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Sequencing news this month 
Yersinia pestis Cannabis sativa 



The gene finding task 

Given: an uncharacterized DNA sequence 

Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns 

Eukaryotic gene structure 



Sources of evidence for gene finding 

•! signals: the sequence signals (e.g. splice junctions) 
involved in gene expression 

•! content: statistical properties that distinguish protein-
coding DNA from non-coding DNA 

•! conservation: signal and content properties that are 
conserved across related sequences (e.g. syntenic 
regions of the mouse and human genome) 

Gene finding: search by content 

•! encoding a protein affects the statistical properties of 

a DNA sequence 



Pairs of intron/exon units represent 

the different ways an intron can interrupt 

a coding sequence  (after 1st base in codon,  

after 2nd base or after 3rd base) 

Complementary submodel  

(not shown) detects genes on  

opposite DNA strand 

The GENSCAN HMM for Eukaryotic 

Gene Finding [Burge & Karlin ‘97] 
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 Each shape denotes a functional unit of 

a gene or genomic region and is 
represented by a submodel in the HMM 

GENSCAN uses a variety of  

submodel types 

sequence feature model 

exons 5th order inhomogenous 

introns, intergenic regions 5th order homogenous 

poly-A, translation initiation, 

promoter 

0th order, fixed-length 

splice junctions tree-structured variable memory 



Markov models & exons 

•! consider modeling a given coding sequence 

•! for each “word” we evaluate, we’ll want to consider its position 

with respect to the reading frame we’re assuming 

G C T A C G G A G C T T C G G A G C 

G C T A C G 

reading frame 

G is in 3rd codon position 

C T A C G G G is in 1st position 

T A C G G A A is in 2nd position 

•! can do this using an inhomogeneous model 

A fifth-order inhomogenous Markov chain 
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Inference with the gene-finding HMM 

given: an uncharacterized DNA sequence 

find: the most probable path through the model for the 

sequence 

•! this path will specify the coordinates of the predicted 

genes (including intron and exon boundaries) 

•! the Viterbi algorithm is used to compute this path 

Parsing a DNA sequence 

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA 

The Viterbi path represents  

a parse of a given sequence, 

predicting exons, introns, etc 



Assessing the accuracy of a trained model 

•! two issues 

–! What data should we use? 

–! Which metrics should we use? 

•! Can we measure accuracy on the data set that was 

used to train the model? 

NO!  This will result in accuracy estimates that  

          are biased (too high). 

Assessing the accuracy of a trained model 

•! need to have a test set that is disjoint from the training set 

•! more generally, can use cross validation 

3-fold CV 

illustrated 

Figure from http://gepas.bioinfo.cipf.es/ 



Accuracy (for 2-class problems) 

! 

accuracy =     
TP +  TN

TP + FP + FN + TN

true positives 

(TP) 

true negatives 

(TN) 

false positives 

(FP) 

false negatives 

(FN) 

positive 

negative 

positive negative 

predicted 

class 

actual class 

Accuracy metrics 
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Accuracy of GENSCAN  

  

! 

sensitivity (Sn) =     
TP

TP + FN

  

! 

specificity (Sp)  =   
TP

TP + FP

Accuracy of GENSCAN  

on a different test set 

Figure from Flicek et al., Genome Research, 2003 

  

! 

sensitivity (Sn) =     
TP

TP + FN

  

! 

specificity (Sp)  =   
TP

TP + FP

genes exactly 

correct? 

exons exactly 

correct? 

nucleotides 

correct? 



The protein classification task 

Given: amino-acid sequence of a protein 

Do: predict the family to which it belongs 

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH 

Alignment of globin family proteins 

"! The sequences in a 

family may vary in 

length 

"! Some positions are 

more conserved 

than others 



Profile HMMs 

i 2 i 3 i 1 i 0 

d 1 d 2 d 3 

m 1 m 3 m 2 start end 
Match states represent 

key conserved positions 

Insert states account 

for extra characters 

in some sequences 

Delete states are silent; they 

Account for characters missing 

in some sequences 

•! profile HMMs are used to model families of sequences 

A  0.01 

R  0.12 

D  0.04 

N  0.29 

C  0.01 

E  0.03 

Q  0.02 

G  0.01 
Insert and match states have 

emission distributions over 

sequence characters 

Multiple alignment of SH3 domain  

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences 



A profile HMM trained for the SH3 domain 

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences 

match states 

delete states 

(silent) 

insert states 

Profile HMMs 

•! to classify sequences according to family, we can train a 

profile HMM to model the proteins of each family of interest 

•! given a sequence x, use Bayes’ rule to make classification 

•! use Forward algorithm to compute              for each family c
i!

! 

P(ci | x) =
P(x | ci)P(ci)

P(x | c j )P(c j )
j

"

! 

P(x | c
i
)



Profile HMM accuracy 

Figure from Jaakola et al., ISMB 1999 

BLAST-based  

methods 

profile HMM-based  

methods 

•! classifying 2447proteins into 33 families 

•! x-axis represents the median # of negative sequences that 
score as high as a positive sequence for a given family’s model 

See Pfam database for a large 

collection profile HMMs 



Other issues in Markov models 

•! there are many interesting variants and extensions of 
the models/algorithms we considered here (some of 
these are covered in BMI/CS 776) 

–! separating length/composition distributions with 
semi-Markov models 

–! modeling multiple sequences with pair HMMs 

–! learning the structure of HMMs 

–! going up the Chomsky hierarchy: stochastic 
context free grammars 

–! discriminative learning algorithms (e.g. as in 
conditional random fields) 

–! etc. 


