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Pairwise alignment:
task definition

Given
— a pair of sequences (DNA or protein)
— a method for scoring a candidate alignment

Do

— determine the correspondences between
substrings in the sequences such that the
similarity score is maximized
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Protein alignment example
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The role of homology in alignment

homology: similarity due to descent from a common
ancestor

often we can infer homology from similarity

thus we can sometimes infer structure/function from
sequence similarity




Homology example:
evolution of the globins
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Homology

* homologous sequences can be divided into two groups

— orthologous sequences: sequences that differ
because they are found in different species (e.qg.
human a-globin and mouse a-globin)

— paralogous sequences: sequences that differ
because of a gene duplication event (e.g. human a-
globin and human B-globin, various versions of both )




DNA sequence edits

substitutions: ACGA == AGGA
insertions: ACGA == ACCGGAGA
deletions: ACGGAGA == AGA
transpositions: ACGGAGA == AAGCGGA

inversions: ACGGAGA == ACTCCGA

Mismatches and gaps

substitutions in homologous sequences result in
mismatches in an alignment

insertions/deletions in homologous sequences result
in mismatches in an alignment

CA--GATTCGAAT

CGCCGATT-—--AT
~_——

mismatch gap




Alignment scales

» for short DNA sequences (gene scale) we will
generally only consider

— substitutions
— insertions/deletions

» for longer DNA sequences (genome scale) we will
consider additional events

— transpositions
— inversions

* in this course we will focus on the case of short
sequences

Insertions/deletions and
protein structure

* Why is it that two “similar” sequences may have large
insertions/deletions?

— some insertions and deletions may not
significantly affect the structure of a protein

loop structures:
insertions/deletions
here not so significant




Example alignment: globins

figure at right shows prototypical
structure of globins

figure below shows part of
alignment for 8 globins
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Issues in sequence alignment

+ the sequences we're comparing typically differ in
length

+ there may be only a relatively small region in the
sequences that matches

* we want to allow partial matches (i.e. some amino
acid pairs are more substitutable than others)

 variable length regions may have been
inserted/deleted from the common ancestral
sequence




Types of alignment

» global: find best match of both sequences in their
entirety

* Jocal: find best subsequence match

» semi-global: find best match without penalizing gaps
on the ends of the alignment

Scoring an alignment:
what is needed?

» substitution matrix

— S(a,b) indicates score of aligning character a with
character b

* gap penalty function
— w(g) indicates cost of a gap of length g




Blosum 62 substitution matrix

BLOSUM62

Linear gap penalty function

different gap penalty functions require somewhat different
dynamic programming algorithms

the simplest case is when a linear gap function is used

w(g)=-gxd

where d is a constant

we'll start by considering this case




Scoring an alignment

 the score of an alignment is the sum of the scores for
pairs of aligned characters plus the scores for gaps

+ example: given the following alignment

VAHV---D--DMPNALSALSDLHAHKL
AIQLQVTGVVVTDATLKNLGSVHVSKG

+ we would score it by
s(V,A)+s(A,I)+s(H,Q)+s(V,L)-3d+s(D,G)—2d

The space of global alignments

* some possible global alignments for ELV and VIS

ELV -ELV -—-ELV ELV-
VIS VIS- VIS-- -VIS
E-LV ELV-- EL-V
VIS- --VIS -VIS

» Can we find the highest scoring alignment by enumerating
all possible alignments and picking the best?




Number of possible alignments

» given sequences of length m and n

- c- -C
+ assume we don't countas distinct _. and -

+ we can have as few as 0 and as many as min{m,
n} aligned pairs

+ therefore the number of possible alignments is
given by

min 3 N ) (n+m)

Z k) = U

Number of possible alignments

» there are

an_ @2n)! 2%
()

n

possible global alignments for 2 sequences of length n

+ e.g. two sequences of length 100 have ~ 10" possible
alignments

* but we can use dynamic programming to find an optimal
alignment efficiently
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Pairwise alignment via
dynamic programming

+ first algorithm by Needleman & Wunsch,
Journal of Molecular Biology, 1970

* dynamic programming: solve an instance of a
problem by taking advantage of computed solutions
for smaller subparts of the problem

