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Local Features 
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• Methods based on “Local Features”  are the state-of-the-art for 
number of computer vision problems. 
 

• E.g.: Wide-baseline stereo,  image retrieval, 3D reconstruction 
 

 
• Terminology (diverse, unfortunately) : 

Local Feature = Interest “Point”  =  The “Patch” = 
                    = Feature “Point” 
                    = Distinguished  Region    
                    = (Transformation) Covariant Region 
 
 



Motivation: Generalization of Local Stereo to Wide 
Baseline Stereo (WBS) 
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Narrow-baseline stereo 
 
 
 
 
 
 

1. Local Feature (Region)  =  a rectangular “window” 
• robust to occlusion, translation invariant 
• windows matched by correlation, assuming small 

displacement  
• successful in Narrow-baseline stereo matching 

Brewster 
Stereoscope, 1856 

 
A “photo” for 

both eyes 
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2. Widening of baseline or zooming in/out  
• local deformation is well modelled by affine or similarity  
   transformations   
• how can the “local feature” concept  be generalised?  The 
set of ellipses is closed under affine tr., but it’s too big to be 
tested window scanning approach becomes computationally 
difficult.  

Motivation: Generalization of Local Stereo to Wide 
Baseline Stereo (WBS) 



Local Features &The Correspondence Problem 
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Establishing correspondence is the key issue in many computer 
vision problems: 
• Image retrieval 
• Wide baseline matching 
• Detection and localisation 
• 3D Reconstruction 
• Image Stitching 
• Tracking 



 What do we mean with a local correspondence? 
• Geometrical Instance correspondences. 

Not a semantic correspondence 
 

 
 
 

• Local correspondences 
- Not a global correspondence of entire related images 

Correspondence Problem 
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M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 

Local Features in Action (1): Building a Panorama 



Local Features in Action (1): Building a Panorama 

 We need to match (align) images = find (dense) correspondence 
 (technically, this can be done only if both images taken from the 

same viewpoint) 



Local Features in Action (1): Building a Panorama 

 Problem 1: 
•Detect the same feature independently in both images* 
•Note that the set of “features” is rather sparse 

no chance to match! 

A repeatable detector needed. 
* Other methods exist that do not need independency 



Local Features in Action (1): Building a Panorama 

 Problem 2:  
• how to correctly recognize the corresponding features? 

? 

Solution: 

1. Find a discriminative and stable descriptor 

2. Solve the matching problem  

 



Local Features in Action (1): Building a Panorama 

1. Detect features in both images 
2. Find corresponding pairs 
3. Estimate transformations (Geometry and Photometry) 
4. Put all images into one frame, blend. 

Possible approach: 



Local Features in Action (1): Building a Panorama 

1. Detect features in both images 
2. Find corresponding pairs 
3. Estimate transformations (Geometry and Photometry) 
4. Put all images into one frame, blend. 

Possible approach: 



 3D reconstruction – camera pose estimation 
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Local Features in Action (2): 3D reconstruction 
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1. matching distinguished regions 
⇒ tentative correspondences 

(verification) 
⇒ two view geometry 

 

2. camera calibration 
⇒ camera positions 
⇒ sparse reconstruction 

 

3. dense stereoscopic matching 
⇒ pixel/sub-pixel matching 
⇒ depth maps, 3D point cloud 

 

4. surface reconstruction 
⇒ surface refinement  
⇒ triangulated 3D model 
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Local Features in Action (2): 3D reconstruction 

Matas et al., IVC 2004. 
Martinec, Pajdla., CVPR 2007. 
Cech, Sara, CVPR 2007.  

 



Local Features in Action (2): 3D reconstruction 

 Large scale 3D reconstruction – “Microsoft Photo Tourism” 
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57,845 downloaded images, 11,868 registered images.  
The Old City of Dubrovnik  
  

 



Local Features in Action (3): “Recognition”  
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Properties: robust to occlusion, clutter, handles pose 
change, illumination but becomes unrealistic even 
for moderate number of objects.  

