
Functional Programming
Lecture 10: Other Haskell Language Features

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science

FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

1

2

Example: Arithmetic Expressions

Recursive typed can represent tree structures, such as
expressions from numbers, plus, multiplication.

data Expr = Val Int

 | Add Expr Expr

 | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

1 + 2 ∗ 3

3

Using recursion, it is now easy to define functions that
process expressions. For example:

size :: Expr  Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr  Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

Type Classes

Functions required by a class can be accessed by
:info <classname>

:info Eq -- produces the following

Functions can often be implemented based on other
only minimal complete definition is required

(one of the above)

4

class Eq a where

 (==) :: a -> a -> Bool

 (/=) :: a -> a -> Bool

Show Class

A class values convertible to a readable string

5

class Show a where

 showsPrec :: Int -> a -> ShowS

 show :: a -> String

 showList :: [a] -> ShowS

type ShowS = String -> String

This allows constant-time concatenation of results
using function composition (optimization)

Minimal complete definition: showsPrec | show

Instance of a Class

A new instance can be added to a class by

6

instance Show Nat where

 show n = "N" ++ show (nat2int n)

instance Show Expr where

 show (Val n) = show n

 show (Add e1 e2) = "(+ " ++ show e1 ++ " "

 ++ show e2 ++ ")"

 show (Mul e1 e2) = "(* " ++ show e1 ++ " "

 ++ show e2 ++ ")"

Class Contexts

Remember the definition

To make Maybe an instance of Eq, a has to be in Eq

7

data Maybe a = Nothing | Just a

instance Eq a => Eq (Maybe a) where

 Nothing == Nothing = True

 (Just x) == (Just x') = x == x'

Deriving Classes

Obvious definition of instances are automated

8

data Shape = Circle Float

 | Rect Float Float

 deriving (Show, Eq)

Defining Classes

The implemented function bodies determine the
minimum required functions

9

class Eq a where

 (==) :: a -> a -> Bool

 (/=) :: a -> a -> Bool

 x == y = not (x /= y)

 x /= y = not (x == y)

Functor Class

Class of structures you can map over

10

 class Mapable f where
 mmap :: (a -> b) -> f a -> f b

instance Mapable[] where
 mmap = map

instance Mapable Maybe where
 mmap f (Just x) = Just (f x)
 mmap f Nothing = Nothing

Kinds

Types of types

* A specific type

* -> * A type that given a type creates a type

:k

11

Types Summary

• Everything has a type known in compile time

– basic values

– functions

– data structures

• Types are key for data structures in Haskell

• Types can be instances of classes

– polymorphic functions

• "Types" of types are kinds

12

Higher Order Functions

The same functions as in scheme are available

13

map :: (a  b)  [a]  [b]

map f xs = [f x | x  xs]

filter :: (a  Bool)  [a]  [a]

filter p xs = [x | x  xs, p x]

Foldr

14

sum [1,2,3]

foldr (+) 0 [1,2,3]

=

foldr (+) 0 (1:(2:(3:[])))

=

1+(2+(3+0))

=

6

=

Replace each (:)
by (+) and [] by 0.

foldr :: (a  b  b)  b  [a]  b

Lambda Expressions

Functions can be constructed without naming the
functions by using lambda expressions.

The symbol  is typed as a backslash \.

In mathematics, nameless functions are usually
denoted using the  symbol, as in x  x + x.

15

x  x + x

As in scheme,

means

We also have the automated currying

16

add x y = x + y

add = x  (y  x + y)

add = x y  x + y

17

odds n = map f [0..n-1]

 where

 f x = x*2 + 1

can be simplified to

odds n = map (x  x*2 + 1) [0..n-1]

We can use lambda expressions and local functions
interchangeably

The earlier may be better if the local function has a
natural name

18

Operator Sections

An infix operator can be converted into a curried prefix
function by using parentheses.

> (+) 1 2

3

This convention also allows one of the arguments of
the operator to be included in the parentheses.

> (1+) 2

3

> (+2) 1

3

If  is an operator then (), (x)
and (y) are called sections.

Infix Operators

Any (prefix) function can become infix using ` `
`mod`, `elem`

Names with only special symbols are infix
++++, +/+, %-

Precedence/asociativity of infix operators set by
prefixr <0-9> <name>

prefixl <0-9> <name>

prefix <0-9> <name>

Custom infix data constructors begin with :

:#, :+, :::

19

Infix Operators

Information about associativity and precedence
:info

Interesting infix operators

. $ unary -

20

Modules

Haskell program is a collection of modules

name spaces, abstract data declarations

module names start with upper-cased character

filenames must match module names in GHC

without exported symbols, everything is exported

data constructors exported with type name

Tree(Leaf,Branch), can be abbreviated to Tree(..)

21

module <name> (<exported>, <symbols>) where

Example Module

module Tree (Tree(Leaf,Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) =

 fringe left ++ fringe right

22

Importing Modules

Imports must be at the beginning of a module

Prelude module is loaded by default

We can choose names to import and hide

23

import Tree hiding (tree1)

import qualified Tree as T hiding (tree1)

import Tree (tree1, fringe)

import Tree

:m + Tree

Summary

• Type and type classes essential for Haskell

• Unnecessary, but pleasant Haskell features

– higher order functions

– lambda functions

– infix operators and their sections

– modules

24

