
Combinatorial optimization

Lab No. 11

Scheduling and the Branch and Bound algorithm

Industrial Informatics Research Center
http://industrialinformatics.cz/

Abstract

The topic of this seminar is scheduling of tasks on resources. We focus on 1|rj , d̃j |Cmax

problem, which will be solved by Bratley’s algorithm.

1 Scheduling

Scheduling, generally speaking, deals with assigning tasks to resources in time. Let’s have a set of
tasks, a set of resources (processors) on which these tasks can be executed, a set of constraints and
an optimality criterion. Each task, typically denoted as Ti, is characterized by the time needed
by resource to process it - processing time pi. Moreover, task Ti can be specified by the following
parameters:

• The time at which task Ti is ready for processing - release time ri,

• A time limit by which task Ti should be completed - due date di,

• A time limit by which task Ti must be completed - deadline d̃i,

α|β|γ notation, so called Graham-Blazewicz, is commonly used to describe the scheduling problems
[1, 2]:

• α contains the characteristics of resources: the number (1-∞) and type (P -parallel identical,
Q-parallel uniform...)

• β specifies the characteristics of tasks and additional resources: rj - each task has release
time, pmtn - preemption is allowed...

• γ denotes an optimality criterion: Cmax - minimise schedule length, Lmax - minimise max.
lateness,

∑
Uj - minimise the number of tasks exceeding their due date...

For example, P2||Cmax is a formal notation of the scheduling problem where two parallel identical
processors are available and objective is to minimise the schedule length (even this “simple”
problem is NP-hard). The output of the scheduling is an assignment of tasks to resources in time
and it is mostly depicted as a Gantt chart [1] where an independent variable is a discrete time
(x-axis) and dependent variable is utilisation of resources/processors (y-axis).

2 Branch and Bound algorithm

The Branch and Bound (B&B) algorithm is used to solve discrete optimization problems [1]. This
algorithm gradually constructs a tree of partial solutions which are expanded further (branch). If
B&B finds an infeasible partial solution or a partial solution such that it is worse than the best

1

http://industrialinformatics.cz/

found solution, the node with this partial solution is not expanded (bound). Each node of the
search tree corresponds to one partial solution and the leaves represent a complete solution. The
subtree can be eliminated if:

a) It does not contain any feasible solution.

b) It does not contain an optimal solution.

Basically, the first case implies the second case. However, it can be appropriate to consider them
separately for the algorithm construction.
Generally there are two main methods of the solution space searching:

a) Breadth-first search.

b) Depth-first search.

In our case - the application of the Branch and Bound algorithm in the scheduling, it is advanta-
geous to use the depth-first search since each obtained feasible solution increases the probability
of eliminating other parts of the tree without their complete search.

3 The Bratley’s algorithm

An example of the use of the Branch and Bound algorithm in the scheduling is a problem formally
denoted as 1|rj , d̃j |Cmax. It is scheduling on a single processor while each task has a specified
release time and deadline, i.e. a time window in which the task has to be processed. The objective
is to minimise the schedule length. This problem also belongs to the NP-hard problems, so unless
P = NP there is no hope of finding deterministic exact algorithm that runs in polynomial time.
The problem can be solved, for example, by Bratley’s algorithm [1] which is based on the branch
and bound algorithm. The goal is to search the solution space in the form of a tree where each
end-node (leaf) represents one solution of the problem. Other nodes are partial solutions consisting
of some tasks which are ordered. The tree can be pruned on conditions that:

1) Some tasks exceed their deadline.

2) The estimate of the result of the best possible solution in the subtree is worse than the best
achieved result so far.

3) A partial solution is optimal.

Ad 1) Let’s have node n. If there is no option to add arbitrary task at node n without exceeding
its deadline then the partial schedule will never result in the feasible solution. Therefore, all
descendants of node n can be eliminated. This follows from the fact that if any of these tasks
exceeds its deadline at node n, it will certainly exceed its deadline if scheduled later.
Ad 2) The upper bound of the schedule length has to be calculated at the beginning, e.g. UB =
max d̃j for ∀j. At each node, the estimate of the best possible final solution (lower bound) based
on the current partial solution can be determined as LB = max {min∀j∈V {rj}, c} +

∑
∀j∈V pj ,

where c is the current schedule length (i.e. the completion time of the last task) and V is the
set of tasks being not scheduled yet. If LB ≥ UB than the particular part of the tree can be
eliminated because the further branching of the current node cannot find the optimal solution.
Ad 3) If the release time property is satisfied then the partial schedule is optimal and only the
current node is expanded further. Going back in the tree of partial solutions cannot return a
better schedule. Release time property says that if the length of the partial solution is less than
or equal to the lowest value of the release time of hitherto unscheduled tasks, the partial solution
is optimal.