                         Recognition requires indexing 

(as a Sequence of Wide-Baseline 
Matching Problems) 

(as a Sequence of Wide-Baseline Matching Problems) 



Local Features in Action (3): “Recognition”  

 Applications 
• In car traffic sign recognition 

 
 

• Product logos detection in TV/social media 
 
 
 

• Detection of goods in tray at supermarket checkout  
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Local Features in Action (5): Image Retrieval 
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Local Features in Action (5): Image Retrieval 
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Local Features in Action (5): Image Retrieval 
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Local Features in Action (5): Image Retrieval 
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Local Features in Action (5): Image Retrieval 
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Local Features in Action (5): Image Retrieval 

27 
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Local Features in Action (5): Image Retrieval 

“Zoom in” 

“Zoom out” 

Schonberger J, Radenovic F, Chum O, Matas J. From Single Image Query to 
Detailed 3D Reconstruction. CVPR, 2015. 
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Local Features in Action (5): Image Retrieval 

https://youtu.be/DIv1aGKqSIk 

Schonberger J, Radenovic F, Chum O, Matas J. From Single Image Query to 
Detailed 3D Reconstruction. CVPR, 2015. 

https://youtu.be/DIv1aGKqSIk
https://youtu.be/DIv1aGKqSIk
https://youtu.be/DIv1aGKqSIk


Local Features in Action (6): Localization and Mapping  
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 Place recognition - retrieval in a structured (on a map) database 

[Knopp, Sivic, Pajdla, ECCV 2010] http://www.di.ens.fr/willow/research/confusers/  

Query 

Query 
Expansion 
(Panoramio,    
  Flickr, … ) 

Best match  

Image indexing 
with spatial 
verification   

Confuser 
Suppression 
Only negative 
training data 

(from geotags) 

Image database 



Challenges in the 
Correspondence Problem 

Why is Establishing Correspondence Difficult? 
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Finding correspondences is not easy  
due to large viewpoint 
 change (including scale) 
 => 
  the wide-baseline 
  stereo problem 

Applications: 
- pose estimation 
- 3D reconstruction 
- location recognition 
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Finding correspondences is not easy 
due to large viewpoint change 
(including scale) 
  => 
  the wide-baseline (WBS) 
  stereo problem 
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Finding correspondences is not easy 
due to large  
illumination change  
=> 
wide “illumination-baseline” 
stereo problem 

Applications: 
- location recognition 
- summarization of image 

collections 
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NASA Mars Rover images 
with SIFT feature matches 
Figure by Noah Snavely 

Find the matches (look for tiny colored squares…) 
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Finding correspondences is not easy  
due to large  
time difference 
=> 
wide temporal-baseline 
stereo problem 

Applications: 
- historical reconstruction 
- location recognition 
- photographer recognition 
- camera type recognition 
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Finding Correspondences is not easy 
due to occlusion 
 
 

Applications: 
- pose estimation 
- inpainting 
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Finding Correspondences is not easy  
change of modality 
 
Applications: 

- medical imaging 
- remote sensing 

 



 
Detecting  

Local Invariant Features 



 Design of Local Features 

 “Local Features” are regions, i.e. in principle arbitrary sets of 
pixels (not necessarily contiguous) with 

 High repeatability, (invariance in theory) under 
• Illumination changes 
• Changes of viewpoint =>  geometric transformations 
   i.e. are distinguishable in an image regardless of  

viewpoint/illumination => are distinguished regions 
 Are robust to occlusion => must be local  
 Must have discriminative neighborhood => they are “features” 

 
Methods based on local features/distinguished regions (DRs) 

formulate computer vision problems as matching of some 
representation derived from DR  
(as opposed to matching of entire images) 

   



Two core ideas (in “modern terminology”): 
1. To be a distinguished region, a region must be at least 

distinguishable from all its neighbours.  
2. Approximation of Property 1. can be tested very efficiently, 

without explicitly testing. 
Note: both properties were proposed before Harris paper, (1) by 

Moravec, (1)+(2) by Foerstner.  
 

  

undistinguished patches: 

distinguished patches: 

Harris detector (1988)         3500 citations 



Harris Detector: Basic Idea 

“flat” region: 
no change in 
all directions 

“edge”: 
no change along 
the edge 
direction 

“corner”: 
significant 
change in all 
directions 

• We should easily recognize the point by looking through a small 
window 

• Shifting a window in any direction should give a large change 



Harris Detector: Basic Idea 

f1 

f2 

f3 

f3 

f2 

f1 



Harris Detector: Mathematics 

Tests how similar is the image function 𝐼 𝑥0,𝑦0  at point 
(𝑥0,𝑦0) to itself when shifted by 𝑢, 𝑣 : 

