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Brief History 
• Lambda calculus (1930s) 

– formal theory of computation older than TM 

• Lisp = List processor (1950s) 

– early practical programming language 

– second oldest higher level language after Fortran 

• ML = Meta language (1970s) 

– Lisp with types, used in compilers 

• Haskell = first name of Curry (1990s) 

– standard for functional programming research 

• Python, Scala, Java8, C++ 11, ….  3 



Why Haskell? 

• Purely functional language 

– promotes understanding the paradigm 

• Rich syntactic sugar (contrast to Lisp) 

• Most popular functional language 

• Fast prototyping of complex systems 

• Active user community 

– Haskell platform, packages, search 
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Main properties 

• Purely functional 

– besides necessary exceptions (IO) 

• Statically typed 

– types are derived and checked at compile time 

– types can be automatically inferred 

• Lazy 

– function argument evaluated only when needed 

– almost everything is initially a thunk 
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Haskell standard 

Haskell is a standardization of ideas in over a 
dozen of pre-existing lazy functional languages 

• Haskell 98 
– first stable standard 

• Haskell 2000 
– minor changes based on existing implementations 

• integration with other programming languages 

• hierarchical module names 

• pattern guards 
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Haskell implementations 

• Glasgow Haskell Compiler (GHC) 

– the leading implementation of Haskell 

– comprises a compiler and interpreter 

– written in Haskell 

– is freely available from: www.haskell.org/platform 

• Haskell User´s Gofer System (Hugs) 

– small and portable interpreter 

– Windows version with simple GUI called WinHugs  

– unmaintained 
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Starting GHCi 

$ ghci 

 

GHCi, version X: http://www.haskell.org/ghc/  :? for help 

 

Prelude>  

The interpreter can be started from the terminal 
command prompt $ by simply typing ghci: 

The GHCi prompt > means that the interpreter is now ready to 
evaluate an expression. 

8 



Basic interaction  

• REPL interaction as in scheme 

• Common infix syntax 

• Space denotes function application 

• Infix operators have priorities 
– function application is first 

– otherwise use brackets 

• Left associativity (as in lambda calculus) 

• Up arrow recalls the last entered expression 
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Lists 

The basic data structure 

[1,2,3,4,5] 

[1..] 

[1,3,…] 

Build by "cons" operator : , ended by the empty list [] 

Includes all basic functions 

take, length, reverse, ++, head, tail 

In addition, you can index by !! 
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Special commands 

Commands to the interpreter start with ":" 

• :?  for help 

• :load <module> 

• :reload 

• :quit 

Can be abbreviated to the first letter 
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Haskell scripts 

• New functions are defined within a script 

– text file comprising a sequence of definitions 

• Haskell scripts usually have a .hs suffix 

• Can by loaded by 

– ghci <filename> 

– :load <filename> 
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Defining functions 

fact1 1 = 1 

fact1 n = n * fact1 (n-1) 

 

fact2 n = product [1..n] 

 

power n 0 = 1 

power n k = n * power n (k-1) 
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Comments 

-- Comment until the end of the line 

 

{-  

    A long comment 

    over multiple 

    lines. 

-} 
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Naming requirements 

Function and argument names must begin with 
a lower-case letter.  For example: 

myFun fun1 arg_2 x’ 

By convention, list arguments usually have an s 
suffix on their name.  For example: 

xs ns nss 
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Pattern matching 

The first LHS that matches the function call is executed 

not False = True 

not True  = False 

not maps False to True, and True to False. 
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Functions can often be defined in many different ways 
using pattern matching.  For example 

True  && True  = True 

True  && False = False 

False && True  = False  

False && False = False 
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The underscore symbol _ is a wildcard pattern that 
matches any argument value. 

Pattern matching 



and True  b = b 

and False _ = False 

The following definition is more efficient, it avoids 
evaluating the second argument if the first is False: 
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and True True = True 

and _    _    = False 

Function and can be defined more compactly by 

Pattern matching 



Patterns may not repeat variables.  For example, the 
following definition gives an error: 

b && b = b 

_ && _ = False 

The order of the definitions matters 

_    && _    = False 

True && True = True 
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List patterns 

Functions on lists can be defined using x:xs patterns 

head (x:_) = x 

 

tail (_:xs) = xs 

It works similarly for other composite data types 
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x:xs patterns must be parenthesised, because 
application has priority over (:).  For example, the 
following definition gives an error: 

x:xs patterns only match non-empty lists: 

> head [] 

*** Exception: empty list 

head x:_ = x 

List patterns 
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Tuples 

(1,2) 

('a','b') 

(1,2,'c',False) 

 

