Pairwise Sequence Alignment

BMI/CS 576 www.biostat.wisc.edu/bmi576/ Mark Craven craven@biostat.wisc.edu Fall 2011

Pairwise alignment: task definition

Given

- a pair of sequences (DNA or protein)
- a method for scoring a candidate alignment

Do

 determine the correspondences between substrings in the sequences such that the similarity score is maximized

Protein alignment example

OprD	MKVMKWSAIALAVSAGSTQFAVADAFVSDQAEAKGFIEDSSLDLLLR	47			
PhaK	MSGKTTTMNRTHFMSAACLATLALPVPAMADFIGDSHARLELR	43			
OprD	NYYFNRDGKSGSGDRVDWTOGFLTTYESGFTOGTVGFGVDAFGYLGL	94			
PhaK	NHYINRDFRQSNAPQAKAEEWGQGFTAKLESGFTEGPVGFGVDAMGQLGI	93			
OprD	KLDGTSDKTGTGNLPVMNDGK-PRDDYSRAGGAVKVRISKTMLKWGEMOP	143			
PhaK	KLDSSRDRRNTGLLPFGPNSHEPVDDYSELGLTGKIRVSKSTLRLGTLQP	143	Alignment of the PhaK protein		
OprD	TAPVFAAGGSRLFPOTATGFOLOSSEFEGLDLEAGHFTEGKEPTTVKSRG	193	from Pseudomonas putida and		
PhaK	ILPVVVYNDTRLLASTFOGGLLTSODVDGLTFNAGRLTKANLRDS-SGRD	192	OprD protein from		
OprD	ELYATYAGETAKSADFIGGRYAITDNLSASLYGAELEDIYRQYYLNSNYT	243	Pseudomonas aeruginos		
PhaK	DIGYGAASSDHLDFGGGSYAITPQTSVSYYYAKLEDIYRQQFVGLIDT	240			
OprD	IPLASDOSLGFDFNIYRTNDEGKAKAGDISNTTWSLAAAYTLDAHTFT	291			
PhaK	RPLSEGVSLRSDLRYFDSRNDGAERAGNIDNRNFNAMFTLGVRAHKFT **** *** ** .**.**	288			
OprD	LAYOKVHGDOPFDYIGFGRNGSGAGGDSIFLANSVOYSDFNGPGEKSWOA	341			
PhaK	ATWOOMSGDSAFPFVNGGDP-FTVNLVTYNTFTRAGLDSWQV	329			
	* ** .* ***. * .* * *** .***.				
0	BUOL NT & CHOURST MEMBER THOUSE TROUBLE ON NUCLER CERCERCE	201			
Dhaw	RIDLNLASIGVFGLIFMVRIINGRDIDGIRASDANVGIRNIGIGLDGRAM	366			
riidh	*** *.***.****. **.	500			
OprD	ETNLEAKYVVQSGPAKDLSFRIRQAWHRANADQGEGDQNEFRLIVDYPLS	441			
PhaK	ERDTDITYVIQSGPFKDVSLRWRNVTFRSGNGLTNAVDEN-RLIIGYTLA	415			
	.* **.*.* * *				
OprD	IL 443				
PhaK	LW 417				
	. Olivera et al., PNAS 95:6419-6424, 1998				

Scoring an alignment: what is needed?

- substitution matrix
 - s(a,b) indicates score of aligning character a with character b
- gap penalty function
 - -w(g) indicates cost of a gap of length g

• there are

$\binom{2n}{2}$	$-\frac{(2n)!}{\sim}$	2^{2n}
(n)	$-\frac{1}{\left(n!\right)^{2}}\approx$	$\sqrt{\pi n}$

possible global alignments for 2 sequences of length n

- e.g. two sequences of length 100 have $~\approx 10^{~77}~$ possible alignments
- but we can use *dynamic programming* to find an optimal alignment efficiently

- · initialize first row and column of matrix
- · fill in rest of matrix from top to bottom, left to right
- for each F (i, j), save pointer(s) to cell(s) that resulted in best score
- *F* (*m*, *n*) holds the optimal alignment score; trace pointers back from *F* (*m*, *n*) to *F* (0, 0) to recover alignment

