
Rock-Paper-Scissors
Intro into objective Python

Tomáš Svoboda
Department of Cybernetics, Faculty of Electrical Engineering

Czech Technical University
2018-02

http://cmp.felk.cvut.cz/~svoboda

Reading, materials

• https://cw.fel.cvut.cz/b172/courses/be5b33kui/
literature

• https://cw.fel.cvut.cz/old/courses/be5b33prg/
tutorials/start

• https://cw.fel.cvut.cz/old/courses/be5b33prg/
lectures/start

2

https://cw.fel.cvut.cz/b172/courses/be5b33kui/literature
https://cw.fel.cvut.cz/old/courses/be5b33prg/tutorials/start
https://cw.fel.cvut.cz/old/courses/be5b33prg/lectures/start

Why Python?
• Handy for engineers (rapid prototyping)

• Easy for beginners (steep learning curve)

• But strong for big apps: big data, AI … 
(https://www.tensorflow.org , https://www.scipy.org , http://scikit-
learn.org/stable /, http://playground.arduino.cc/Interfacing/Python
, …)

• Often used to command other programs (https://
www.blender.org/manual/editors/python_console.html)

• Available for many platforms/operating systems 
(large community)

3

Why Python?

4

Rock-Paper-Scissors

5

6

7

player 1 player 2
“Rock-Paper-Scissors …”

R | P | S

evaluate

“Rock-Paper-Scissors …”

R | P | Sdraw?

yes -> play again

no

winner is …

8

player 1 player 2

evaluate

draw?

yes -> play again

no

winner is …

play play

GamePlayer Player
run

R | P | S R | P | S

9

 1 class MyPlayer:
 2 '''A very dummy player (always returns R)'''
 3
 4 def play(self):
 5 return 'R'
 6
 7 if __name__ == "__main__":
 8 p = MyPlayer() # creating a player
 9 print(p.play()) # showing what it plays

General definition: class of players

create an instance (object) of the MyPlayer class the player plays

What if we need to change the player during runtime?

if run as the main program

playerdummy.py

docstring - description

always return ‘R’

10

 1 class MyPlayer:
 2 '''A dummy player on steroids'''
 3 def __init__(self,answer='R'):
 4 self.answer = answer
 5
 6 def play(self):
 7 return self.answer
 8
 9 if __name__ == "__main__":
 10 p1 = MyPlayer() # creating a default player
 11 print(p1.play()) # showing what it plays
 12 p2 = MyPlayer('P') # a better player?
 13 print(p2.play()) # showing what it plays
 14 # oops changed mind
 15 p1.answer = 'S'
 16 print(p1.play())
 17

constructor of an instance
setting object attribute

a player reads the answer from its attribute

change the memory at runtime
now, it plays differently

playerdummyplus.py (dummy with attribute)

visualisation

11

http://pythontutor.com/

https://goo.gl/RWMFjc

12

playerdummyplusplus.py (dummy with memory)
 1 class MyPlayer:
 2 '''A dummy player on steroids'''
 3 def __init__(self,answer='R'):
 4 self.answer = answer
 5 self.history = []
 6
 7 def play(self):
 8 return self.answer
 9
 10 def record(self,move):
 11 self.history.append(move)
 12
 13 if __name__ == "__main__":
 14 p1 = MyPlayer() # creating a default player
 15 print(p1.play()) # showing what it plays
 16 p2 = MyPlayer('P') # a better player?
 17 print(p2.play()) # showing what it plays
 18 # oops changed mind
 19 p1.answer = 'S'
 20 print(p1.play())
 21 # just check the record function
 22 p1.record('S')
 23 print(p1.history)
 24

initialize the memory - empty list

add the move to end of the list
append is a list method

13

player 1 player 2

evaluate

draw?

yes -> play again

no

winner is …

play play

GamePlayer Player
run

R | P | S R | P | S

How to play a game

14

p1 = Player
p2 = Player

draw = True

while draw:
move1 = p1.play
move2 = p2.play
draw = (move1 == move2)

result = evaluate(move1,move2)

class Game

15

 1 class Game:
 2 def __init__(self,p1,p2):
 3 self.p1 = p1
 4 self.p2 = p2
 5 self.winner = None
 6
 7 def run(self):
 8 draw = True
 9 while draw:
 10 move1 = self.p1.play()
 11 move2 = self.p2.play()
 12 draw = (move1 == move2)
 13 result = evaluate_moves([move1,move2])
 14 if result[0]>result[1]:
 15 self.winner = self.p1
 16 else:
 17 self.winner = self.p2

players of the game

obviously, no winner at start

before they start, draw
while draw, keep playing

set the winner

evaluate moves

16

 1 def evaluate_moves(moves):
 2 '''
 3 compares moves (plays) and decides about the winner
 4 :param moves: 1x2 list of valid moves
 5 :return: 1x2 list with points [1,0] or [0,1]
 6 depending on who is winner
 7 '''
 8 if moves in [['P','R'],['S','P'],['R','S']]:
 9 return [1,0]
 10 else:
 11 return [0,1]
 12

Paper > Rock, Scissors > Paper,
Rock > Scissors

main/control program

17

 1 import playertom
 2 import playerdummy
 3
 4 if __name__ == "__main__":
 5 p1 = playertom.MyPlayer()
 6 p2 = playerdummy.MyPlayer()
 7 g = Game(p1,p2)
 8 g.run()
 9 print('Winner is:',g.winner.__doc__)
 10

import modules

instantiate the game, put players in
run the game

tell us who is the winner

some lines skipped here

create the player

18

 1 class Game:
 2 def __init__(self,p1,p2):
 3 self.p1 = p1
 4 self.p2 = p2
 5 self.winner = None
 6
 7 def run(self):
 8 draw = True
 9 while draw:
 10 move1 = self.p1.play()
 11 move2 = self.p2.play()
 12 draw = (move1 == move2)
 13 result = evaluate_moves([move1,move2])
 14 if result[0]>result[1]:
 15 self.winner = p1
 16 return 0
 17 else:
 18 self.winner = p2
 19 return 1

return index of the winner

For subsequent analysis, return index of the winner

repeated game

19

 1 def compute_stats(winners):
 2 wins = [0,0]
 3 for winner in winners:
 4 wins[winner] = wins[winner]+1
 5 return wins
 6
 7 if __name__ == "__main__":
 8 p1 = playertom.MyPlayer()
 9 p2 = playerdummy.MyPlayer()
 10 winners = []
 11 for i in range(10):
 12 g = Game(p1,p2)
 13 winners.append(g.run())
 14 print('Winner is:',g.winner.__doc__)
 15 wins = compute_stats(winners)
 16 print(p1.__doc__, 'won %d times'%wins[0])
 17 print(p2.__doc__, 'won %d times'%wins[1])

play 10x
add the result to the list

for each of the element in the list

init empy list

number of victories

analyze the list, compute stats

iterative game

20

 48 class IterativeGame:
 49 def __init__(self,p1,p2,runs=1):
 50
 57 self.runs = runs
 58 self.p = [p1,p2]
 59 self.profits = [0,0]
 60
 61 def run(self):
 62 for k in range(self.runs):
 63 draw = True
 64 while draw:
 65 moves = [None,None] # init moves
 66 for i in range(2):
 67 moves[i] = self.p[i].play()
 68 if not(is_valid_move(moves[i])):
 69 raise RuntimeError
 71 draw = (moves[0] == moves[1])
 72 profit_increments = evaluate_moves(moves)
 73 for i in range(2):
 74 self.profits[i] += profit_increments[i]