• given by autocorrelation function 

or 

Gaussian 1 in window, 0 outside 

E 𝑥0,𝑦0;𝑢, 𝑣 = � 𝑤(𝑥,𝑦)(𝐼 𝑥,𝑦 − 𝐼 𝑥 + 𝑢,𝑦 + 𝑣 )2
(𝑥,𝑦)∈𝑊(𝑥0,𝑦0)

 

• 𝑊(𝑥0,𝑦0) is a window centered at point (𝑥0,𝑦0) 
• 𝑤(𝑥,𝑦) can be constant or (better) Gaussian 

 



Harris Detector: Mathematics 

Approximate intensity function in shifted position by the first-
order Taylor expansion: 

𝐼 𝑥 + 𝑢,𝑦 + 𝑣 ≈ 𝐼 𝑥,𝑦 + [𝐼𝑥 𝑥,𝑦 , 𝐼𝑦 𝑥,𝑦 ] 𝑢
𝑣  

where 𝐼𝑥, 𝐼𝑦 are partial derivatives of 𝐼(𝑥,𝑦).   

E 𝑥0,𝑦0;𝑢, 𝑣 ≈ � 𝑤 𝑥,𝑦  ([𝐼𝑥 𝑥,𝑦 , 𝐼𝑦 𝑥,𝑦 ] 𝑢
𝑣 )2

(𝑥,𝑦)∈𝑊(𝑥0,𝑦0)

 

        

= 𝑢, 𝑣  ∑ 𝑤(𝑥,𝑦)𝑊
𝐼𝑥(𝑥0,𝑦0)2 𝐼𝑥(𝑥0,𝑦0)𝐼𝑦(𝑥0,𝑦0)

𝐼𝑥(𝑥0,𝑦0)𝐼𝑦(𝑥0,𝑦0) 𝐼𝑦(𝑥0,𝑦0)2
 𝑢𝑣  



Harris Detector: Mathematics 

Intensity change in shifting window: eigenvalue analysis of 𝑀 

• λ1, λ2 – eigenvalues of M 
• 𝑀 symmetric, positive definite 

direction of 
the slowest 
change 

direction of the 
fastest change 

(λmax)-1/2 

(λmin)-1/2 

Ellipse:  

𝐸 𝑥0,𝑦0;𝑢, 𝑣  = const 

E 𝑥0,𝑦0;𝑢, 𝑣 ≈ 𝑢,𝑣 𝑀(𝑥0,𝑦0) 
𝑢
𝑣   



Harris Detector: Mathematics 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are 
small; E is almost 
constant in all 
directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues of M: 



Harris Detector: Mathematics 

Measure of corner response (“cornerness”): 
𝑅 = det𝑀 − 𝑘(trace 𝑀) 

• 𝑀 =  𝐴 𝐵
𝐵 𝐶  

• det𝑀 =  𝜆1 𝜆2 = 𝐴𝐴 − 𝐵2 
• trace 𝑀 =  𝜆1 + 𝜆2 = 𝐴 + 𝐶 
• 𝑘… empirical constant,𝑘 ∈ (0.04, 0.06) 

Find corner points as local maxima of corner response 𝑅: 

• points greater than its neighbours in given neighbourhood 
(3 × 3, or 5 × 5) 



Harris Detector: Mathematics 
•R depends only on eigenvalues  of M 
•R is large for a corner 
 

λ1 

λ2 
“Corner” 

“Edge”  

“Edge”  

“Flat” 

R > 0 
R < 0 

R < 0 |R| small 

• R is negative with large  
   magnitude for an edge 
• |R| is small for a flat region 

λ1 



Harris Detector 

 The Algorithm: 
•Compute partial derivatives 𝐼𝑥 , 𝐼𝑦 
•Compute: 𝐴 = ∑ 𝐼𝑥2𝑊 , 𝐵 =  ∑ 𝐼𝑥𝐼𝑦𝑊 , 𝐶 =  ∑ 𝐼𝑦2𝑊  
•Compute corner response 𝑅 
• Find local maxima in 𝑅 
 

 Parameters: 
•Threshold on R 
• Scale of the derivative operator (standard setting: very small, 

just enough to filter anisotropy of the image grid) 
• Size of window W (“integration scale”) 
•Non-maximum suppression algorithm  



Harris Detector: Workflow 



Harris Detector: Workflow 
Compute corner response R 



Harris Detector: Workflow 
Find points with large corner response: R>threshold 



Harris Detector: Workflow 
Take only the points of local maxima of R 



Harris Detector: Workflow 



Harris Detector: Properties 

 Rotation invariance 

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same 

Corner response R is invariant to image rotation 



Rotation Invariance of Harris Detector 

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000 

Repeatability rate: 

# correspondences 
# possible correspondences 



Harris Detector: Intensity change 

 Partial invariance to additive and multiplicative 
intensity changes 

  Only derivatives are used =>  

        invariance to intensity shift I → I + b 

? Intensity scale: I → a I 

R 

x (image coordinate) 

threshold 
R 

x (image coordinate) 



Harris Detector: Scale Change 

 Not invariant to image scale! 

