Cybernetics and Artificial Intelligence (2017), lecture 12

Classification – Perceptron, k-nn and relationship to Bayesian classifier

Dept. of Cybernetics Czech Technical University in Prague

Matěj Hoffmann, Zdeněk Straka Thanks to: Daniel Novák, Filip Železný

Motivation example – fish classification [Duda, Hart, Stork: Pattern Classification]

- Factory for fish processing
- 2 classes:
 - salmon
 - sea bass
- Features: length, width, lightness etc. from a camera

Last lecture – optimal fish classification using Bayes classifier

- Notation for classification problem
 - Classes $s_i \in S$ (e.g., salmon, sea bass)
 - Features $x_i \in X$ or feature vectors $(\vec{x_i})$ (also called attributes)
- Optimal classification of \vec{x} :

$$\delta^*(\vec{x}) = \arg\max_j p(s_j | \vec{x})$$

- Choosing the most probable class for a given feature vector.
- Both likelihood and prior are taken into account recall Bayes rule:

$$p(s_j|x) = \frac{p(x|s_j)p(s_j)}{p(x)}$$

- E.g., what if 95% of fish are salmon?
 - Prior may become more relevant than features

Bayes classification in practice

- \blacksquare Usually we are not given $P(s|\vec{x})$
- It has to be estimated from already classified examples training data
- For discrete \vec{x} , training examples $(\vec{x}_1, s_1), (\vec{x}_2, s_2), \dots (\vec{x}_l, s_l)$
 - so-called i.i.d (independent, identically distributed) multiset
 - every $(ec{x_i},s)$ is drawn independently from $P(ec{x},s)$
- Without knowing anything about the distribution, a non-parametric estimate:

$$P(s|\vec{x}) \approx \frac{\# \text{ examples where } \vec{x}_i = \vec{x} \text{ and } s_i = s}{\# \text{ examples where } \vec{x}_i = \vec{x}}$$

- This is hard in practice:
 - To reliably estimate $P(s|\vec{x})$, the number of examples grows exponentially with the number of elements of \vec{x} .
 - \ast e.g. with the number of pixels in images
 - \ast curse of dimensionality
 - \ast denominator often 0
 - The computational curse would not manifest itself if components of \vec{x} were statistically independent, but that is rarely the case.
 - Bayes classification provides a lower bound on classification error, but that is usually not achievable because $P(s|\vec{x})$ is not known.

Alternatives: classification without (probability) density estimation

- In other words, seeking to separate classes on training set in feature space
- Examples
 - Linear classifier
 - * Perceptron algorithm
 - Quadratic classifier
 - k-nn k nearest neighbor
 - SVM Support Vector Machines
 - Decision trees

Linear Classifier: Direct Learning

- Assume a binary classification problem, i.e. $S = \{s_1, s_2\}$.
- One discriminant function $g(\vec{x})$ enough: classify $y = \begin{cases} s_1, & \text{if } g(\vec{x}) > 0; \\ s_2, & \text{otherwise.} \end{cases}$
- We want $\left(\vec{b}^t \vec{x}_i + c\right) > 0$ if $y_i = s_1$ and $\left(\vec{b}^t \vec{x}_i + c\right) < 0$ otherwise.
- Same as requesting $\left(\vec{b}^t \vec{z}_i + c\right) > 0$ for all z_i , where $z_i = x_i$ if $y_i = s_1$ and $z_i = -x_i$ otherwise.
- Let formally $z_i^{n+1} = 1 \ \forall i \text{ and } \vec{w} = [\vec{b}, c]$ (add c as the last component of \vec{w}).
- Thus we can write simply $g(\vec{z}) = \vec{w}^t \vec{z}$ and request $\vec{w}^t \vec{z_i} > 0$ for all z_i .
- Let

$$E(\vec{w}) = \sum_{\vec{z}_i \in M} -\vec{w}^t \vec{z}_i$$

where M is the set of $\vec{z_i}$ that are misclassified.