» determine best alignment of two sequences by
determining best alignment of all prefixes of the

sequences

Dynamic programming idea

+ consider last step in computing alignment of

AAAC with AGC

» three possible options; in each we’ll choose a
different pairing for end of alignment, and add this to
best alignment of previous characters

AAA
AG

AAA
AGC

C
C

AAAC| -
AG C
consider best score of

alignment of # aligning
these prefixes this pair
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Dynamic programming idea

* given an n-character sequence x, and an m-character
sequence y

+ construct an (n+1) x (m+1) matrix F

* F (1, j)=score of the best alignment of x[1...i] with y[1.../]

A G C

score of best alignment of
“— AAA to AG

o » > >

DP algorithm for global alignment with
linear gap penalty

» one way to specify the DP is in terms of its
recurrence relation:

(F(i—1,j—1)+s(x, )
F(i,j)=max\F(i—-1,j)—d
F(i,j-1)-d




Initializing matrix: global alignment with
linear gap penalty

A G Cc

0 -d| -2d_-3d

DP algorithm sketch:
global alignment

* initialize first row and column of matrix
« fill in rest of matrix from top to bottom, left to right

« foreach F (i, j), save pointer(s) to cell(s) that
resulted in best score

* F (m, n) holds the optimal alignment score; trace
pointers back from F (m, n) to F (0, 0) to recover
alignment
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Global alignment example

+ suppose we choose the following scoring scheme:
s(x,, ;)=
+1 when x, =y,
-1 when x, #y,

d (penalty for aligning with a gap) = 2

Global alignment example

A G C
0——-2 4 -6
f
A 2 1 A1 d—3 one optimal alignment
+ < 1T " X: A A A C
N N . A G - C
A -4 -1 0 ¢ -2 /
T x‘\‘[ '\\ '\\
A -6 -3 2 -1
T T N 1T
I Y
-8 5 -4 -1
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DP comments

» works for either DNA or protein sequences, although
the substitution matrices used differ

+ finds an optimal alignment

+ the exact algorithm (and computational complexity)
depends on gap penalty function (we’ll come back to
this issue)

Equally optimal alignments

* many optimal alignments may exist for a given pair of
sequences

» can use preference ordering over paths when doing
traceback

highroad 1 lowroad 3
2 2

3 1

» highroad and lowroad alignments show the two most
different optimal alignments
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Highroad & lowroad alignments

h— b

X.

Y.

X:

Y.

highroad alignment

A A A C
A G - C

lowroad alignment

A A A C
A G C

Computational complexity

initialization: O(m), O(n) where sequence lengths are

m, n

filling in rest of matrix: O(mn)

traceback: O(m + n)
hence, if sequences have nearly same length, the

computational complexity is

O(n’)
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Related problems solved by DP

* Local alignment

— the best match between subsequences of x and y

— so far we have discussed global alignment, where

we are looking for best match between sequences
from one end to the other

More realistic gap functions

— a gap of length k is more probable than k gaps of
length 1

— a gap may be due to a single mutational event that
inserted/deleted a stretch of characters

— separated gaps are probably due to distinct
mutational events

Local alignment

* Motivation
— a common motif (conserved pattern) or domain
(independently folded unit) but differ elsewhere

— more sensitive when comparing highly diverged
sequences

» Original formulation

— Smith & Waterman, Journal of Mol. Biology, 1981
* Implementation

— the recurrence relation is slightly different than for
global algorithm

* maximize also with 0
* begins and ends anywhere
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Gap penalty functions
linear: w(g)=-gxd

affine: —d—(g-De, g>1
w(g) =
0, g=0

convex: as gap length increases, magnitude of
penalty for each additional character decreases

eg. w(g)=—d-log(g)xe

Pairwise alignment summary

the number of possible alignments is exponential in
the length of sequences being aligned

dynamic programming can find optimal-scoring
alignments in polynomial time

the specifics of the DP depend on

— local vs. global alignment

— gap penalty function

affine penalty functions are most commonly used
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