All points will be 
classified as edges 

Corner ! 



Harris Detector: Scale Change 

 Quality of Harris detector for different scale changes 

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000 

Repeatability rate: 
# correspondences 
# possible correspondences 



FAST Feature Detector 
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• Considers a circle of 16 pixels around the corner candidate p 
• ≥ 12 contiguous pixels brighter/darker than                    threshold 
• Rapid rejection by testing 1,9,5 then 13 

• Only if at least 3 of those are brighter/darker than            , the full 
segment test is applied 

Slide credit: E. Rosten, 2006 



FAST: Weaknesses 

 Corners are clustered together: 
•Use non-maximal suppression: 

 
 
 

   where  
 High speed test does not generalize well for  
 Choice of high speed test is not optimal 
 Knowledge from the first 4 tests is discarded 
 Multiple features are detected adjacent to one another 

 
65 Slide credit: E. Rosten, 2006 



FAST: running times 

66 Slide credit: E. Rosten, 2006 



Models of Image Change 

 Geometry 
•Rotation 

 
• Similarity (rotation + uniform scale) 

 
 

•Affine (scale dependent on direction) 
valid for: orthographic camera, locally planar object 

 
 

 Photometry 
•Affine intensity change (I → a I + b) 



Scale Invariant Detection 

 Consider regions (e.g. circles) of different sizes 
around a point 

 Regions of corresponding sizes will look the 
same in both images 



Scale Invariant Detection 

 The problem: how do we choose corresponding 
circles independently in each image? 



Scale Invariant Detection 
 Solution: 

•Design a function on the region (circle), 
which is “scale covariant” (the same for 
corresponding regions, even if they are at 
different scales) 
 
 

scale = 1/2 

– For a point in one image, we can consider 
it as a function of region size (circle 
radius)  
 

f 

region size 

Image 1 f 

region size 

Image 2 



Scale Invariant Detection 
 Common approach: 

scale = 1/2 
f 

region size 

Image 1 f 

region size 

Image 2 

• Take a local maximum of  some function 
• Observation: region size, for which the 

maximum is achieved, should be invariant  
to image scale. 

s1 s2 

Important: this scale invariant region size is found in 
each image independently!  



Scale Invariant Detection 

 A “good” function for scale detection: 
has one stable sharp peak 

f 

region size 

bad 
f 

region size 

Good, but not unique 

f 

region size 

Good ! 

• For usual images: a good function would be a one 
which responds to contrast (sharp local intensity 
change) 

? 



Scale Invariant Detection 

 Functions for determining scale 

2 2

21 2
2

( , , )
x y

G x y e σ
πσ

σ
+

−
=

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

Kernel Imagef = ∗

Kernels: 

where Gaussian 

(Laplacian) 

(Difference of Gaussians) 
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• Scale invariant detectors, find local extrema (both in space and scale) of 
Laplacian and determinant of Hessian response in gaussian scalespace.  

Scale invariant detectors 

),( σIf

σ 

σ2 

σ3 

σ4 

σ5 

list of (x, y, σ) 

Faster detection? 
Scalespace pyramid, GPU implementation 
Approximation of Laplacian by Difference of 
Gaussians 

Approximation by box filters and use of 
integral images 
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Automatic Scale Selection 
 Gaussian scalespace, “stack of gradually smoothed versions” of original image 
 Response of Laplacian and the determinant of  the Hessian on Gaussian blobs 

with standard deviations 8,16,24 and 32 in red x points of Gaussian 
scalespace 

 