An input example of the problem 1|rj , d̃j |Cmax is on the left side in Figure 1. It is a problem
with four tasks having their own processing time, release time and deadline. The problem is solved
by Bratley’s algorithm based on the branch and bound algorithm. The final solution in the form

2

of a Gantt chart is on the right side in Figure 1. The search tree has 4! = 24 leaves. If input has
10 tasks the number of combinations of ordered tasks (i.e. leaves of the tree) will be 3628800 and
in the case of 15 tasks it will be much more - 1.3 · 1012. So it is clearly seen that the number of
possible combinations is already very high for relatively small instances and searching the entire
solution space is completely insoluble.

Input:
p=(2,1,2,2)
r=(4,1,1,0)
d̃=(7,5,6,4)

0 1 2 3 4 5 6 7 8

Processor 1

t

T
1

T
2

T
4

T
3

Figure 1: An example of the problem 1|rj , d̃j |Cmax and its solution

In this instance, we will construct a search tree as follows:

1) Create four branches from the root node where each of the resulting node corresponds to
the assignment of one task to the schedule at the first position.

2) Branch the previous nodes to three new nodes because one position is already assigned.

3) Branch the previous nodes to two new nodes.

4) At the last step, there is only one branch from previous nodes to the leaves of the tree.

The number of leaves is 24 (see above) and the tree has 5 levels including the root node. The
search tree which was pruned based on the above mentioned conditions is depicted in Figure 2.
The result in the form of a Gantt chart is on the right side in Figure 1.

3

root

(T1)/6 (T2)/2 (T3)/3

(T4)/2

(T4 T1)/6 (T4 T2)/3

(T4 T2 T3)/5

(T4 T2 T3 T1)/7

(T4 T2 T1)/6

Condition 1 Condition 2 Condition 1

Condition 1

Condition 1

Optimum

Figure 2: The pruned search tree

A seminar assignment: Let’s have this input: p=(3,4,1,2), r=(5,2,1,0), d̃=(10,7,4,3). Solve
this problem graphically (as shown in Figure 2) using Bratley’s algorithm.

A homework assignment: Implement Bratley’s algorithm. The input is given by three
vectors — processing time p, release time r and deadline d̃. The output assignment of tasks
to start times in an optimal schedule minimizing the makespan Cmax. Upload your source
codes to the Upload System.

Hint: To pass the evaluation successfully, you need to implement all three elimination rules,
as given above. Otherwise, the running time of your algorithm will be damn too high!

3.1 Input and Output Format

Your program will be called with two arguments: the first one is absolute path to input file and the
second one is the absolute path to output file (the output file has to be created by your program).

The input file has following format. The first line of the input file consist of a single natural
number n giving the number of tasks. Each of the following n lines consists of three positive
integers separated by space giving processing time pi, release time ri and deadline d̃i, in this
order.

If the input instance is feasible, then the output file consists of n lines. i-th line consists of the
single non-negative integer, denoting the start time of task Ti. If the input instance is infeasible,
then the output file consists of the single line containing -1.

4

Example 1

Input:

4

2 4 7

1 1 5

2 1 6

2 0 4

Output:

5

2

3

0

Example 2

Input:

3

2 4 7

1 1 2

2 1 2

Output:

-1

References

[1] J. Blazevicz, Scheduling Computer and Manufacturing Processes. Springer, second ed., 2001.

[2] R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Optimization and ap-
proximation in deterministic sequencing and scheduling theory: a survey,” Annals of Discrete
Mathematics, vol. 5, pp. 287–326, 1979.

5

	Scheduling
	Branch and Bound algorithm
	The Bratley's algorithm
	Input and Output Format

