
Adversarial search
complementary slides

T. Svoboda, BE5B33KUI
2017-03-27

materials from AIMA 3rd edition



2

164 Chapter 5. Adversarial Search

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 A two-ply game tree. The △ nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the ▽ nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

MIN, then MAX’s moves in the states resulting from every possible response by MIN to those
moves, and so on. This is exactly analogous to the AND–OR search algorithm (Figure 4.11)
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optimal
strategy leads to outcomes at least as good as any other strategy when one is playing an
infallible opponent. We begin by showing how to find this optimal strategy.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree
on one page, so we will switch to the trivial game in Figure 5.2. The possible moves for MAX

at the root node are labeled a1, a2, and a3. The possible replies to a1 for MIN are b1, b2,
b3, and so on. This particular game ends after one move each by MAX and MIN. (In game
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which
is called a ply.) The utilities of the terminal states in this game range from 2 to 14.PLY

Given a game tree, the optimal strategy can be determined from the minimax valueMINIMAX VALUE

of each node, which we write as MINIMAX(n). The minimax value of a node is the utility
(for MAX) of being in the corresponding state, assuming that both players play optimally
from there to the end of the game. Obviously, the minimax value of a terminal state is just
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value,
whereas MIN prefers a state of minimum value. So we have the following:

MINIMAX(s) =
⎧
⎨

⎩

UTILITY(s) if TERMINAL-TEST(s)

maxa∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX

mina∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify

164 Chapter 5. Adversarial Search

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 A two-ply game tree. The △ nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the ▽ nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

MIN, then MAX’s moves in the states resulting from every possible response by MIN to those
moves, and so on. This is exactly analogous to the AND–OR search algorithm (Figure 4.11)
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optimal
strategy leads to outcomes at least as good as any other strategy when one is playing an
infallible opponent. We begin by showing how to find this optimal strategy.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree
on one page, so we will switch to the trivial game in Figure 5.2. The possible moves for MAX

at the root node are labeled a1, a2, and a3. The possible replies to a1 for MIN are b1, b2,
b3, and so on. This particular game ends after one move each by MAX and MIN. (In game
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which
is called a ply.) The utilities of the terminal states in this game range from 2 to 14.PLY

Given a game tree, the optimal strategy can be determined from the minimax valueMINIMAX VALUE

of each node, which we write as MINIMAX(n). The minimax value of a node is the utility
(for MAX) of being in the corresponding state, assuming that both players play optimally
from there to the end of the game. Obviously, the minimax value of a terminal state is just
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value,
whereas MIN prefers a state of minimum value. So we have the following:

MINIMAX(s) =
⎧
⎨

⎩

UTILITY(s) if TERMINAL-TEST(s)

maxa∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX

mina∈Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify



3

166 Chapter 5. Adversarial Search

function MINIMAX-DECISION(state) returns an action
return argmaxa ∈ ACTIONS(s) MIN-VALUE(RESULT(state,a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←−∞
for each a in ACTIONS(state) do

v ← MAX(v , MIN-VALUE(RESULT(s , a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←∞
for each a in ACTIONS(state) do

v ← MIN(v , MAX-VALUE(RESULT(s , a)))
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves,
to determine the backed-up value of a state. The notation argmaxa∈ S f(a) computes the
element a of set S that has the maximum value of f(a).

to move
A

B

C

A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

Figure 5.4 The first three plies of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

vector of the successor state with the highest value for the player choosing at n. Anyone
who plays multiplayer games, such as Diplomacy, quickly becomes aware that much more
is going on than in two-player games. Multiplayer games usually involve alliances, whetherALLIANCE

formal or informal, among the players. Alliances are made and broken as the game proceeds.
How are we to understand such behavior? Are alliances a natural consequence of optimal
strategies for each player in a multiplayer game? It turns out that they can be. For example,



4

168 Chapter 5. Adversarial Search

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B

has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D

is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha–beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:



5

170 Chapter 5. Adversarial Search

function ALPHA-BETA-SEARCH(state) returns an action
v ← MAX-VALUE(state,−∞, +∞)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←−∞
for each a in ACTIONS(state) do

v ← MAX(v , MIN-VALUE(RESULT(s ,a), α, β))
if v ≥ β then return v
α← MAX(α, v )

return v

function MIN-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ←+∞
for each a in ACTIONS(state) do

v ← MIN(v , MAX-VALUE(RESULT(s ,a) , α, β))
if v ≤ α then return v
β ← MIN(β, v )

return v

Figure 5.7 The alpha–beta search algorithm. Notice that these routines are the same as
the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and
MAX-VALUE that maintain α and β (and the bookkeeping to pass these parameters along).

Adding dynamic move-ordering schemes, such as trying first the moves that were found
to be best in the past, brings us quite close to the theoretical limit. The past could be the
previous move—often the same threats remain—or it could come from previous exploration
of the current move. One way to gain information from the current move is with iterative
deepening search. First, search 1 ply deep and record the best path of moves. Then search
1 ply deeper, but use the recorded path to inform move ordering. As we saw in Chapter 3,
iterative deepening on an exponential game tree adds only a constant fraction to the total
search time, which can be more than made up from better move ordering. The best moves are
often called killer moves and to try them first is called the killer move heuristic.KILLER MOVES

In Chapter 3, we noted that repeated states in the search tree can cause an exponential
increase in search cost. In many games, repeated states occur frequently because of transpo-
sitions—different permutations of the move sequence that end up in the same position. ForTRANSPOSITION

example, if White has one move, a1, that can be answered by Black with b1 and an unre-
lated move a2 on the other side of the board that can be answered by b2, then the sequences
[a1, b1, a2, b2] and [a2, b2, a1, b1] both end up in the same position. It is worthwhile to store
the evaluation of the resulting position in a hash table the first time it is encountered so that
we don’t have to recompute it on subsequent occurrences. The hash table of previously seen
positions is traditionally called a transposition table; it is essentially identical to the exploredTRANSPOSITION

TABLE


