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Motivation for 

sequence modeling

tctgaaatgagctgttgacaattaatcatcgaactagttaactagtacgcaagttca

accggaagaaaaccgtgacattttaacacgtttgttacaaggtaaaggcgacgccgc

aaattaaaattttattgacttaggtcactaaatactttaaccaatataggcatagcg

ttgtcataatcgacttgtaaaccaaattgaaaagatttaggtttacaagtctacacc

catcctcgcaccagtcgacgacggtttacgctttacgtatagtggcgacaatttttt

tccagtataatttgttggcataattaagtacgacgagtaaaattacatacctgcccg

acagttatccactattcctgtggataaccatgtgtattagagttagaaaacacgagg

atagtctcagagtcttgacctactacgccagcattttggcggtgtaagctaaccatt

aactcaaggctgatacggcgagacttgcgagccttgtccttgcggtacacagcagcg

ttactgtgaacattattcgtctccgcgactacgatgagatgcctgagtgcttccgtt

tattctcaacaagattaaccgacagattcaatctcgtggatggacgttcaacattga

aacgagtcaatcagaccgctttgactctggtattactgtgaacattattcgtctccg

aagtgcttagcttcaaggtcacggatacgaccgaagcgagcctcgtcctcaatggcc

gaagaccacgcctcgccaccgagtagacccttagagagcatgtcagcctcgacaact

ccatcaaaaaaatattctcaacataaaaaactttgtgtaatacttgtaacgctacat

these sequences are E. coli promoters

these sequences are not promoters

How can we tell the difference?  Is this sequence a promoter?



Motivation for Markov models in

computational biology

• there are many cases in which we would like to represent 

the statistical regularities of some class of sequences

– genes

– various regulatory sites in DNA (e.g. promoters)

– proteins in a given family

– etc.

• Markov models are well suited to this type of task



Markov chain models

• a Markov chain model is defined by

– a set of states

• some states emit symbols

• other states (e.g. the begin and end) are silent

– a set of transitions with associated probabilities

• the transitions emanating from a given state define a 

distribution over the possible next states



Markov chain models

• Let X be a sequence of random variables X1 … XL

representing a biological sequence

• from the chain rule of probability
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Markov chain models

• from the chain rule we have

• key property of a (1st order) Markov chain: the 

probability of each       depends only on the value of 

  



P(X)  P(XL | XL1, ..., X1) P(XL1 | XL2, ..., X1) K  P(X1)

  



P(X)   P(XL | XL1)P(XL1 | XL2) ... P(X2 | X1)P(X1)

           P(X1) P(X i

i 2

L

 | X i1)



X i



X i1



Markov chain model

end

a

tc

g

begin

  



P(cggt)   P(c)P(g |c)P(g | g)P(t | g)P(end | t)

The probability of a sequence cggt for a given model:



Why we need an end state to define a 

distribution over varying length sequences
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Estimating the model parameters

• Given some sequences, how can we determine the 
probability parameters of our model?

– maximum likelihood estimation

– Bayesian approach – regularization, priors

• estimate 1st order parameters using Laplace 
estimates with the sequences

gccgcgcttg

gcttggtggc

tggccgttgc



P(a | g) 
0 1

12  4

P(c | g) 
7 1

12  4

P(g | g) 
31

12  4

P(t | g) 
2 1

12  4



A Bayesian approach

• instead of estimating parameters strictly from the 
data, we could start with some prior belief for each

• in general, use a prior Dirichlet distribution as a 
conjugate prior to the observed multinomial data 
distribution

• the outcome reduces to m-estimates

– their most simple form = Laplace estimates
(uniform pa, m=1/pa)



P(a) 
na  pam

ni

i










 m

number of  “virtual” instances

prior probability of a

observed frequency of a

iterate over all

symbols/transitions



• we can build more “memory” into our states by using a 

higher order Markov model

• additional history can have predictive value

• example:

– predict the next word in this sentence fragment  

“… the__” (duck, end, grain, tide, wall, …?)

– now predict it given more history

“… against the __” (duck, end, grain, tide, wall, …?)

“swim against the __” (duck, end, grain, tide, wall, …?)