Scale Invariant Detectors 

Harris-Laplacian1 
Find local maximum of: 
• Harris corner detector in space 

(image coordinates) 
• Laplacian in scale 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004 

scale 

x 

y 

← Harris → 

←
 L

ap
la

cia
n 

→
 

Laplacian-Laplacian = 
“SIFT” (Lowe)2 
Find local maximum of: 
• Difference of Gaussians in 

space and scale 

scale 

x 

y 

← DoG → 

←
 D

oG
 →

 

Other options: Hessian, … 
 Harris does not work well for scale selection 



Scale Invariant Detectors 

 Experimental evaluation of detectors  
w.r.t. scale change 

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 

Repeatability rate: 
# correspondences 
# possible correspondences 



Affine Invariant Detection 

• Above we considered: 
Similarity transform (rotation + uniform scale) 

• Now we go on to: 
Affine transform (rotation + non-uniform scale) 



Affine Invariant Detection 
 Take a local intensity extremum as initial point 
 Go along every ray starting from this point and stop 

when extremum of function  f  is reached 

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000. 

0

1
0

( )
( )

( )
t

o
t

I t I
f t

I t I dt

−
=

−∫

f 

points along the ray 

• We will obtain approximately corresponding regions 

Remark: we search for scale 
in every direction 



Affine Invariant Detection 

 The regions found may not exactly correspond, so we 
approximate them with ellipses 

• Geometric Moments:  

2

( , )p q
pqm x y f x y dxdy= ∫



Fact: moments mpq uniquely 
determine the function f 

Taking  f  to be the characteristic function of a 
region (1 inside, 0 outside), moments of orders up to 
2 allow to approximate the region by an ellipse 

This ellipse will have the same moments of 
orders up to 2 as the original region 



Affine Invariant Detection 

• Covariance matrix of region points defines an ellipse: 

Ellipses, computed for corresponding 
regions, also correspond! 



Affine Invariant Detection 
 Algorithm summary (detection of affine invariant region): 

• Start from a local intensity extremum point 
• Go in every direction until the point of extremum of 

some function  f 
• Curve connecting the points is the region boundary 
• Compute geometric moments of orders up to 2 for this 

region 
• Replace the region with ellipse 

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000. 



Harris/Hessian Affine Detector 

1. Detect initial region with Harris or Hessian detector and 
select the scale 

2. Estimate the shape with the second moment matrix 
3. Normalize the affine region to the circular one 
4. Go to step 2 if the eigenvalues of the second moment matrix 

for the new point are not equal 



  
The Maximally Stable Extremal Regions 
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 Consecutive image thresholding by all thresholds 
 Maintain list of Connected Components 
 Regions = Connected Components with stable area (or some 

other property) over multiple thresholds selected 
 

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of CMP, 2001. 

video 



 
The Maximally Stable Extremal Regions 
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video 



 
MSER Stability 

86 
Matas, Chum, Urban, Pajdla: “Robust wide baseline stereo from maximally stable extremal regions”. 
BMVC2002 

Properties: 
Covariant with continuous deformations of images 
Invariant to affine transformation of pixel intensities 
Enumerated in O(n log log n), real-time computation 
 

MSER regions (in green). The regions ‘follow’ the object (video1, video2). 



Descriptors of Local Invariant 
Features 



Descriptors Invariant to Rotation 

 Image moments in polar coordinates 

( , )k i l
klm r e I r drdθ θ θ−= ∫∫

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Res. Report of CMP, 2003 

Rotation in polar coordinates is translation of the angle: 
  θ → θ + θ 0 
This transformation changes only the phase of the moments, 
but not their magnitude 

klmRotation invariant descriptor 
consists of magnitudes of moments: 

Matching is done by comparing vectors [|mkl|]k,l 



Descriptors Invariant to Rotation 

• Find local orientation 

Dominant direction of gradient 

• Compute image derivatives relative to this 
orientation 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004 



Descriptors Invariant to Scale 

 Use the scale determined by detector to compute 
descriptor in a normalized frame 

For example: 
• moments integrated over an adapted window 
• derivatives adapted to scale: sIx 



Affine Invariant Descriptors 

 Affine invariant color moments 

( , ) ( , ) ( , )abc p q a b c
pq

region

m x y R x y G x y B x y dxdy= ∫

F.Mindru et.al. “Recognizing Color Patterns Irrespective of Viewpoint and Illumination”. CVPR99 