Accessing the elements using pattern matching 
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first (x,_) = x 

second (_,y) = y 



Let / where 

dist1 (x1,y1) (x2,y2) = 

        let d1 = x1-x2 

            d2 = y1-y2 

        in sqrt(d1^2+d2^2) 

 

dist2 (x1,y1) (x2,y2) = sqrt(d1^2+d2^2) 

  where d1 = x1-x2 

        d2 = y1-y2  
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The layout rule 

In a sequence of definitions, each definition must begin 
in precisely the same column: 

a = 10 

 

b = 20 

 

c = 30 

a = 10 

 

 b = 20 

 

c = 30 

 a = 10 

 

b = 20 

 

 c = 30 
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The layout rule avoids the need for explicit syntax to 
indicate the grouping of definitions. 

a = b + c 

    where 

      b = 1 

      c = 2 

d = a * 2 

a = b + c 

    where 

      {b = 1; 

       c = 2} 

 d = a * 2 

implicit grouping explicit grouping 

means 
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The layout rule 

Keywords (such as  where, let, etc.) start a block 

• The first word after the keyword defines the pivot column. 

• Lines exactly on the pivot define a new entry in the block. 

• Start a line after the pivot to continue an entry from the 
previous lines. 

• Start a line before the pivot to end the block. 
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Conditional expressions 

As in most programming languages, functions can be 
defined using conditional expressions. 

abs n = if n ≥ 0 then n else -n 

Conditional expressions can be nested: 

signum n = if n < 0 then -1 else 

              if n == 0 then 0 else 1 

If must always have an else branch 
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Guarded equations 

As an alternative to conditionals, functions can also be 
defined using guarded equations.  

abs n | n ≥ 0     = n 

      | otherwise = -n 

Definitions with multiple conditions are easier to read: 

otherwise is defined in the prelude by otherwise = True 

signum n | n < 0     = -1 

         | n == 0    = 0 

         | otherwise = 1 
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Set comprehensions 

In mathematics, the comprehension notation can be 
used to construct new sets from old sets. 

{x2  |  x  {1...5}} 

The set {1,4,9,16,25} of all numbers x2  
such that x is an element of the set {1…5}. 
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List comprehensions 

In Haskell, a similar comprehension notation can be 
used to construct new lists from old lists. 

[x^2 | x  [1..5]] 

x  [1..5] is called a generator 

Comprehensions can have multiple generators 

> [(x,y) | x  [1,2,3], y  [4,5]] 

 

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)] 
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> [(x,y) | y  [4,5], x  [1,2,3]] 

 

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)] 

x  [1,2,3] is the last generator, so the value of the x component 
of each pair changes most frequently. 

Generator order 
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Changing the order of the generators changes the 
order of the elements in the final list: 

> [(x,y) | y  [4,5], x  [1,2,3]] 

 

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)] 

Multiple generators are like nested loops, with later 
generators as more deeply nested loops whose 
variables change value more frequently. 
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Dependent generators 

Later generators can depend on the variables that are 
introduced by earlier generators. 

[(x,y) | x  [1..3], y  [x..3]] 

All pairs (x,y) such that x,y are elements of the list [1..3] and y  x. 

Using a dependant generator we can define the library 
function that concatenates a list of lists: 

concat xss = [x | xs  xss, x  xs] 
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Infinite generators 
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Generators can be infinite (almost everything is lazy) 

[x^2 | x  [1..]] 

The order then matters even more 

[x^y | x  [1..], y [1,2]] 

[x^y |  y [1,2], x  [1..]] 



Guards 

List comprehensions can use guards to restrict the 
values produced by earlier generators. 

[x | x  [1..10], even x] 

The list [2,4,6,8,10] of all numbers x such that x is an element 
of the list [1..10] and x is even. 

factors n = 

   [x | x  [1..n], mod n x == 0] 

Using a guard we can define a function that maps a 
positive integer to its list of factors: 
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A prime's only factors are 1 and itself 

prime n = factors n == [1,n] 

Example: primes 

List of all primes 

[x | x  [2..], prime x] 
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Example: quicksort 

qsort [] = [] 

qsort (x:xs) = qsort [a | a <- xs, a < x] 

               ++ [x] ++ 

               qsort [a | a <- xs, a >= x] 
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Example: quicksort 

qsort []     = [] 

qsort (x:xs) = qsort smalls ++ [x] ++  

               qsort larges 

           where 

              smalls = [a | a  xs, a  x] 

              larges = [b | b  xs, b > x] 
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Summary 

• Haskell is the unified standard for FP 

– purely functional, lazy, statically typed 

• It has rich 2D syntax to write compactly 

• Functions are defined by pattern matching 
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