
Functional Programming
Lecture 12: Haskell Monads

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

1

Monad

IO is a special case of generally useful pattern

Based on category theory

Way of meaningfully sequencing computations

1. Creating a (separated) boxed value

2. Creating functions for modifying them within the boxes

2

class Applicative m => Monad (m :: * -> *) where

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 return :: a -> m a

 fail :: String -> m a

do Notation

Using monads leads to long sequences of operations
chained by operators >>, >>=

Do notation just makes these sequences more readable

(it is rewritten to monad operators before compilation)

3

main = putStrLn "Hello, what is your name?" >>

 getLine >>= \name ->

 putStrLn ("Hello, " ++ name ++ "!")

main = do putStrLn "Hello, what is your name?"

 name <- getLine

 putStrLn ("Hello, " ++ name ++ "!")

Understanding IO Monad

Assume we are implementing getchar in Haskell

what type should it have?

We can then implement

Haskell functions are pure, hence the compiler will

– remove the double call by caching the return value

– if it called the function twice, it would be in arbitrary order

4

getchar :: Char

get2chars :: String
get2chars = [getchar, getchar]

How to solve caching?

Adding a (fake) parameter makes the calls different

The calls can still be executed in an arbitrary order

Data dependency can order function execution

(if a result of one function is used by another function)

5

getchar :: Int -> Char

get2chars _ = [getchar 1, getchar 2]

get2chars i0 = [a,b] where (a,i1) = getchar i0
 (b,i2) = getchar i1

getchar :: Int -> (Char, Int)

Sequencing Through Data Dependency

The same sequencing problems would reoccur

Hence we want

We are forcing a specific sequence of executing
functions using data dependencies

 6

get4chars = [get2chars 1, get2chars 2]

get2chars :: Int -> (String, Int)

get2chars i0 = ([a,b], i2) where (a,i1) = getchar i0
 (b,i2) = getchar i1

RealWorld

Good intuition for how IO works

RealWorld is a fake type serving as the Int from above

The main function is of type IO ()

All IO functions take the real world as an argument and
return (a possibly modified) new version of the world

7

type IO a = RealWorld -> (a, RealWorld)

> :i IO

main :: RealWorld -> ((), RealWorld)

Example

Function main calling getChar two times:

Only main gets the RealWord. Therefore only
main can execute IO actions.

8

getChar :: RealWorld -> (Char, RealWorld)

main :: RealWorld -> ((), RealWorld)
main world0 = let (a, world1) = getChar world0
 (b, world2) = getChar world1
 in ((), world2)

IO Char

IO ()

Example

Conditional execution of actions

Lazy evaluation will make the action not to be
executed

 9

when :: Bool -> IO () -> IO ()
when condition action world =
 if condition
 then action world
 else ((), world)

IO Monad

Hides passing of the RealWorld value from the
programmer

10

(>>) :: IO a -> IO b -> IO b
(action1 >> action2) world0 =
 let (a, world1) = action1 world0
 (b, world2) = action2 world1
 in (b, world2)

(>>=) :: IO a -> (a -> IO b) -> IO b
(action1 >>= action2) world0 =
 let (a, world1) = action1 world0
 (b, world2) = action2 a world1
 in (b, world2)

return :: a -> IO a
return x world0 = (x, world0)

Monad is just a convenient abstraction to do something like this!

a->RealWorld->(b,RealWorld)

Maybe Monad

11

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing
(Just x) >>= g = g x

return :: a -> Maybe a
return x = Just x

Since it is a monad, we can use the do notation:

