, Darell, Malik, CVPR, 2014
— Responses of the last hidden layer can be used as a compact

global image descriptor
o Semantically similar images should have small Euclidean distance

s i o 3 - ;‘3 ' o . 1
T -% 2 :_:\:-:-- e ” : Q 3 Y T ; deSCrI ptor
\ e 192 192 128 2048 2088 |dense
27 128 P e ] ]
Image A\ N 2 A
1 = N [J \ 1 13 dense’| |dense|
3| N 1000
192 192 128 Max L L
Max _ M pooling 2048 2048
pooling poaling
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Early experiments 3: Similarity search {\‘3

= Qualitative comparison: (20 most similar images to a query image)

1.

MUFIN annotation (web demo), http://mufin.fi.muni.cz/annotation/,
[Zezula et al., Similarity Search: The Metric Space Approach.2005.]
» Nearest neighbour search in 20M images of Profimedia

« Standard global image statistics (e.g. color histograms, gradient
histograms, etc.)

Caffe NN (last hidden layer response + Euclidean distance),
» Nearest neighbour search in 50k images of Profimedia



http://mufin.fi.muni.cz/annotation/

Early experiments 3: Similarity search
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Early experiments 3: Similarity search

MUFIN results
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Early experiments 3: Similarity search

MUFIN results




Early experiments 3: Similarity search
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Early experiments 3: Similarity search

MUFIN results




Early experiments 3: Similarity search
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Early experiments 3: Similarity search

11: 3489567

=y, !ﬁ

16: 3574.01

2 2812.02

7: 3304 .93

—

12: 3528 47

17: 3576.81

3: 296818 4:3189.3

8: 3402.86

13: 3549.56

18: 3597.88

b: 3284 86

10: 3473.81

15: 3562.74

20 3662.85




Early experiments 3: Similarity search

MUFIN results




Early experiments 3: Similarity search
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Early experiments 3: Similarity search

MUFIN results




Caffe NN results

Early experiments 3: Similarity search
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Early experiments 3: Similarity search

MUFIN results




Early experiments 3: Similarity search
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Novel tricks N

= Network initialization
— Mishkin, Matas. All you need is a good init. ICLR 2016
— Weights initialization: zero mean, unit variance, orthogonality

= Batch normalization

— losse, Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. NIPS 2015

— Zero mean and unit variance weights are “supported” during training

to avoid VanIShlng gradlent Input: Values of x over a mini-batch: B = {z; ..}
o _ Parameters to be learned: ~, 5
= Small sensitivity to learning rate Output: {y, = BN, s(x.)}
setting (can be higher, faster training pe e L300 T
— 10 times fewer epochs needed) m i
= Regularizer (dropout can be o3 i S (e — i)’ 1/ mini-batch variance
excluded/smaller) (better optimum i
%, — —_FB JRTI.
found) I; *.,m ff normalize
vy + 7E; + 8 = BN, a(z;) I scale and shift

Algorithm 1: Batch Normalhizing Transform, applied to
activation x over a mini-batch.



Novel tricks II.

= Exponential Linear Units (ELU) [Clevert et al., ICLR 2016]

.. & if x>0 ’
flr) = o - : g
a (exp(e)—1) 1fx <0

— Self normalizing properties, batch normalization unnecessary
— Faster training reported

= ADAM optimizer [Kingma and Ba, ICLR 2015]
= (ADAptive Moments)
— Often improves over SGD (with momentum),
— Low sensitivity on learning rate setting



Novel architectures

©

60

= ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

HoG + DPM

classification error %

CNN

I5

10

number of layers

IM&AGENET

=> “Go deeper”



CNN architectures

= AlexNet
— [Krishevsky et al., NIPS 2012]