Perceptron

- $E(\vec{b}, c)$ is always non-negative.
- If $E(\vec{w}) = 0$ then all examples in D are correctly classified and D is **linearly separable**. We want to find the minimum of $E(\vec{w})$.
- $E(\vec{w})$ is piece-wise linear. A gradient descent algorithm can be used to search for a minimum.
- Gradient algorithm: go towards a minimum by making discrete steps in \Re^{n+1} in the direction opposite to the gradient of $E(\vec{w})$.

$$\nabla(E(\vec{w})) = \left(\frac{\partial E(\vec{w})}{\partial w_1}, \frac{\partial E(\vec{w})}{\partial w_2}, \dots, \frac{\partial E(\vec{w})}{\partial w_{n+1}}\right) = \sum_{z_i \in M} -\vec{z}$$

The perceptron gradient algorithm:

- 1. k = 0. Choose a random \vec{w} .
- 2. $k \leftarrow k + 1$ 3. $\vec{w} \leftarrow \vec{w} + \eta(k) \sum_{z_i \in M_k} \vec{z}$ 4. if $|\eta(k) \sum_{z_i \in M_k} \vec{z}| > \theta$ go to 2 5. return \vec{w}
- η the **learning rate**, θ an error threshold.

- If the two classes are linearly separable, the perceptron algorithm will terminate in a finite number of steps with zero training error.
- A problem that is linearly non-separable in Rⁿ may be separable after being *transformed* to R^{n'} n' > n. For example, new coordinates may contain all quadratic terms:

 $[x(1), \dots, x(n), x^2(1), x(1)x(2), x(1)x(3), \dots, x^2(n)]$

- This is called basis expansion. A linear separation in the expanded space corresponds to a non-linear (here quadratic) separation in the original space Rⁿ.
- A linear separation method such as the perceptron may be applied in the extended space, generating nonlinear separation in the original space.

A perceptron scheme

A linearly non-separable problem

Neighbor-based classification

- Assumption: similar objects fall in the same class.
- *Similarity* small *distance* in *X*.
- A fuction, called a **metric**: $\rho: X \times X \to \Re$ such that $\forall x, y, z$
 - $\begin{aligned} &-\rho(x,y) \geq 0 \\ &-\rho(x,x) = 0 \\ &-\rho(x,y) = \rho(y,x) \\ &-\rho(x,z) \leq \rho(x,y) + \rho(y,z) \end{aligned}$
- Examples:
 - **Euclidean metric** for $X = \Re^n$:

$$ho_E(ec{x_1}, ec{x_2}) = \sqrt{\sum_i (x_1(i) - x_2(i))^2}$$

- For $X = \{0, 1\}^n$, ρ_E^2 is equal to the **Hamming metric**, giving the number of non-equal corresponding components.

k-NN

• *k*-nearest neighbor classification, *k*-NN.

Given:

- $-k \in N$
- Training examples: $(\vec{x}_1, s_1), (\vec{x}_2, s_2), \dots (\vec{x}_l, s_l)$
- $\operatorname{\mathsf{Metric}} \rho: X \times X \to \Re$
- Goal: classify \vec{x}_{l+1}
- Approach: choose k nearest (to \vec{x} by ρ) examples. Let the majority class therein be the class for \vec{x}_{l+1} .

Classification flexibility

- How to choose k?
- A general trend: Consider a two-class problem (red/green) with noisy training examples (some s_i misclassified).

k = 1: Good fit of training data, small tolerance to noise.

Bayes classifier: less flexible than 1-nn, more flexible than 15-nn.

k = 15: Poor fit to training data. Small sensitivity to noise.

- Note: the shown Bayes classifier was constructed from **known** $P(s|\vec{x})$.
- Observation: with flexibility too large (small k) or too small (large k), one gets classifiers very different from the optimal B/C.
- Optimal k somewhere in the middle. Still pending: how to determine the best value?

Validation

- Mean risk $r(\delta)$ of classifier δ corresponds to the relative frequency of its misclassifications (convergence in the limit...), or 'error rate'.
- Define training error $TE(\delta)$ as the error rate on v training data.
- Is $TE(\delta)$ a good estimate of $r(\delta)$?
- Earlier: 1-nn is not a good classifier, despite having training error 0.
- $TE(\delta)$ is (usually) not a good estimate of $r(\delta)$ because it is biased. To estimate $r(\delta)$ in an unbiased way:
 - split available data into a **training set** $(\vec{x}_1, s_1), \dots (\vec{x}_l, s_l)$ and an independent **testing set** $(\vec{x}_{l+1}, s_{l+1}), \dots (\vec{x}_{l+m}, s_{l+m})$
 - (e.g. by a 75% 25% split).
 - Construct (train) classifier on the training set.
- Error rate on the testing set is an **unbiased** estimate of $r(\delta)$.
- Unbiased does not mean accurate.

