
Functional Programming 
Lecture 13: FP in the Real World 

Viliam Lisý 
 

Artificial Intelligence Center 
Department of Computer Science 

FEE, Czech Technical University in Prague 

 
viliam.lisy@fel.cvut.cz 

1 



Mixed paradigm languages 

Functional programming is great 

easy parallelism and concurrency  

referential transparency, encapsulation 

compact declarative code 

Imperative programming is great 

more convenient I/O 

better performance in certain tasks 

There is no reason not to combine paradigms 
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Source: Wikipedia 
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Scala 

Quite popular with industry 

Multi-paradigm language 

• simple parallelism/concurrency 

• able to build enterprise solutions 

Runs on JVM 
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Scala vs. Haskell 

• Adam Szlachta's slides 
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Is Java 8 a Functional Language? 

Based on: 
 https://jlordiales.me/2014/11/01/overview-java-8/ 

Functional language 
first class functions 

higher order functions 

pure functions (referential transparency) 

recursion 

closures 

currying and partial application 
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First class functions 

Previously, you could pass only classes in Java 

 

 

 

 

Java 8 has the concept of method reference 
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File[] directories = new File(".").listFiles(new FileFilter() { 
    @Override 
    public boolean accept(File pathname) { 
      return pathname.isDirectory(); 
    } 
}); 

File[] directories = new File(".").listFiles(File::isDirectory); 



Lambdas 

Sometimes we want a single-purpose function 

 

 

 

 

Java 8 has lambda functions for that 
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File[] csvFiles = new File(".").listFiles(new FileFilter() { 
    @Override 
    public boolean accept(File pathname) { 
      return pathname.getAbsolutePath().endsWith("csv"); 
    } 
}); 

File[] csvFiles = new File(".") 
  .listFiles(pathname -> pathname.getAbsolutePath().endsWith("csv")); 



Streams 

We want a list of adult users grouped by sex 
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public Map<Sex, List<User>> groupUsers(List<User> allUsers) { 
  Map<Sex, List<User>> result = new HashMap<>(); 
  for (User user : allUsers) { 
    if (user.getAge() >= 18) { 
      List<User> currentUsers = result.get(user.getSex()); 
      if (currentUsers == null) { 
          currentUsers = new ArrayList<>(); 
          result.put(user.getSex(),currentUsers);} 
      currentUsers.add(user); 
    }} 
  return result;} 



Streams 

In Java 8, we can use higher order functions 

 

 

 

 

Declarative style (and lazy) 

easier to understand 

easier to parallelize 
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public Map<Sex, List<User>> groupUsers(List<User> allUsers) { 
  return allUsers 
    .stream() 
    .filter(user -> user.getAge() >= 18) 
    .collect(groupingBy(User::getSex)); 
} 

.parallelStream() 



Is Java 8 a Functional Language? 

Functional language 

first class functions 

higher order functions 

pure functions (referential transparency) 

recursion 

closures 

currying and partial application 

No, but it provides many of the nice FP features 
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Yes 

Yes 

No 

No tail recursion optimization by default 

Only values, variables become final 

Yes 



FP aspect in mainstream languages 
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Haskell + + + + + + + + + + 

Java 8 (+) + + +/- - - (+) (+) - (+) 

C++14 + + + + - - (+) (+) (+) (+) 

Python + + + + + - + (+) (+/-) (+) 

JavaScript + + + + + - + (+) (+/-) (+) 

MATLAB + + + + - - + (+) - (+) 



Erlang 

Haskell – complex types + concurrency support 

• Immutable data 

• Pattern matching 

• Functional programming 

• Distributed 

• Fault-tolerant 
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Map Reduce 

Distributed parallel big data processing inspired 
by functional programming 

– John Hughes's slides 
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Lisp for Scripting in SW Tools 

• Emacs: extensible text editor 

• AutoCAD: technical drawing software 

• Gimp: gnu image manipulation program 
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Gimp 

User scripts in: ~/.gimp-2.8/scripts 

Register the function by 

script-fu-register 

script-fu-menu-register 

Filters → Script-Fu → Refresh Scripts 

See example source code in a separate file. 
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TAKE-AWAYS FROM FP 
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Declarative programming 

• write what should be done and leave how to 
the optimizer 

– particularly interesting in distributed setting 

• easier to understand, no need to go back from 
how to what 
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Minimizing Side Effects 

• reusability 

• predictability 

• concurrency 

• lower mental load (modularity/encapsulation) 

 

It is easier than it seems! 
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Immutability 

You can use it in any programming language to  

ease parallelization 

avoid defensive copying 

avoid bugs in hashmaps / sets 

consistent state even with exceptions 

allows easier caching 

 

It is not as inefficient as it seems! 
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Recursion 

• Many problems are naturally recursive 

– easier to understand / analyze 

– less code, less bugs 

– combines well with immutability 

 

• A great universal tool 
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Exam 

Schedule 

• 45 min test  

– anything hard to evaluate by programming 

• 15 min break 

• 2h of programming at computers (>50% points) 

– ~2 Haskell and ~2 Scheme tasks 

– upload system, otherwise no internet 

– school computers  with Linux  (tool requests?) 

Dates (tentative):    31.5. 9:00;   6.6. 9:00;  … 
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