
Functional Programming
Lecture 8: Introduction to Haskell

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

1

Acknowledgement

Slides for next few lectures based on slides for
the book:

2

Brief History
• Lambda calculus (1930s)

– formal theory of computation older than TM

• Lisp = List processor (1950s)

– early practical programming language

– second oldest higher level language after Fortran

• ML = Meta language (1970s)

– Lisp with types, used in compilers

• Haskell = first name of Curry (1990s)

– standard for functional programming research

• Python, Scala, Java8, C++ 11, …. 3

Why Haskell?

• Purely functional language

– promotes understanding the paradigm

• Rich syntactic sugar (contrast to Lisp)

• Most popular functional language

• Fast prototyping of complex systems

• Active user community

– Haskell platform, packages, search

4

Main properties

• Purely functional

– besides necessary exceptions (IO)

• Statically typed

– types are derived and checked at compile time

– types can be automatically inferred

• Lazy

– function argument evaluated only when needed

– almost everything is initially a thunk

5

Haskell standard

Haskell is a standardization of ideas in over a
dozen of pre-existing lazy functional languages

• Haskell 98
– first stable standard

• Haskell 2000
– minor changes based on existing implementations

• integration with other programming languages

• hierarchical module names

• pattern guards

6

Haskell implementations

• Glasgow Haskell Compiler (GHC)

– the leading implementation of Haskell

– comprises a compiler and interpreter

– written in Haskell

– is freely available from: www.haskell.org/platform

• Haskell User´s Gofer System (Hugs)

– small and portable interpreter

– Windows version with simple GUI called WinHugs

– unmaintained
7

http://www.haskell.org/platform

Starting GHCi

$ ghci

GHCi, version X: http://www.haskell.org/ghc/ :? for help

Prelude>

The interpreter can be started from the terminal
command prompt $ by simply typing ghci:

The GHCi prompt > means that the interpreter is now ready to
evaluate an expression.

8

Basic interaction

• REPL interaction as in scheme

• Common infix syntax

• Space denotes function application

• Infix operators have priorities
– function application is first

– otherwise use brackets

• Left associativity (as in lambda calculus)

• Up arrow recalls the last entered expression

9

Lists

The basic data structure

[1,2,3,4,5]

[1..]

[1,3,…]

Build by "cons" operator : , ended by the empty list []

Includes all basic functions

take, length, reverse, ++, head, tail

In addition, you can index by !!

10

Special commands

Commands to the interpreter start with ":"

• :? for help

• :load <module>

• :reload

• :quit

Can be abbreviated to the first letter

11

Haskell scripts

• New functions are defined within a script

– text file comprising a sequence of definitions

• Haskell scripts usually have a .hs suffix

• Can by loaded by

– ghci <filename>

– :load <filename>

12

Defining functions

fact1 1 = 1

fact1 n = n * fact1 (n-1)

fact2 n = product [1..n]

power n 0 = 1

power n k = n * power n (k-1)

13

Comments

-- Comment until the end of the line

{-

 A long comment

 over multiple

 lines.

-}

14

Naming requirements

Function and argument names must begin with
a lower-case letter. For example:

myFun fun1 arg_2 x’

By convention, list arguments usually have an s
suffix on their name. For example:

xs ns nss

15

Pattern matching

The first LHS that matches the function call is executed

not False = True

not True = False

not maps False to True, and True to False.

16

Functions can often be defined in many different ways
using pattern matching. For example

True && True = True

True && False = False

False && True = False

False && False = False

17

The underscore symbol _ is a wildcard pattern that
matches any argument value.

Pattern matching

and True b = b

and False _ = False

The following definition is more efficient, it avoids
evaluating the second argument if the first is False:

18

and True True = True

and _ _ = False

Function and can be defined more compactly by

Pattern matching

Patterns may not repeat variables. For example, the
following definition gives an error:

b && b = b

_ && _ = False

The order of the definitions matters

_ && _ = False

True && True = True

19

Pattern matching

List patterns

Functions on lists can be defined using x:xs patterns

head (x:_) = x

tail (_:xs) = xs

It works similarly for other composite data types

20

x:xs patterns must be parenthesised, because
application has priority over (:). For example, the
following definition gives an error:

x:xs patterns only match non-empty lists:

> head []

