Distance-Based Approaches to Inferring Phylogenetic Trees

BMI/CS 576

www.biostat.wisc.edu/bmi576.html
Mark Craven
craven@biostat.wisc.edu

Representing distances in rooted and unrooted trees

$$
\begin{array}{r}
\operatorname{dist}(A, C)=8 \\
\operatorname{dist}(A, D)=5
\end{array}
$$

distances represented by summed height of edges to reach common ancestor
distances represented by summed length of edges to reach common ancestor

Distance-based approaches

- given: an $n \times n$ matrix M where $M_{i j}$ is the distance between taxa i and j
- do: build an edge-weighted tree such that the distances between leaves i and j correspond to $M_{i j}$

Where do we get distances?

- commonly obtained from sequence alignments

$$
f_{i j}=\frac{\text { \#mismatches }}{\text { \#matches + \#mismatches }}
$$

in alignment of sequence i with sequence j $\operatorname{dist}(i, j)=f_{i j}$

- to correct for multiple substitutions at a single position:

$$
\operatorname{dist}_{\text {Jukes-Cantor }}(i, j)=-\frac{3}{4} \ln \left(1-\frac{4}{3} f_{i j}\right)
$$

Distance metrics

- properties of a distance metric

$$
\begin{aligned}
& \operatorname{dist}\left(x_{i}, x_{j}\right) \geq 0 \\
& \operatorname{dist}\left(x_{i}, x_{i}\right)=0 \\
& \operatorname{dist}\left(x_{i}, x_{j}\right)=\operatorname{dist}\left(x_{j}, x_{i}\right) \\
& \operatorname{dist}\left(x_{i}, x_{j}\right) \leq \operatorname{dist}\left(x_{i}, x_{k}\right)+\operatorname{dist}\left(x_{k}, x_{j}\right)
\end{aligned}
$$

The molecular clock hypothesis

- In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes c, and fibrinopeptides. Some proteins appeared to evolve slowly, while others evolved rapidly.
- Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock: For every given protein, the rate of molecular evolution is approximately constant in all evolutionary lineages

The molecular clock assumption \& ultrametric data

- the molecular clock assumption is not generally true: selection pressures vary across time periods, organisms, genes within an organism, regions within a gene
- if it does hold, then the data is said to be ultrametric

The molecular clock assumption \& ultrametric data

- ultrametric data: for any triplet of sequences, i, j, k, the distances are either all equal, or two are equal and the remaining one is smaller

The UPGMA method

(Unweighted Pair Group Method using Arithmetic Averages)

- given ultrametric data, UPGMA will reconstruct the tree T that is consistent with the data
- basic idea:
- iteratively pick two taxa/clusters and merge them
- create new node in tree for merged cluster
- distance $d_{i j}$ between clusters C_{i} and C_{j} of taxa is defined as

$$
d_{i j}=\frac{1}{\left|C_{i} \| C_{j}\right|} \sum_{p \in C_{i}, q \in C_{j}} d_{p q}
$$

(avg. distance between pairs of taxa from each cluster)

UPGMA algorithm

assign each taxon to its own cluster define one leaf for each taxon; place it at height 0 while more than two clusters determine two clusters i, j with smallest $d_{i j}$ define a new cluster $C_{k}=C_{i} \cup C_{j}$ define a node k with children i and j; place it at height $d_{i j} / 2$ replace clusters i and j with k compute distance between k and other clusters join last two clusters, i and j, by root at height $d_{i j} / 2$

UPGMA

- given a new cluster C_{k} formed by merging C_{i} and C_{j}
- we can calculate the distance between C_{k} and any other cluster C_{l} as follows

$$
d_{k l}=\frac{d_{i l}\left|C_{i}\right|+d_{j l}\left|C_{j}\right|}{\left|C_{i}\right|+\left|C_{j}\right|}
$$