Specific probability distributions

- Recap optimal classification possible when
 - Complete underlying (joint or conditional) probability distribution relating classes and features is known
 - using Bayes classifier
- However, this is difficult in practice.
- Remedy: assuming a specific probability distribution (with nice properties)

Distributional Assumption

The normal density

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp \frac{-(x-\mu)^2}{2\sigma^2}$$

- Notable properties:
 - Central limit theorem: The effect of a sum of a large number of small independent random disturbances (however distributed) leads to the normal distribution.
 - Of all densities f(x) of a random variable X with given mean and variance, the normal density has the greatest entropy $H(X) = \int_{-\infty}^{\infty} f(x) \log_2 f(x) dx$.
- Given a single real scalar attribute, the normal distribution assumption proposes that for each class s, the conditional density of x is:

$$f(x|s) = N(x, \mu_s, \sigma_s)$$

• Often, distributional parameters are explicitly shown in the conditional part:

 $f(x|s,\mu_s,\sigma_s) = N(x,\mu_s,\sigma_s)$

Classifying under normal attribute distribution

 Under the normal distribution assumption, for Bayes optimal classification we proceed as follows

$$\arg\max_{s} f(s|x,\mu_{s},\sigma_{s}) = \arg\max_{s} \frac{f(x|s,\mu_{s},\sigma_{s})P(s)}{f(x)} = \arg\max_{s} f(x|s,\vec{\phi})P(s)$$

$$= \arg\max_{s} \frac{1}{\sigma_{s}\sqrt{2\pi}} \exp\frac{-(x-\mu_{s})^{2}}{2\sigma_{s}^{2}} \cdot P(s) = \arg\max_{s} \ln\left(\frac{1}{\sigma_{s}\sqrt{2\pi}} \exp\frac{-(x-\mu_{s})^{2}}{2\sigma_{s}^{2}} \cdot P(s)\right)$$

$$= \arg\max_{s} \left(-\frac{1}{2}\ln\sigma_{s}^{2} - \frac{1}{2}\ln 2\pi + \frac{-(x-\mu_{s})^{2}}{2\sigma_{s}^{2}} + \ln P(s)\right)$$

$$= \arg\max_{s} \left(-\frac{1}{2}\ln\sigma_{s}^{2} - \frac{1}{2\sigma_{s}^{2}}\left(x^{2} - 2x\mu_{s} + \mu_{s}^{2}\right) + \ln P(s)\right) = \arg\max_{s} a_{s}x^{2} + b_{s}x + c_{s}$$

where

$$a_s = -\frac{1}{2} \ln \sigma_s^2$$
 $b_s = \frac{\mu_s}{\sigma_s^2}$ $c_s = -\frac{1}{2} \ln \sigma_s^2 - \frac{\mu_s^2}{2\sigma_s^2} + \ln P(s)$

• A quadratic **discriminant function** thus defined **for each** $s \in S$,

$$g_s(x) = a_s x^2 + b_s x + c_s$$

Using discriminant functions: for a given x, classify into $\max_s g_s(x)$.

Normal distribution, same std. deviation σ for each class

• Simple case: same std. deviations. Example: $s = \{male, female\}, x = height.$

- Since $\forall s \ \sigma_s = \sigma$, further simplification is possible

$$\max_{s} P\left(s|x,\mu_{s},\sigma\right) = \max_{s} \left(\underbrace{\frac{x^{2}}{2\sigma^{2}}}_{can\ drop} + \frac{1}{2\sigma^{2}}\left(2x\mu_{s}-\mu_{s}^{2}\right) + \ln P(s)\right) = \max_{s}\left(b_{s}\cdot x + c_{s}\right)$$

where $b_{s} = \frac{\mu_{s}}{\sigma^{2}}$ and $c_{s} = -\frac{\mu_{s}^{2}}{2\sigma^{2}} + \ln P(s)$.