Higher order Markov chains



Higher order Markov chains

• an nth order Markov chain over some alphabet  A is 

equivalent to a first order Markov chain over the alphabet 

An of n-tuples

• example: a 2nd order Markov model for DNA can be 

treated as a 1st order Markov model over alphabet

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, 

TA, TC, TG, TT

• caveat: we process a sequence one character at a time

A C G G T

AC GGCG GT



A fifth-order Markov chain

gctac

aaaaa

ctacg

ctaca

ctacc

ctact

P(a | gctac)

begin

P(gctac)

  



P(gctaca)   P(gctac)P(a | gctac)

P(c | gctac)



Inhomogenous Markov chains

• in the Markov chain models we have considered so 

far, the probabilities do not depend on our position   

in a given sequence

• in an inhomogeneous Markov model, we can have 

different distributions at different positions in the 

sequence

• consider modeling codons in protein coding regions 



An inhomogeneous Markov chain
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Example application

• CpG islands

– CG dinucleotides are rarer in eukaryotic genomes 
than expected given the marginal probabilities of 
C and G

– but the regions upstream of genes are richer in 
CG dinucleotides than elsewhere – CpG islands

– useful evidence for finding genes

• could predict CpG islands with Markov chains

– one to represent CpG islands

– one to represent the rest of the genome



CpG islands as a classification task

1. train two Markov models: one to represent CpG island 
sequence regions, another to represent other sequence 
regions (null)

2. given a test sequence, use two models to

• determine probability that sequence is a CpG island

• classify the sequence (CpG or null)

begin end

a

tc

g

begin end

a

tc

g



Markov chains for discrimination

+ a c g t

a .18 .27 .43 .12

c .17 .37 .27 .19

g .16 .34 .38 .12

t .08 .36 .38 .18

- a c g t

a .30 .21 .28 .21

c .32 .30 .08 .30

g .25 .24 .30 .21

t .18 .24 .29 .29

• parameters estimated for CpG and null models

– human sequences containing 48 CpG islands

– 60,000 nucleotides

CpG null



P(c | a)



• using Bayes’ rule tells us

• if we don’t take into account prior probabilities of two 
classes (              and              ) then we just need to 
compare                     and

Markov chains for discrimination

  



P(CpG | x) 
P(x |CpG)P(CpG)

P(x)

                
P(x |CpG)P(CpG)

P(x |CpG)P(CpG) P(x | null)P(null)



P(CpG)



P(x | null)



P(x |CpG)



P(null)



Markov chains for discrimination

• light bars represent

negative sequences

• dark bars represent 

positive sequences 

(i.e. CpG islands)

• the actual figure here 

is not from a CpG

island discrimination 

task, however

Figure from A. Krogh, “An Introduction to Hidden Markov Models for Biological Sequences” in Computational 

Methods in Molecular Biology, Salzberg et al. editors, 1998.



The hidden part of the problem

• in the Markov models we’ve considered previously, it 

is clear which state accounts for each part of the 

observed sequence

• we’ll distinguish between the observed parts of a 

problem and the hidden parts

• in hidden markov models, there are multiple states 

that could account for each part of the observed 

sequence – this is the hidden part of the problem



The parameters of an HMM

• since we’ve decoupled states and characters, we 

might also have emission probabilities



ek(b)  P(xi  b | i  k)



akl  P( i  l | i1  k)

probability of emitting character b in state k

probability of a transition from state k to l

represents a path (sequence of states) 

through the model

• as in Markov chain models, we have transition 

probabilities





A simple HMM with emission 

parameters
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Three important HMM questions

• How likely is a given sequence given the model?

the Forward algorithm

• What is the most probable “path” for generating a 
given sequence?

the Viterbi algorithm

• How can we learn the HMM parameters given a set 
of sequences?

the Forward-Backward (Baum-Welch) algorithm



Learning and prediction tasks

• learning

Given: a model, a set of training sequences

Do: find model parameters that explain the training sequences with 
relatively high probability (goal is to find a model that generalizes
well to sequences we haven’t seen before)

• classification

Given: a set of models representing different sequence classes,                                  
a test sequence

Do: determine which model/class best explains the sequence

• segmentation

Given: a model representing different sequence classes,                               
a test sequence

Do: segment the sequence into subsequences, predicting the class 
of each subsequence


