Probabilistic methods for phylogenetic tree reconstruction

BMI/CS 576
www.biostat.wisc.edu/bmi576
Colin Dewey
colin.dewey@wisc.edu
Fall 2015

Downsides to parsimony methods

- Scoring function parameters (costs for substitutions) are rather arbitrary
- The most "parsimonious" tree critically depends on these parameters
- Parsimony methods require assignments of character states to the ancestral nodes
- Only considers score of best assignment, which may not be the true one

Alternative to parsimony: probabilistic-model based tree scoring

- Instead of cost $S(a, b)$ of a substitution occurring along a branch, we will use a probability P (child $=a$ l parent = b)
- For a given tree, instead of finding a minimal cost assignment to the ancestral nodes, we will sum the probabilities of all possible ancestral states
- Instead of finding a tree with minimum cost will will find a tree the maximizes likelihood (probability of the data given the tree)

Probabilistic model setup

- We observe n sequences, x^{1}, \ldots, x^{n}
- We are given a tree T and want to model $P\left(x^{1}, \ldots, x^{n} \mid T\right)$
- This is the likelihood (probability of the observed sequences given the model, the tree)
- For simplicity, we'll just consider the case that our sequences are of length 1 (just one character)
- To generalize to longer sequences, we assume independence of each position (each column of an ungapped multiple alignment)
- Probability of sequences = product of probability of each position/column

Probabilistic model details

- It will be easier to first consider a model in which we represent the states of the internal nodes of the tree with random variables: $X^{n+1}, \ldots, X^{2 n-1}$ (assuming rooted binary tree)
- Then the probability of any particular configuration of states at all nodes in the tree will be defined as

$$
P\left(x^{1}, \ldots, x^{2 n-1} \mid T\right)=q_{x^{2 n-1}} \prod_{i=1}^{2 n-2} P\left(x^{i} \mid x^{\alpha(i)}\right)
$$

- $q_{x^{2 n-1}}$ is the prior probability of the state of the root node
- $\alpha(i)$ is the index of the parent node of node i
- Key assumption: state of node i is conditionally independent of the states of its ancestors given the state of its parent
- For simplicity, we are ignoring branch lengths for now

The likelihood

- We only care about the probability of the observed (extant) sequences
- Need to marginalize (sum over possible values of ancestral states) to obtain the likelihood

$$
P\left(x^{1}, \ldots, x^{n} \mid T\right)=\sum_{x^{n+1}, \ldots, x^{2 n-1}} q_{x^{2 n-1}} \prod_{i=1}^{2 n-2} P\left(x^{i} \mid x^{\alpha(i)}\right)
$$

- But there is an exponential number of terms in this sum!

Felsenstein's algorithm

- Dynamic programming to the rescue once again!
- Subproblem: $P\left(L_{k} / a\right)$: probability of the leaves below node k, given that the residue at k is a
- Recurrence:

$$
\begin{gathered}
P\left(L_{k} \mid a\right)=\sum_{b, c} P(b \mid a) P\left(L_{i} \mid b\right) P(c \mid a) P\left(L_{j} \mid c\right) \\
=\sum_{b} P(b \mid a) P\left(L_{i} \mid b\right) \sum_{c} P(c \mid a) P\left(L_{j} \mid c\right)
\end{gathered}
$$

- where i and j are the children nodes of k
- b and c represent the states of node i and node j, respectively

Felsenstein's algorithm

- Initialize: $k=2 n-1$
- Recursion:
- If k is a leaf node,

$$
P\left(L_{k} \mid a\right)=\left\{\begin{array}{l}
1 \text { if } a=x^{k} \\
0 \text { otherwise }
\end{array}\right.
$$

- Else, compute $P\left(L_{i} / a\right)$ and $P\left(L_{j} / a\right)$ for all a at daughters i and j

$$
P\left(L_{k} \mid a\right)=\sum_{b} P(b \mid a) P\left(L_{i} \mid b\right) \sum_{c} P(c \mid a) P\left(L_{j} \mid c\right)
$$

- Termination
- Likelihood is equal to

$$
\sum_{a} P\left(L^{2 n-1} \mid a\right) q_{a}
$$

Concluding remarks on probabilistic-model (likelihood) based approach

- Very similar to the weighted parsimony case
- Main differences are at
- Leaf nodes
- Minimization versus summation for internal nodes
- Can it be used to infer ancestral states as well?
- Instead of summing, we would maximize
- As in the parsimony case, we would need to keep track of the maximizing assignment
- Substitution probabilities $P(a \mid b)$ can be derived from principled mathematical models and/or estimated from data

What is probability for the following set of residues

b
A C G T A 0.7 0.1 0.1 0.1 C 0.1 0.7 0.1 0.1 G 0.1 0.1 0.7 0.1 T 0.1 0.1 0.1 0.7

Assume the above conditional probability matrix $P(b \mid a)$ for all branches

The probabilities computed for each node

	A	C	G	T
$P\left(L_{1} \mid x\right)$	1	0	0	0
$P\left(L_{2} \mid x\right)$	0	0	0	1
$P\left(L_{3} \mid x\right)$	0	0	1	0
$P\left(L_{4} \mid x\right)$	0.07	0.01	0.01	0.07
$P\left(L_{5} \mid x\right)$	0.0058	0.0022	0.0154	0.0058

Probability of sequence given tree is $0.25(0.0058+0.0022+0.0154+0.0058)=0.0073$