• Here, the discriminant function is **linear**:

$$g_s(x) = b_s x + c_s$$

The multivariate case

• The multivariate case ($ec{x}$ now a n-component real vector, $ec{x}\in\Re^n$)

$$N(x,\vec{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^t |\boldsymbol{\Sigma}|(\vec{x}-\vec{\mu})\right]$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1,1} & \sigma_{2,1} & \dots & \sigma_{n,1} \\ \sigma_{1,2} & \sigma_{2,2} & \dots & \sigma_{n,2} \\ \vdots & \vdots & & \vdots \\ \sigma_{1,n} & \sigma_{2,n} & \dots & \sigma_{n,n} \end{bmatrix} \dots \text{ the covariance matrix: } \begin{array}{c} \sigma_{i,j} = \overline{(x_i - \mu_i)(x_j - \mu_j)} \\ \sigma_{i,i} = \sigma_i^2 \end{array}$$

• Normal distribution assumption: $f(x|s, \vec{\mu}, \Sigma) = N(x, \vec{\mu}_s, \Sigma_s)$ for each class s.

• Quadratic discriminant function $g_s(x) = \vec{x}^t A_s \vec{x} + \vec{b}_s^t x + c_s$ where $\boldsymbol{A}_{s} = -\frac{1}{2}\boldsymbol{\Sigma}_{s}^{-1} \qquad \vec{b}_{s} = \boldsymbol{\Sigma}_{s}^{-1}\boldsymbol{\mu}_{s} \qquad c_{s} = -\frac{1}{2}\boldsymbol{\mu}_{s}^{t}\boldsymbol{\Sigma}_{s}^{-1}\boldsymbol{\mu}_{s} - \frac{1}{2}\ln\det(\boldsymbol{\Sigma}_{s}) + \ln P(s)$

• Special Case: $\forall s \ \Sigma_s = \Sigma$: Linear discriminant function $g_s(x) = \vec{b}_s^t x + c_s$

where

$$\vec{b}_s = \boldsymbol{\Sigma}_s^{-1} \mu_s$$
 $c_s = -\frac{1}{2} \mu_s^t \boldsymbol{\Sigma}_s^{-1} \mu_s + \ln P(s)$

Linear vs. Quadratic Discrimination

- Left: linear discrimination in \Re^2 . Points where $g_s(\vec{x})$ is maximal for a given s form convex regions with piece-wise linear boundaries.
- Right: quadratic discrimination in \Re^2 . Points where $g_s(\vec{x})$ is maximal for a given s form regions with piece-wise quadratic boundaries.

Parameter estimation

- Assuming $f(\vec{x}|s)$ normal: how does it help learning? Instead of estimating the unknown density function f, we only estimate parameters of the normal distribution $f(\vec{x}|s, \vec{\mu}, \Sigma)$
- That is, estimate $\vec{\mu}_s$ and Σ_s for each class s.
- Several options (next lecture)
 - Maximum Likelihood
 - Maximum Aposteriori
 - Bayesian inference

Unsupervised learning

- Until now:
 - labeled samples (\vec{x}, s) features and category membership
 - supervised learning
- Unlabeled samples \rightarrow unsupervised learning
- Why? [Duda, Hart, Stork: Pattern Classification, Ch. 10]
 - 1. labeled data sets are costly
 - 2. useful features can be extracted without supervision
 - 3. intrinsic structure in the data e.g. natural clusters

Clustering

(a) k-means, (b) fuzzy clustering, (c) probability using probability mixture, (d) hierarchical clustering (dendrogram)

K-means

- with n input patterns
- searching for centers (means μ) of k clusters

- 1. <u>begin</u> Initialize $n, k, \mu_1, \mu_2, \ldots, \mu_k$
- 2. <u>do</u> classify n samples according to nearest μ_i
- 3. update μ_i
- 4. <u>until</u> no change μ_i
- 5. <u>return</u> $\mu_1, \mu_2, \ldots, \mu_k$
- 6. <u>end</u>

Hierarchical clustering

- \blacksquare agglomerative: bottom-up \rightarrow merging
- \blacksquare divisive: top-down \rightarrow splitting
- 1. begin Initialize $k, \hat{k} \leftarrow n, \mathcal{D}_i \leftarrow \{X_i\}, i = 1, \dots, n$
- 2. <u>do</u> $\hat{k} = \hat{k} 1$
- 3. find nearest clusters. \mathcal{D}_i a \mathcal{D}_j
- 4. <u>until</u> $k = \hat{k}$
- 5. <u>return</u> k clusters
- 6. <u>end</u>

•
$$d_{min}(x, x') = \min ||x - x'||, x \in \mathcal{D}_i, x' \in \mathcal{D}_i$$

Hierarchical clustering - example