*** Exception: empty list

head x:_ = x

List patterns

21

Tuples

(1,2)

('a','b')

(1,2,'c',False)

Accessing the elements using pattern matching

22

first (x,_) = x

second (_,y) = y

Let / where

dist1 (x1,y1) (x2,y2) =

 let d1 = x1-x2

 d2 = y1-y2

 in sqrt(d1^2+d2^2)

dist2 (x1,y1) (x2,y2) = sqrt(d1^2+d2^2)

 where d1 = x1-x2

 d2 = y1-y2

23

The layout rule

In a sequence of definitions, each definition must begin
in precisely the same column:

a = 10

b = 20

c = 30

a = 10

 b = 20

c = 30

 a = 10

b = 20

 c = 30

24

The layout rule avoids the need for explicit syntax to
indicate the grouping of definitions.

a = b + c

 where

 b = 1

 c = 2

d = a * 2

a = b + c

 where

 {b = 1;

 c = 2}

 d = a * 2

implicit grouping explicit grouping

means

25

The layout rule

The layout rule

Keywords (such as where, let, etc.) start a block

• The first word after the keyword defines the pivot column.

• Lines exactly on the pivot define a new entry in the block.

• Start a line after the pivot to continue an entry from the
previous lines.

• Start a line before the pivot to end the block.

26

Conditional expressions

As in most programming languages, functions can be
defined using conditional expressions.

abs n = if n ≥ 0 then n else -n

Conditional expressions can be nested:

signum n = if n < 0 then -1 else

 if n == 0 then 0 else 1

If must always have an else branch

27

Guarded equations

As an alternative to conditionals, functions can also be
defined using guarded equations.

abs n | n ≥ 0 = n

 | otherwise = -n

Definitions with multiple conditions are easier to read:

otherwise is defined in the prelude by otherwise = True

signum n | n < 0 = -1

 | n == 0 = 0

 | otherwise = 1

28

Set comprehensions

In mathematics, the comprehension notation can be
used to construct new sets from old sets.

{x2 | x  {1...5}}

The set {1,4,9,16,25} of all numbers x2
such that x is an element of the set {1…5}.

29

List comprehensions

In Haskell, a similar comprehension notation can be
used to construct new lists from old lists.

[x^2 | x  [1..5]]

x  [1..5] is called a generator

Comprehensions can have multiple generators

> [(x,y) | x  [1,2,3], y  [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

30

> [(x,y) | y  [4,5], x  [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x  [1,2,3] is the last generator, so the value of the x component
of each pair changes most frequently.

Generator order

31

Changing the order of the generators changes the
order of the elements in the final list:

> [(x,y) | y  [4,5], x  [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with later
generators as more deeply nested loops whose
variables change value more frequently.

32

Generator order

Dependent generators

Later generators can depend on the variables that are
introduced by earlier generators.

[(x,y) | x  [1..3], y  [x..3]]

All pairs (x,y) such that x,y are elements of the list [1..3] and y  x.

Using a dependant generator we can define the library
function that concatenates a list of lists:

concat xss = [x | xs  xss, x  xs]

33

Infinite generators

34

Generators can be infinite (almost everything is lazy)

[x^2 | x  [1..]]

The order then matters even more

[x^y | x  [1..], y [1,2]]

[x^y | y [1,2], x  [1..]]

Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

[x | x  [1..10], even x]

The list [2,4,6,8,10] of all numbers x such that x is an element
of the list [1..10] and x is even.

factors n =

 [x | x  [1..n], mod n x == 0]

Using a guard we can define a function that maps a
positive integer to its list of factors:

35

A prime's only factors are 1 and itself

prime n = factors n == [1,n]

Example: primes

List of all primes

[x | x  [2..], prime x]

36

Example: quicksort

qsort [] = []

qsort (x:xs) = qsort [a | a <- xs, a < x]

 ++ [x] ++

 qsort [a | a <- xs, a >= x]

37

Example: quicksort

qsort [] = []

qsort (x:xs) = qsort smalls ++ [x] ++

 qsort larges

 where

 smalls = [a | a  xs, a  x]

 larges = [b | b  xs, b > x]

38

Summary

• Haskell is the unified standard for FP

– purely functional, lazy, statically typed

• It has rich 2D syntax to write compactly

• Functions are defined by pattern matching

39