• Different combinations of these 
moments are fully affine invariant 

• Also invariant to affine transformation of intensity 
I → a I + b 



Affine Invariant Descriptors 
• Find affine normalized frame 

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Res. Report of CMP, 2003 

A 

A1 A2 

rotation 

• Compute rotational invariant descriptor in this 
normalized frame 
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    Stability of LAFs: concavity, curvature max 1, curvature 
max 2 
Obdržálek and Matas: “Object recognition using local affine frames on distinguished regions”. BMVC02 
Obdržálek and Matas: “Sub linear Indexing for Large Scale Object Recognition”  BMVC 2005 

Step 1: Find MSERs (maximaly stable extremal regions) 
Step 2: Construct Local Affine Frames (LAFs) (local coordinate frames) 
Step 3: Geometrically normalize some measurement region (MR) expressed in 

LAF coordinates 
All measurements in the nomalised frame are Invariants! 

Local Affine Frames 



Affine-Covariant Constructions: Taxonomy 

 Derived from region outer boundary 
• Region area (1 constraint) 
• Center of gravity (2 constraints) 
• Matrix of second moments (symmetric 2x2 matrix: 3 constraints) 

 
- Points of extremal distance to the center of gravity (2 constraints) 
- Points of extremal curvature (2 constraints) 
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Affine-Covariant Constructions: Taxonomy 

 Derived from region outer boundary (continued) 
• Concavities (4 constraints for 2 tangent points) 

- Farthest point on region contour/concavity (2 constraints) 

96 



Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + curvature minima 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + curvature maxima 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + tangent points of a concavity 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• tangent points + farthest point of the region 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• tangent points + farthest point of the concavity 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• tangent points + center of gravity of the concavity 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + center of gravity of a concavity 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + direction of a bitangent 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity of a concavity + covariance matrix of the concavity + the 

direction of the bitangent 
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Febru

  
 

CVWW 2005 



Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + the direction of a linear segment of the 

contour 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + the direction to an inflection point 
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Constructions of Local Affine Frames 

 Combinations of constructions used to form the local affine 
frames 
• center of gravity + covariance matrix + the direction given by the third-order 

moments of the region 

110 



Common Structure of “Local Feature” Algorithms 
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1. Detect affine- (or similarity-) covariant regions 
(=distinguished regions) = local features 
Yields regions (connected set of pixels)  that are detectable 
with high repeatability  over a large range of conditions. 

2. Description: Invariants or Representation in Canonical 
Frames 
Representation of local appearance in a Measurement Region 
(MR).  Size of MR has to be chosen as a compromise between 
discriminability vs. robustness to detector imprecision and 
image noise. 

3. Indexing 
For fast (sub-linear) retrieval of potential matches 

4. Verification of local matches 
 

5. Verification of global geometric arrangement 
Confirms or rejects a candidate match 



D. Lowe, Object recognition from local scale-invariant 
features, ICCV, 1999          2000 citations 
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Detector: 
• Scale-space peaks of Difference-of-Gaussians filter 

response (Lindeberg 1995 ) 
• Similarity frame from modes of gradient 

histogram 
SIFT Descriptor: 
• Local histograms of gradient orientation 
• Allows for small misalignments 

=> robust to non-similarity transforms 
Indexing : 
• kD-tree structure 
Matching: 
• test on Euclidean distance of 1st and 2nd  match 
Verification: 
• Hough transform based clustering of 

correspondences with similar transformations 
 

Fast, efficient implementation, real-time recognition 
D. G. Lowe: “Distinctive image 
features from scale-invariant 
keypoints”. IJCV, 2004. 



Scale space processed one octave at a time 



Sub-pixel/ Sub-level Keypoint Localization 

 Detect maxima and minima of 
difference-of-Gaussian in scale space 

 Fit a quadratic to surrounding values 
for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 2002) 

 Taylor expansion around point: 
 
 
 

 Offset of extremum (use finite 
differences for derivatives): 
 

Blur 

Resample

Subtract



Building a Similarity Frame(s)   (my terminology) 

Select canonical orientation(s) 
 Compute a histogram of local 

gradient directions computed at the 
selected scale 

 Assign canonical orientation(s) at 
peak(s) of smoothed histogram 

 (x, y, scale) + orientation defines a 
local similarity frame; equivalent to 
detecting 2 distinguished points 

Note: if orientation of the object 
(image) is known, it may replace this 
construction  

0 2π



SIFT Descriptor 
 A  4x4 histogram lattice of orientation histograms 
 Orientations quantized (with interpolation) into 8 bins 
   Each bin contains a weighted sum of the norms of the image   

gradients  around its center, with complex normalization 



SIFT  Descriptor  

SIFT descriptor can be viewed as a 3–D histogram in which 
two dimensions correspond to image spatial dimensions and 
the additional dimension to the image gradient direction 
(normally discretised into 8 bins) 



SIFT – Scale Invariant Feature Transform1 

 Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and to 
moderate affine transformations 

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004 
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003 

Scale = 2.5 
Rotation = 450 



SIFT invariances 

 Based on gradient orientations, which are robust to illumination 
changes 

 Spatial binning gives tolerance to small shifts in location and 
scale, affine change. 

