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Figure 5.2 A two-ply game tree. The A nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the VV nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

MINIMAX(S) =

UTILITY (s) if TERMINAL-TEST(s)
MAaXge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
MiNge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN



function MINIMAX-DECISION(state) returns an action
return argmax, . AcCTIONS (s) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for each a iIn ACTIONS(state) do

v < MAX(v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V — 00
for each a In ACTIONS(state) do

v < MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Figure 5.3  An algorithm for calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that 1s, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves,

to determine the backed-up value of a state. The notation argmax, - ¢ f(a) computes the
element a of set S that has the maximum value of f(a).
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Figure5.5  Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C' has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX
would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha—beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
1s worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.




function ALPHA-BETA-SEARCH(state) returns an action
v <— MAX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, o, ) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for each a in ACTIONS(state) do
v «— MAX(v, MIN-VALUE(RESULT(s,a), a, 3))
if v > ( then return v
o «— MAX(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(State)
V< +00
for each a in ACTIONS(state) do
v +— MIN(v, MAX-VALUE(RESULT(s,a) ,q, 3))
if v < « then return v
B« MIN(G, v)
return v

Figure 5.7  The alpha—beta search algorithm. Notice that these routines are the same as
the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and
MAX-VALUE that maintain o and 3 (and the bookkeeping to pass these parameters along).




