Problem solving by search

\diamond Problem-solving agents
\diamond Problem types
\diamond Problem formulation
\diamond Example problems
\diamond Basic search algorithms

Problem-solving agents

Restricted form of general agent:

```
function SimPle-Problem-Solving-AgEnt(percept) returns an action
    static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
    state }\leftarrow\mathrm{ UPDATE-STATE(state, percept)
    if seq is empty then
        goal }\leftarrow\mathrm{ FORMULATE-GOAL(state)
        problem}\leftarrow\mathrm{ FORMULATE-PROBLEM(state, goal)
        seq}\leftarrow\operatorname{SEARCH(problem)
    action }\leftarrow\mathrm{ RECOMMENDATION(seq, state)
    seq}\leftarrow\mathrm{ REmAIndER(seq, state)
    return action
```

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest
Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem types

Deterministic, fully observable \Longrightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence
Non-observable \Longrightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence
Nondeterministic and/or partially observable \Longrightarrow contingency problem percepts provide new information about current state solution is a contingent plan or a policy often interleave search, execution

Unknown state space \Longrightarrow exploration problem ("online")

Single-state, start in \#5. Solution??

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$. Solution??

Example: vacuum world

Single-state, start in \#5. Solution?? [Right, Suck]

Conformant, start in $\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$. Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5

4

Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

Single-state, start in \#5. Solution?? [Right, Suck]

Conformant, start in $\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$. Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5

4

Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

[Right, if dirt then Suck]

A problem is defined by four items:
initial state e.g., "at Arad"
successor function $S(x)=$ set of action-state pairs
e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
goal test, can be
explicit, e.g., $x=$ "at Bucharest"
implicit, e.g., $\operatorname{NoDirt}(x)$
path cost (additive)
e.g., sum of distances, number of actions executed, etc.
$c(x, a, y)$ is the step cost, assumed to be ≥ 0
A solution is a sequence of actions
leading from the initial state to a goal state

Real world is absurdly complex
\Rightarrow state space must be abstracted for problem solving
(Abstract) state $=$ set of real states
(Abstract) action $=$ complex combination of real actions
e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state "in Arad"
must get to some real state "in Zerind"
(Abstract) solution $=$
set of real paths that are solutions in the real world
Each abstract action should be "easier" than the original problem!

[^0]
states??: integer dirt and robot locations (ignore dirt amounts etc.) actions??
goal test??
path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.) actions??: Left, Right, Suck, NoOp goal test?? path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.) actions??: Left, Right, Suck, NoOp goal test??: no dirt path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.) actions??: Left, Right, Suck, NoOp goal test??: no dirt path cost??: 1 per action (0 for $N o O p$)

7	2	4
5		6
8	3	1

Start State

Goal State
states??
actions??
goal test??
path cost??

Example: The 8-puzzle

7	2	4
5		6
4	3	1

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

7	2	4
5		6
4	3	1

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.) goal test?? path cost??

7	2	4
5		6
4	3	1

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.) goal test??: = goal state (given) path cost??

7	2	4
5		6
4	3	1

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.) goal test??: = goal state (given) path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

states??: real-valued coordinates of robot joint angles parts of the object to be assembled
actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

Tree search example

Tree search example

Tree search example

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SUCCESSORFN of the problem to create the corresponding states.

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
    fringe }\leftarrow\operatorname{Insert(Make-NodE(Initial-State[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node}\leftarrow\mathrm{ REmove-FRont(fringe)
    if Goal-Test(problem, State(node)) then return node
    fringe }\leftarrow\operatorname{INSERTAlL(EXPAND(node, problem), fringe)
```

function EXPAND(node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in Successor-Fn(problem, STATE[node]) do
$s \leftarrow$ a new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node] $+\operatorname{Step}-\operatorname{Cost}(\operatorname{State}[$ node $]$, action,
result)
$\operatorname{DEPTh}[s] \leftarrow \operatorname{DEPth}[$ node $]+1$
add s to successors
return successors

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:
completeness-does it always find a solution if one exists?
time complexity-number of nodes generated/expanded
space complexity-maximum number of nodes in memory
optimality-does it always find a least-cost solution?
Time and space complexity are measured in terms of
b-maximum branching factor of the search tree
d-depth of the least-cost solution
m-maximum depth of the state space (may be ∞)

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

\square
Complete??
\square

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space??

Complete?? Yes (if b is finite)

Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal??

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$ so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Expand least-cost unexpanded node

Implementation:

frontier $=$ queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution

Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

frontier $=$ LIFO queue, i.e., put successors at front

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space?? $O(b m)$, i.e., linear space!
Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space?? $O(b m)$, i.e., linear space!
Optimal?? No
$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search ( problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)
function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? \(\leftarrow\) false
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in Expand(node, problem) do
    result \(\leftarrow\) Recursive-DLS(successor, problem, limit)
    if result \(=\) cutoff then cutoff-occurred? \(\leftarrow\) true
    else if result \(\neq\) failure then return result
if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
    inputs: problem, a problem
    for depth \(\leftarrow 0\) to \(\infty\) do
        result \(\leftarrow\) DEPTH-Limited-SEARCH \((\) problem, depth \()\)
        if result \(\neq\) cutoff then return result
    end
```

\square

Limit $=0$ (4)

Iterative deepening search $l=1$

Iterative deepening search $l=3$

Properties of iterative deepening search
Complete??

Properties of iterative deepening search
Complete?? Yes
Time??

Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space??

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal??

Complete?? Yes

Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree
Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:

$$
\begin{aligned}
& N(\text { IDS })=50+400+3,000+20,000+100,000=123,450 \\
& N(\text { BFS })=10+100+1,000+10,000+100,000+999,990=1,111,100
\end{aligned}
$$

IDS does better because other nodes at depth d are not expanded BFS can be modified to apply goal test when a node is generated

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes* *	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	$b m$	$b l$	$b d$
Optimal?	Yes* *	Yes	No	No	Yes* *

Failure to detect repeated states can turn a linear problem into an exponential one!

function GRAPH-SEARCH (problem, fringe) returns a solution, or failure

```
    closed }\leftarrow\mathrm{ an empty set
    fringe }\leftarrow\operatorname{InSERT(MAKE-NODE(InITIAL-STATE[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node}\leftarrow\mathrm{ REmOVE-FRONT(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
        add State[node] to closed
        fringe }\leftarrow\operatorname{INSERTALL(EXPAND(node, problem), fringe)
    end
```

\square
Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

[^0]: states??
 actions??
 goal test??
 path cost??