11x11 conv, 96, /4, pool/2

 /

5x5 conv, 256, pool/2

Xep

Buijood

3x3 conv, 384

2

3x3 conv, 384

v = =
i = - 1 1

3x3 conv, 256, pool/2

T
Z6T
[s
L i
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fc, 4096 =il
fc, 4096 -
fc, 1000 .
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0001
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CNN architectures

| 3x3 conv, 649
¥

I3 canv, 64, poal/2

" VGG Net: VGG-16, VGG-19

| |

— [Simonyan and Zisserman, ICLR 2015] [ 3a : 128 |

— Deeper than AlexNet [ 303 conv, 228, pocli2 |

_ Smaller filters (3x3 convolutions), more layers — ¥ — |
=> Same effective receptive field, - mi,f -

ix3 conv, 256

but more “non-linearity
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GooglLeNet

CNN architectures

— [Szegedy et al., CVPR 2015]

— 22 layers, No Fully-Connected layers

— Accurate, much less parameters
— “Inception” module (Net in net)
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CNN architectures

" ResNet
— [He et al., CVPR 2016] —> Plain deeper
models are not better
N o Vi, (vanishing gradient)
< | = L S6laye
E - '.h ::. H-layer
o0 A o S-laver z
g .."'."' "':"'. s E
B H-layer
: " iter. (led) ' ’ " iter. (led) '
— Residual modules, 152 layers
X

weight layer

F(x)

lrelu

identity

weight layer X
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+ X
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Top-1 accuracy [%]

(®

CNN models (comparison)

Inception-v4
80 80 - :
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGGr19
75 1 75 1 ResNet-101
“ResNet-Sil

70 1 £ 704 ResNet-18

>

& O GoogLenet

3 ENet
65 1 9 651

”g' © BN-NIN
60 F 601 5M 35M - 65M-----95M - 125M - 155M

BN-AlexNet
55 55 1 AlexNet
20T ek k. AD A6 A0 b <O .q> el O b >
el ¢ A e v _AD A Al 2 3 o ~ N 0 5 10 15 20 25 30 35 40
ety SRS &e‘%\\\e‘ge’v"' e"i)‘i‘" & opeetoreEon
- e () e S S
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= [Canziani et al., An Analysis of Deep Neural Network Models for Practical
Applications, 2017. arXiv:1605.07678v4]



= Face recognition, face verification
— Architecture similar to AlexNet - very deep CNN (softmax at the last

layer)

Face Interpretation problems

[Taigman-ECVV-2014] DeepFace: Closing the Gap to Human-Level

Performance in Face Verification (authors from Facebook)
[Parkhi-BMVC-2015] Deep Face recognition (authors from Oxford Uni)

- 2.6M images of 2.6k celebrities, trained net available

ROC Curve LFW Datasat

..................................

...................................

...................................

O Method <€

= DeeplD3
DeepFace

== Eisher Vector Faces||

1 1 1 1
[ [N} 02 03 0.4

1 1 1 1
05 08 () 0.8

False Positive Rate

= Face represented by penultimate layer response, similarity search, large

scale indexing

1
08

Method 'IT"""'“‘ # Networks Accuracy
mages
Fisher Wector Faces 93.10
DeepFace
{Facebaok) 4 M 3 97.35
DeepFace Fusion
(Facebook) 500 M 5 98.37
DeeplD-2,3 Full 200 99.47
FaceMet
200 M 1 98.87
(Google)
FaceMet+ Alignment
200 M 1 99.63
{Google)
(VGG Face) 26M 1 98.78




Face interpretation problems

= Facial landmarks, Age / Gender estimation

— Multitask network
« Shared representation
« Combination of both classification and regression problems

L0000

landmarks
deep CNN




Age estimation — How good the network is?

Our survey
~20 human subjects , ~100 images of 2 datasets

MORPH dataset

True: 22, MAE: 18.8 True: 36, MAE: 17.8 True: 33, MAE: 16.2 True: 22, MAE: 16.1 True: 25, MAE: 16.0

| it

IMDB dataset
True: 25, MAE: 0.5 True: 66, MAE: 1.0 True: 29, MAE: 1.0 True: 19, MAE: 1.0 True: 43, MAE: 1.0




Age estimation — How good the network is?

= Better than average human...