 Explicit orientation normalization 
 Photometric normalization by making all vectors unit norm 
 Orientation histogram gives robustness to small local 

deformations 
 
 



SIFT Descriptor 

 By far the most commonly used distinguished region descriptor: 
• fast 
• compact 
•works for a broad class of scenes 
• source code available 

 large number of ad hoc parameters ) Enormous  follow up 
literature on both “improvements” and improvements [HoG, 
Daisy, Cogain] 
•GLOH, HoG:  different grid, not 4x4, not necessarily a square 
•Daisy: many parameters optimized 



Learning Local Image Descriptors 

Courtesy of Simon A.J.Winder, Matthew Brown, Microsoft Research, Redmont, USA 



DAISY local image descriptor 

I. Histograms at every pixel location are computed    
 
 

               : histogram at location (u, v) 
               : Gaussian convolved orientation maps 
 
II. Histograms are normalized to unit norm 
III. Local image descriptor is computed as   



DAISY v. SIFT: computational complexity 

 Convolution is time-efficient for separable kernels like Gaussian 
 

 Convolution maps with larger Gaussian kernel can be built upon 
convolution maps with smaller Gaussian kernel: 



Results 



 



 



slide credit: Sara Arasteh et al.  

Local Binary Pattern (LBP) Descriptor 

Circularly symmetric neighbor sets (P: 
angular resolution, R: spatial  

resolution) 

The primitive LBP (P,R)  number that characterizes the spatial 
structure of the local image texture is defined as: 

where , 

LBP values in a 3 x 3 
block 
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The LBP descriptor is invariant to any monotonic transformation of image 



Rotation Invariant LBP … 

 In order to remove the effect of rotation and assign a 
unique identifier to each, Rotation Invariant Local 
Binary Pattern is defined as: 

    where ROR(x,i) performs a circular bit-wise right shift on P-bit 
number x , i time.  

 

 36 unique rotation invariant binary patterns can occur 
in the circularly symmetric neighbor set of LBP8,1. 

{ }1,...,1,0),(min ,, −== PiiLBPRORLBP RP
ri

RP

slide credit: Sara Arasteh et al.  



Rotation Invariant LBP … 

• This figure shows 36 unique rotation invariant binary 
patterns. 

slide credit: Sara Arasteh et al.  



Rotation Invariant LBP … 

 Rotation Invariant LBP patterns include: 
• Uniform patterns 

- At most two transitions from 0 to 1  
• Non-uniform patterns 

- More than two transitions from 0 to 1  

Samples of non-uniform 
patterns 

Samples of uniform 
patterns 

slide credit: Sara Arasteh et al.  



Uniform LBP (ULBP) 

 It is observed that the uniform patterns are the majority, 
sometimes over 90 percent, of all 3 x 3 neighborhood pixels 
present in the observed textures. 

 

 They function as templates for microstructures such as : 
• Bright spot (0) 
• Flat area or dark spot (8) 
• Edges of varying positive and negative curvature (1-7) 

Uniform Local Binary Patterns  

slide credit: Sara Arasteh et al.  

LBPs are popular, numerous modifications exist 
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Matching Descriptors 



Nearest-neighbor matching 

 Solve following problem for all feature vectors, x: 
 
 

 Nearest-neighbor matching is the major computational 
bottleneck 
• Linear search performs dn2 operations for n features and d 

dimensions 
•No exact methods are faster than linear search for d>10 (?) 

•Approximate methods can be much faster, but at the cost of 
missing some correct matches.  Failure rate gets worse for 
large datasets. 
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Slide credit: Anna Atramentov 

K-d tree construction 

Simple 2D example 
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K-d tree query 

Slide credit: Anna Atramentov 



Approximate k-d tree matching  

Key idea:  
n Search k-d tree bins in 

order of distance from 
query 

n Requires use of a priority 
queue 

n Copes better with high 
dimensionality 

n Many different varieties 
n Ball tree, Spill tree 

etc. 



