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What is RANSAC? 

● RANSAC = RANdom SAmple Consensus 

● M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for 
model fitting with applications to image analysis and automated cartography. 
CACM, 24(6):381–395, June 1981. 

 

● Example: Finding a line in 2D data. 

– Not all input points are on a line. 

– Finding a line also implicitly 

   divides points to inliers (=those  

   on a line) and outliers (=those  

   not on a line).   
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Line Fitting: Line Parametrization 
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Line Fitting: Line Parametrization and Residuals 

12/03/2018  4/93 J. Matas, MPV Course 



Line Fitting, Inliers Only: Easy! 

Data points 

 

 

Find the line which 

“best fits” these points.  
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Line Fitting, Inliers Only: Easy! 

Data points 

 

 

Find the line which 
“best fits” the points.  

 

As optimization: Find best 
line with parameters     as 

 

 

 

For  

this is easily solvable by 
Singular Value 
Decomposition (SVD). 
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General Case with Outliers, Example 1 

Least squares fit 

Example 1 
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General Case with Outliers, Example 2 

Least squares fit 

Example 2 
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● L set of data points 

Find: 

 

 

● No outliers: 

● Use instead: 

 

● Such cost function is non-convex 

● How to find optimal line parameters? 

   

 

 

 

 

 

General Case with Outliers, Robust Cost Function 
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Random Sample Consensus - RANSAC 

Select sample of m points  
at random (here m=2) 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 

 
Evaluate the error (residual) 
for each data point 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
 
Evaluate the error (residual) 
for each data point 
 
Select data that support  
the current hypothesis 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
 
Evaluate the error (residual) 
for each data point 
 
Select data that support  
the current hypothesis 
 
Repeat sampling 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
 
Evaluate the error (residual) 
for each data point 
 
Select data that support  
the current hypothesis 
 
Repeat sampling 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
 
Evaluate the error (residual) 
for each data point 
 
Select data that support  
the current hypothesis 
 
Repeat sampling 
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RANSAC [Fischler and Bolles 1981] 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

Cost function for 
single data point x 
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RANSAC – how many samples? 

● N   Number of points 

● Q  Number of inliers, Q = N – J*  

● m   Size of sample 

● ² = Q/N     Inlier ratio 

 

Probability of all-inlier (uncontaminated) sample:  

 

 

 

Mean time for hitting all-inliers sample is proportional to 1/P. 
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RANSAC – how many samples? 

● How about this formulation: 

– Set the number of samples k such that at least one pair of points from the 
line has been hit with probability larger than h 

– Equivalently … such that no pair of points from the line has been hit with 
probability lower than 1 - h 

● Q  Number of inliers, Q = N – J*  

● m   Size of sample 

● ² = Q/N     Inlier ratio 

Probability of all-inlier (uncontaminated) sample:  

 

 

We require:  

  P(bad pair k times) = (1-P(inlier sample))k  < 1 – h 

Finding the solution with confidence h therefore requires at least: 

                              k ≥ log(1 – h) / log (1 – ²m)  
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RANSAC termination - How many samples? 

computed for η = 0.95 

Inlier ratio ² = Q/N  [%] 
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RANSAC Notes 

Pros: 

● extremely popular (>17000 citations in Google Scholar) 

● used in many applications  

● percentage of inliers not needed and not limited 

● a probabilistic guarantee for the solution 

● mild assumptions: ¾ known 

 

Cons: 

● slow if inlier ratio low 

● It was observed experimentally that RANSAC takes several times 
longer than theoretically expected. This is due to noise –  
not every all-inlier sample generates a good hypothesis: 
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RANSAC Issues, Variants 

● Cost function:        MLESAC, Huber loss, … 
● Outlier threshold s: Least median of Squares, MINPRAN, … 

 
● Correctness of the results. Degeneracy. 
     Solution: DegenSAC. 
 
● Accuracy (parameters are estimated from minimal samples).  
 Solution: Locally Optimized RANSAC 
 
● Speed: Running time grows with 
1. number of data points, 
2. number of iterations (polynomial in the inlier ratio) 
  Addressing the problem: 
    RANSAC with SPRT (WaldSAC),  PROSAC 
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Locally Optimized RANSAC (LO-RANSAC): Problem Intro 

Data: 200 points 
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LO-RANSAC: Problem Introduction 

Data: 200 points 

Model, 100 inliers 

12/03/2018  24/93 J. Matas, MPV Course 



LO-RANSAC: Problem Introduction 

For simplicity, consider only points belonging to the model (100 points)  
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LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

This sample: 
 YES. 100 inliers. 

For simplicity, consider only points belonging to the model (100 points)  
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LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

This sample: 
 NO. 45 inliers. 

For simplicity, consider only points belonging to the model (100 points)  
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LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

The distribution of the number of inliers 
obtained while randomly sampling points pairs 

For simplicity, consider only points belonging to model (100 points)  
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LO-RANSAC 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

12/03/2018 

Cost function for 
single data point x 
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LO-RANSAC 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

12/03/2018 

9: gone 

Cost function for 
single data point x 
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LO-RANSAC: Example 

Init 
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LO-RANSAC: Example 

Init 

Iteration 1 
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LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 
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LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 

... 

Iteration 7 
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LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 

... 