’ ~MORPH 1 IMDB
0.8/ S 0.8
g 0B8L o f L .............................................................. % 06
wn : n
5 S
O 04 __________________________ ................................ P O 04 —Human CFOWd
Average human m== \achine
Best human 0.2 | / Average human
0.2r/ : Worst human / Best human
/ —Human crowd vz Worst human
| : —Machine 0! : ‘
0 : ' 0 5 10 15
0 5 10 15

Absolute error [year]

Average human :
Human crowd :
Machine :

C55  MaxAE
48.6 24.1
65.1 19.0
82.6 26.0

[Franc-Cech-IVC-2018]
Network runs real-time on CPU

Absolute error [year]

Average human :

Human crowd :
Machine

CS5  MaxAE
41.7 31.5
59.0 21.0
62.5 42.7



Predicting Decision Uncertainty from Faces

= [Jahoda, Vobecky, Cech, Matas. Detecting Decision Ambiguity from
Facial Images. In Face and Gestures, 2018]

= (Can we train a classifier to detect uncertainty?

_ Training set: 1,628 sequences
NOT A SUBATOMIC PARTICLE » Test set: 90 sequences

A PROTON . B: NEUTRON

'EONBDI&._&.'&S ELECTRON "
- MCHUGKLES > i

accurences

o (3] £~ [+2] [e4]
T T T T

=>YES, we can...

- CNN 25% error rate, while human volunteers 45%

5 6 7 8 9 10 11 12 13 14 15 16 17
number of correct answers



Sexual Orientation from Face Images m

71
[Wang and Kosinki. Deep Neural Networks can detect sexual orientation

from faces. Journal of Personality and Social Psychology, 2017]
Better accuracy than human in (gay vs. heterosexual)
— 81% accuracy (for men), average human accuracy (61%)
— 71% accuracy (for women) average human accuracy (54%)
— Accuracy further improved if 5 images provided (91%, 83%)

Composite heterosexual faces Composite pay faces

Male

Female




N
General recipe to use deep neural networks m

= Recipe to use deep neural network to “solve any problem” (G. Hinton 2013) 2

Have a deep net

If you do not have enough labeled data, pre-train it by unlabeled data;
otherwise do not bother with pre-initialization

Use rectified linear units instead of standard neurons (sigmoid)

Use dropout to regularize it (you can have many more parameters than
training data)

If there is a spatial structure in your data, use convolutional layers

= Novel:

Use Batch Normalization [loffe-Szegedy-NIPS-2015]
RelLU => ELU

Adaptive Optimizers (ADAM)

Various architectures (AlexNet, VGG, GoogLeNet, ResNet)

= Experience:

Data matters (the more data the better), transfer learning, data
augmentation



)
Conclusions @

= CNNs efficiently learns the abstract representation (shared among
classes)

= Low computational demands for running, Training needs GPU

= Many “deep” toolboxes: Caffe (Berkeley), MatconvNet (Oxford),
TensorFlow (Google), Theano (Montreal), Torch, ...

= NNs are (again) in the “Golden Age” (or witnessing a bubble), as many
practical problems seem solvable in near future

= Explosion of interest of DNN in literature, graduates get incredible offers,
start-ups appear all the time

" Do we understand enough what is going on? Human Abductec] by UFO.mp4
http://www.youtube.com/watch?v=LVLoc6FrLi0 |

Acknowledgement: | borrowed some images from slides of G. Hinton, A. Ng, Y. Le Cun, Fei-Fei Li, K. He.


http://www.youtube.com/watch?v=LVLoc6FrLi0
http://www.youtube.com/watch?v=LVLoc6FrLi0

Further Resources

= Deep Learning Textbook

— lan Goodfellow and Yoshua Bengio and Aaron Courville, Deep
Learning, MIT Press, 2016

— Available on-line for free.

= Lectures/ video-lectures
— Stanford University course on Deep Learning (cs231n)
— MIT lectures on Introduction in Deep Learning (MIT 6.5191)

= Various blogs and on-line journals
— Andrej Karpathy (blog)
— Distill (distill.pub)



http://www.deeplearningbook.org/
http://cs231n.stanford.edu/
http://introtodeeplearning.com/
http://karpathy.github.io/
http://distill.pub/
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