Feature space outlier rejection 

• How can we tell which putative matches are more reliable? 
• Heuristic: compare distance of nearest neighbor to that of 

second nearest neighbor 
• Ratio will be high for features that are not distinctive 
• Threshold of 0.8 provides good separation 

 

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


 MSER-LAF-Tree, Obdrzalek and Matas, 2005  180 citations 
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Matas, Chum, Urban, Pajdla: “Robust wide baseline stereo from maximally stable extremal regions”. BMVC2002 
Obdržálek and Matas: “Object recognition using local affine frames on distinguished regions”. BMVC02 
Obdržálek and Matas: “Sub-linear Indexing for Large Scale Object Recognition”, BMVC 2005 
 
 

1. Detect Distinguished Regions          
Maximally Stable Extremal Regions 
(MSERs) 

2. Construct Local Affine Frames    (LAFs)           
(local coordinate frames) 

3. Geometrically normalize some 
measurement region (MR) expressed in LAF 
coordinates 

4. Photometrically normalize  measurements 
inside MR, compute some derived 
description  

5. Establish local (tentative) correspondences 
by the decision-measurement tree 
method  

6. Verify global geometry                             
(e.g. by RANSAC, geometric hashing, 
Hough transform.) 



MSER-LAF-Tree, Obdrzalek and Matas, 2005 
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4. Photometrically normalize  measurements inside MR, 
compute some derived description 

[video-1, video-2] 



D. Nistér, H. Stewénius. Scalable Recognition with a 
Vocabulary Tree, CVPR 2006           300 citations 
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However: 
• Recognition of images, not objects 
• Some of the object have no 
chance of being recognized via 
MSER+SIFT on different 
background  



Correspondence Verification 

 From image to local invariant descriptors 
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image distinguished 
regions 

normalization 

LAFs descriptors 

descriptors 1 

descriptors 2 

I1 

I2 

Matching 

Tentative  
correspondences 

Correspondence 
verification 

RANSAC 

Filtered 
correspondences 

Final correspondences 
(+ model) 

 Correspondence between two images 



Correspondence Verification 

 Difficult matching problems: 
•Rich 3D structure with many occlusions 
• Small overlap 
• Image quality and noise 
• (Repetitive patterns) 
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measurement region too large measurement region too small 

? 



Correspondence Verification 

 Idea: “Look at both images simultaneously” 
=> Sequential Correspondence Verification by Cosegmentaion  

[Čech J, Matas J, Perďoch M.  IEEE TPAMI, 2010] 
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 Input: fixed number of tentative 
correspondences 

 Output: Statistical 
Correspondence quality 
 

 A cosegmentaion process starts 
from LAF-correspondences to 
grow corresponding regions 

 Various statistics are collected 
 (Learned) Classifier to decide 

corresponding/non-correspond. 



Correspondence Verification 

 Learning a (sequential) classifier 
•Training set from WBS images 
• 16k LAF correspondences 

(40 % correct) 
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SIFT-ratio (only) 10 growing steps 1000 growing steps 100 growing steps 
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Correspondence Verification: Experiments 
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Correspondence Verification: Summary 
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 high discriminability  
• significantly outperforms a standard selection process based SIFT-ratio 

 very fast (0.5 sec / 1000 correspondences) 
 always applicable before RANSAC 
 the process generating tentative correspondences can be much 

more permissive 
• 99% of outliers not a problem, correct correspondences recovered 
• higher number of correct correspondences 



Local Feature Methods: Analysis 

164 

 
1. Methods work well for  a non-negligible class of  objects, that 

are locally approximately planar, compact and have surface 
markings or where 3D effects are negligible (e.g. stitching 
photographs taken from a similar viewpoint) 
 

2. They are correspondence based methods 
• insensitive to occlusion, background clutter 
• very fast 
• handles very large dataset 
• model-building is automatic 
 

3. The space of problems and objects where it does not 
work is HUGE         (examples are all around us). 
 



Challenge: Elongated, Wiry  and Flexible 
Objects  
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In this case: “no recognition without segmentation”? 

Where Local Features Fail: 



Camouflage: No distinguished regions!  
Very few animals can afford to be distinguishable …. 
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Where Local Features Fail: 
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Thank you for your attention. 
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