Iteration 7 

... 

Itration 15 
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LO-RANSAC: Example 

Comparison with model (100 inliers): 
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Locally Optimized RANSAC 

Chum, Matas, Obdržálek: Enhancing RANSAC by Generalized Model Optimization, 

                                              ACCV 2004  

Estimation of (approximate) models with lower complexity (less data 

points in the sample) followed by LO step estimating the desired model 

speeds the estimation up significantly. 

The estimation of epipolar geometry is up  to 10000 times 

faster when using 3 region-to-region correspondences rather 

than 7 point-to-point correspondences. 

Simultaneous estimation of radial distortion 

and epipolar geometry with LO is superior to 

the state-of the art in both speed a precision of 

the model. 

Fish-eye images by Braňo Mičušík 



LO-RANSAC: Problem Summary 

It was observed experimentally that RANSAC takes several times 
longer than theoretically expected. This is due to the noise –  
not every all-inlier sample generates a good hypothesis. 

 

By applying local optimization (LO) to the-best-so-far hypotheses: 

(i) a near perfect agreement with theoretical performance  

(ii) lower sensitivity to noise and poor conditioning. 

 

The LO is shown to be executed so rarely, log(iter) times,  that it 
has minimal impact on the execution time. 

 

 

 

 

Chum, Matas, Kittler: Locally Optimized RANSAC, DAGM 2003  
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                                      WaldSAC - Optimal Randomised RANSAC 39 

RANSAC – Time Complexity 

Repeat k times  (k is a function of h, Q, N) 

 1. Hypothesis generation 

•  Select a sample of m data points 

•  Calculate parameters of the model(s) 

 2. Model verification 

•  Find the support (consensus set) by 

•   verifying all N data points 

Total running time: 



                                      WaldSAC - Optimal Randomised RANSAC 40 

Randomised RANSAC [Matas, Chum 02] 

Repeat k/(1-a) times 

 1. Hypothesis generation 

 2. Model pre-verification Td,d test 

•  Verify d << N data points, reject 

•  the model if not all d data points 

•  are consistent with the model 

 3. Model verification 

    Verify the rest of the data points 

V - average number of data points verified 

a - probability that a good model is rejected by Td,d test 
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Optimal Randomised Strategy 

where  

Hg - hypothesis of a `good` model (≈ from an uncontaminated sample)  

Hb - hypothesis of a `bad` model, (≈ from a contaminated sample) 

 - probability of a data point being consistent with an arbitrary model 

 

Optimal (the fastest) test that ensures with probability a that that Hg is 

not incorrectly rejected is  the  Sequential probability ratio test (SPRT) 

[Wald47]   

Model Verification is Sequential Decision Making 
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SPRT  [simplified from Wald 47] 

Two important properties of SPRT: 

1. probability of rejecting a \good\ model a < 1/A 

2. average number of verifications V=C log(A)    

Compute the likelihood ratio 
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SPRT properties 

1. Probability of rejecting a \good\ model a=1/A 
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 WaldSAC  

Repeat k/(1-1/A) times 

 1. Hypothesis generation 

 2. Model verification, use SPRT 

In sequential statistical decision problem decision errors are traded off for time. 

These are two incomparable quantities, hence the constrained optimization.  

 

In WaldSAC, decision errors cost time (more samples) and there is a single  

minimised quantity, time t(A), a function of a single parameter A. 
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Optimal test (optimal A) given e and  

Optimal A* found by solving 

Optimal A* 
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SPRT 

bad model good model 

decision 
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Exp. 1: Wide-baseline matching 
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Exp. 2 Narrow-baseline stereo 
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Randomised Verification in RANSAC: Conclusions  

 The same  confidence  h  in the solution reached faster (data dependent, ¼ 

10x)  

 No change in the character of the algorithm, it was randomised anyway. 

 Optimal strategy derived using Wald`s theory for known e and . 

 Results with e and   estimated during the course of RANSAC are not 

significantly different. Performance of SPRT is insensitive to errors in the 

estimate. 

•   can be learnt, an initial estimate can be obtained by geometric  

consideration 

• Lower bound on e is given by the best-so-far support 
• Note that the properties of WaldSAC are quite different from preemptive 

RANSAC! 
 



PROSAC – PROgressive SAmple Consensus 

● Not all correspondences are created equally 

● Some are better than others 

● Sample from the best candidates first 

1 2 3 4 5 … N-2 N-1 N 

Sample from here 



PROSAC Samples 

l-1 l l+1 l+2 … … 

Draw Tl samples from (1 … l)  

Draw Tl+1 samples from (1 … l+1) 

Samples from (1 … l)  that are not from (1 … l+1) contain  l+1 

Draw Tl+1 - Tl samples of size m-1 and add l+1 



Degenerate Configurations 

Chum, Werner, Matas: Epipolar Geometry Estimation unaffected by dominant plane, 

                                         CVPR 2005  

The presence of degenerate configuration causes RANSAC to fail in 

estimating a correct model, instead a model consistent with the 

degenerate configuration and some outliers is found. 

The DEGENSAC algorithm handles 

scenes with: 

• all points in a single plane 

• majority of the points in a single 

plane and the rest off the plane 

• no dominant plane present 

 

No a-priori knowledge of the type of 

the scene is required 