12

f::Int -> Maybe Int
f 0 = Nothing
f x = Just x

g :: Int -> Maybe Int
g 100 = Nothing
g x = Just x

h :: Int -> Maybe Int
h x = do n <- f x
 g n

Exception Handling

Exceptions in Haskell are represented by special types

such as Maybe, Either

Explicit handling of errors makes code hard to read

the special values of the types must be handled everywhere

13

lookUp :: Char -> Either String Int
lookUp name = case M.lookup name vars of
 Just x -> Right x
 Nothing -> Left ("Variable not found: " ++ show name)

eval (Add l r) = case eval l of
 m@(Left msg) -> m
 Right x -> case eval r of
 m@(Left msg) -> m
 Right y -> Right (x + y)

Exception Handling

Use of monads can hide the error handling

14 https://www.schoolofhaskell.com/user/bartosz/basics-of-haskell/10_Error_Handling

data Evaluator a = Ev (Either String a)

instance Monad Evaluator where
 (Ev ev) >>= k =
 case ev of
 Left msg -> Ev (Left msg)
 Right v -> k v
 return v = Ev (Right v)
 fail msg = Ev (Left msg)

eval :: Expr -> Evaluator Int
eval (Mul l r) = do lres <- eval l
 rres <- eval r
 return (lres*rres)

List Monad

Suitable for combining non-deterministic computations

can return multiple results and we want to continue with all

15

(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= k = concat (map k xs)

return :: a -> [a]
return x = [x]

List Comprehensions

16

squares lst = do
 x <- lst
 return (x * x)

squares lst = lst >>= \x -> return (x * x)

squares lst = concat $ fmap k lst
 where k = \x -> [x * x]

List Comprehensions

Guards can also be added, but it requires
MonadPlus, for more advanced combinations of
computations.

17

pairs l1 l2 = do
 x <- l1
 y <- l2
 return (x, y)

pairs l1 l2 = [(x, y) | x <- l1, y <- l2]

pairs l1 l2 = l1 >>= \x -> l2 >>= \y -> return (x,y)

Acknowledgements

• https://wiki.haskell.org/Introduction_to_IO

• https://wiki.haskell.org/IO_inside

18

https://wiki.haskell.org/Introduction_to_IO
https://wiki.haskell.org/Introduction_to_IO
https://wiki.haskell.org/IO_inside
https://wiki.haskell.org/IO_inside

Monads Summary

IO in pure functional programming is problematic

- it prevents optimization possible with pure functions

- it requires explicit ordering of pseudo-function calls

Haskell encloses these operations to IO actions

– no result of pseudo-function can leave the IO "container"

Monads are a useful abstraction for

– sequencing operations on containers

– making operation within containers

Build-in Monads

– Maybe, Either e, [], IO

19

Random numbers

• decent random numbers

– System.Random

• cryptographically secure random numbers

– Crypto.Random

• Getting random numbers generator

– mkStdGen <seed>

– getStdGen

20

Random numbers

Getting a random nubmer
– randomR :: (RandomGen g, Random a) => (a, a) ->

g -> (a, g)

Range can be infered from output type
– random :: (RandomGen g, Random a) => g -> (a, g)

Using the standard generator in the IO monad
– randomRIO (0,1)

– randomRIO (0,1::Float)

– randomIO :: IO Float

21

Random sequence

Build-in variant
– randoms <generator>

– randomRs <range> <generator>

22

myRnds :: Int -> [Float]
myRnds seed = randSeq (mkStdGen seed)
 where randSeq gen = let (v,g2) = random gen
 in v:randSeq g2

Random with IO

23

import System.Random

main = do
 g <- getStdGen
 print . take 10 $ (randomRs ('a', 'z') g)
 print . take 10 $ (randomRs ('a', 'z') g)

*Main> :t getStdGen
getStdGen :: IO StdGen
*Main> :t random
random :: (RandomGen g, Random a) => g -> (a, g)

Random values of custom type

Type must be an instance of class Random

24

data Coin = Heads | Tails deriving (Show, Enum, Bounded)

instance Random Coin where
 randomR (a, b) g =
 let (x, g') = randomR (fromEnum a, fromEnum b) g
 in (toEnum x, g')
 random g = randomR (minBound, maxBound) g