UPGMA example

initial state

	A	B	C	D	E
		0	8	8	5
A	3				
B		0	3	8	8
C			0	8	8
D				0	5
E					0

after one merge		AE	B	C	D
	AE	0	8	8	5
	B		0	3	8
	C			0	8
	D				0

UPGMA example (cont.)

after two merges

	AE	BC	D
AE	0	8	5
BC		0	8
D			0

after three
merges
final state

Neighbor joining

- unlike UPGMA
- doesn't make molecular clock assumption
- produces unrooted trees
- does assume additivity: distance between pair of leaves is sum of lengths of edges connecting them
- like UPGMA, constructs a tree by iteratively joining subtrees
- two key differences
- how pair of subtrees to be merged is selected on each iteration
- how distances are updated after each merge

Picking pairs of nodes to join in NJ

- at each step, we pick a pair of nodes to join; should we pick a pair with minimal $d_{i j}$?
- suppose the real tree looks like this and we're picking the first pair of nodes to join?

- wrong decision to join A and B : need to consider distance of pair to other leaves

Picking pairs of nodes to join in NJ

- to avoid this, pick pair to join based on $D_{i j}$ [Saitou \& Nei '87; Studier \& Kepler '88]

$$
\begin{aligned}
& D_{i j}=d_{i j}-\left(r_{i}+r_{j}\right) \\
& r_{i}=\frac{1}{|L|-2} \sum_{k \in L} d_{i k}
\end{aligned}
$$

where L is the set of leaves

Updating distances in neighbor joining

- given a new internal node k, the distance to another node m is given by:

$$
d_{k m}=\frac{1}{2}\left(d_{i m}+d_{j m}-d_{i j}\right)
$$

Updating distances in neighbor joining

- can calculate the distance from a leaf to its parent node in the same way

$$
d_{i k}=\frac{1}{2}\left(d_{i j}+d_{i m}-d_{j m}\right)
$$

$$
d_{j k}=d_{i j}-d_{i k}
$$

Updating distances in neighbor joining

- we can generalize this so that we take into account the distance to all other leaves

$$
d_{i k}=\frac{1}{2}\left(d_{i j}+r_{i}-r_{j}\right)
$$

where

$$
r_{i}=\frac{1}{|L|-2} \sum_{m \in L} d_{i m}
$$

and L is the set of leaves

- this is more robust if data aren't strictly additive

Neighbor joining algorithm

define the tree $T=$ set of leaf nodes

$$
L=T
$$

while more than two subtrees in T pick the pair i, j in L with minimal $D_{i j}$
add to T a new node k joining i and j determine new distances

$$
\begin{aligned}
& d_{i k}=\frac{1}{2}\left(d_{i j}+r_{i}-r_{j}\right) \\
& d_{j k}=d_{i j}-d_{i k} \\
& d_{k m}=\frac{1}{2}\left(d_{i m}+d_{j m}-d_{i j}\right) \text { for all other } m \text { in } L
\end{aligned}
$$

remove i and j from L and insert k (treat it like a leaf) join two remaining subtrees, i and j with edge of length $d_{i j}$

Testing for additivity

- for every set of four leaves, i, j, k, and l, two of the distances $d_{i j}+d_{k l}, d_{i k}+d_{j l}$ and $d_{i l}+d_{j k}$ must be equal and not less than the third

Rooting trees

- finding a root in an unrooted tree is sometimes accomplished by using an outgroup
- outgroup: a species known to be more distantly related to remaining species than they are to each other
- edge joining the outgroup to the rest of the tree is best candidate for root position

Rooting trees

chimpanzee lice used as outgroup in human lice study

Comments on distance-based methods

- if the given distance data is ultrametric (and these distances represent real distances), then UPGMA will identify the correct tree
- if the data is additive (and these distances represent real distances), then neighbor joining will identify the correct tree
- otherwise, the methods may not recover the correct tree, but they may still be reasonable heuristics
- neighbor joining is commonly used

