Applications of HMMs in Computational Biology

BMI/CS 576
www.biostat.wisc.edu/bmi576.html
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Sequencing news this month

Yersinia pestis

The gene finding task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*

Eukaryotic gene structure

Sources of evidence for gene finding

- signals: the sequence signals (e.g. splice junctions) involved in gene expression
- content: statistical properties that distinguish proteincoding DNA from non-coding DNA
- conservation: signal and content properties that are conserved across related sequences (e.g. syntenic regions of the mouse and human genome)

Gene finding: search by content

 encoding a protein affects the statistical properties of a DNA sequence

```
UUU F 0.46  UCU S 0.19  UAU Y 0.44  UGU C 0.46

UUC F 0.54  UCC S 0.22  UAC Y 0.56  UGC C 0.54

UUA L 0.08  UCA S 0.15  UAA * 0.30  UGA * 0.47

UUG L 0.13  UCG S 0.05  UAG * 0.24  UGG W 1.00

CUU L 0.13  CCU P 0.29  CAU H 0.42  CGU R 0.08

CUC L 0.20  CCC P 0.32  CAC H 0.58  CGC R 0.18

CUA L 0.07  CCA P 0.28  CAA Q 0.27  CGA R 0.11

CUG L 0.40  CCG P 0.11  CAG Q 0.73  CGG R 0.20

AUU I 0.36  ACU T 0.25  AAU N 0.47  AGU S 0.15

AUC I 0.47  ACC T 0.36  AAC N 0.53  AGC S 0.24

AUA I 0.17  ACA T 0.28  AAA K 0.43  AGA R 0.21

AUG M 1.00  ACG T 0.11  AAG K 0.57  AGG R 0.21

GUU V 0.18  GCU A 0.27  GAU D 0.46  GGU G 0.16

GUC V 0.24  GCC A 0.40  GAC D 0.54  GGC G 0.34

GUA V 0.12  GCA A 0.23  GAA E 0.42  GGA G 0.25

GUG V 0.46  GCG A 0.11  GAG E 0.58  GGG G 0.25

[Codon/a.a./fraction per codon per a.a.]

Homo sapiens data from the Codon Usage Database
```

The GENSCAN HMM for Eukaryotic Gene Finding [Burge & Karlin '97]

GENSCAN uses a variety of submodel types

sequence feature	model
exons	5 th order inhomogenous
introns, intergenic regions	5 th order homogenous
poly-A, translation initiation, promoter	0 th order, fixed-length
splice junctions	tree-structured variable memory

Markov models & exons

- consider modeling a given coding sequence
- for each "word" we evaluate, we'll want to consider its position with respect to the reading frame we're assuming

can do this using an inhomogeneous model

A fifth-order inhomogenous Markov chain

Inference with the gene-finding HMM

given: an uncharacterized DNA sequence find: the most probable path through the model for the sequence

- this path will specify the coordinates of the predicted genes (including intron and exon boundaries)
- the Viterbi algorithm is used to compute this path

Parsing a DNA sequence

Assessing the accuracy of a trained model

- two issues
 - What data should we use?
 - Which metrics should we use?
- Can we measure accuracy on the data set that was used to train the model?

NO! This will result in accuracy estimates that are biased (too high).

Assessing the accuracy of a trained model

- need to have a test set that is disjoint from the training set
- more generally, can use cross validation

Accuracy (for 2-class problems)

accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Accuracy metrics

Accuracy of GENSCAN

Table 1. Performance comparison for Burset/Guigó set of 570 vertebrate genes A Comparison of GENSCAN with other gene prediction programs

		Accuracy per nucleotide			Accuracy per exon					
Program	Sequences	Sn	Sp	AC	CC	Sn	Sp	Avg.	ME	WE
GENSCAN	570 (8)	0.93	0.93	0.91	0.92	0.78	0.81	0.80	0.09	0.05
FGENEH	569 (22)	0.77	0.88	0.78	0.80	0.61	0.64	0.64	0.15	0.12
GeneID	570 (2)	0.63	0.81	0.67	0.65	0.44	0.46	0.45	0.28	0.24
Genie	570(0)	0.76	0.77	0.72	n/a	0.55	0.48	0.51	0.17	0.33
GenLang	570 (30)	0.72	0.79	0.69	0.71	0.51	0.52	0.52	0.21	0.22
GeneParser2	562(0)	0.66	0.79	0.67	0.65	0.35	0.40	0.37	0.34	0.17
GRAIL2	570 (23)	0.72	0.87	0.75	0.76	0.36	0.43	0.40	0.25	0.11
SORFIND	561 (0)	0.71	0.85	0.73	0.72	0.42	0.47	0.45	0.24	0.14
Xpound.	570 (28)	0.61	0.87	0.68	0.69	0.15	0.18	0.17	0.33	0.13
GeneID+	478 (1)	0.91	0.91	0.88	0.88	0.73	0.70	0.71	0.07	0.13
GeneParser3	478 (1)	0.86	0.91	0.86	0.85	0.56	0.58	0.57	0.14	0.09

sensitivity (Sn) =
$$\frac{TP}{TP + FN}$$

specificity (Sp) =
$$\frac{TP}{TP + FP}$$

Accuracy of GENSCAN on a different test set

Figure from Flicek et al., Genome Research, 2003

The protein classification task

Given: amino-acid sequence of a protein Do: predict the *family* to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH

Alignment of globin family proteins

- The sequences in a family may vary in length
- Some positions are more conserved than others

Profile HMMs

profile HMMs are used to model families of sequences

Multiple alignment of SH3 domain

gt ndt sk sttt s Ken daduu wku nadan uu naduki du e dek dunienu sku nadan uu naduki du e dek dunienu sku nadan naduki du e dek dunienu sku nadat uu naduki du e dek gt · · · · · siavsktkt SGSSFSSSSSSSSLSSSSAGAAKSSASTS **ススススススエスススススススストスストスストススススストーススス** 111 i ktktar.r.og..ak.. ntnvlnntngktnynstn a r r · ė I Y \tilde{W}_{W} n IFP

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

A profile HMM trained for the SH3 domain

Profile HMMs

- to classify sequences according to family, we can train a profile HMM to model the proteins of each family of interest
- given a sequence x, use Bayes' rule to make classification

$$P(c_i \mid x) = \frac{P(x \mid c_i)P(c_i)}{\sum_{i} P(x \mid c_j)P(c_j)}$$

• use Forward algorithm to compute $P(x \mid c_i)$ for each family c_i

Profile HMM accuracy

- classifying 2447proteins into 33 families
- x-axis represents the median # of negative sequences that score as high as a positive sequence for a given family's model

See Pfam database for a large collection profile HMMs

Other issues in Markov models

- there are many interesting variants and extensions of the models/algorithms we considered here (some of these are covered in BMI/CS 776)
 - separating length/composition distributions with semi-Markov models
 - modeling multiple sequences with pair HMMs
 - learning the *structure* of HMMs
 - going up the Chomsky hierarchy: stochastic context free grammars
 - discriminative learning algorithms (e.g. as in conditional random fields)
 - etc.