
Problem solving by search

based on Stuart Russel’s slides (http://aima.cs.berkeley.edu)

February 27, 2017, BE5B33KUI - Problem solving by search 1

http://aima.cs.berkeley.edu
https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

February 27, 2017, BE5B33KUI - Problem solving by search 2

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search(problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

February 27, 2017, BE5B33KUI - Problem solving by search 3

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

February 27, 2017, BE5B33KUI - Problem solving by search 4

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

February 27, 2017, BE5B33KUI - Problem solving by search 5

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

February 27, 2017, BE5B33KUI - Problem solving by search 6

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8

February 27, 2017, BE5B33KUI - Problem solving by search 7

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8

February 27, 2017, BE5B33KUI - Problem solving by search 8

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

1 2

3 4

5 6

7 8

February 27, 2017, BE5B33KUI - Problem solving by search 9

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

February 27, 2017, BE5B33KUI - Problem solving by search 10

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

February 27, 2017, BE5B33KUI - Problem solving by search 11

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

February 27, 2017, BE5B33KUI - Problem solving by search 12

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
actions??
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 13

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 14

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 15

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 16

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: vacuum world state space graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

February 27, 2017, BE5B33KUI - Problem solving by search 17

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??
actions??
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 18

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 19

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 20

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

February 27, 2017, BE5B33KUI - Problem solving by search 21

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

February 27, 2017, BE5B33KUI - Problem solving by search 22

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

February 27, 2017, BE5B33KUI - Problem solving by search 23

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

February 27, 2017, BE5B33KUI - Problem solving by search 24

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

February 27, 2017, BE5B33KUI - Problem solving by search 25

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

February 27, 2017, BE5B33KUI - Problem solving by search 26

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

February 27, 2017, BE5B33KUI - Problem solving by search 27

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node
depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

February 27, 2017, BE5B33KUI - Problem solving by search 28

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Implementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes

successors← the empty set

for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],action,

result)

Depth[s]←Depth[node] + 1

add s to successors

return successors

February 27, 2017, BE5B33KUI - Problem solving by search 29

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

February 27, 2017, BE5B33KUI - Problem solving by search 30

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

February 27, 2017, BE5B33KUI - Problem solving by search 31

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

February 27, 2017, BE5B33KUI - Problem solving by search 32

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

February 27, 2017, BE5B33KUI - Problem solving by search 33

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

February 27, 2017, BE5B33KUI - Problem solving by search 34

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

February 27, 2017, BE5B33KUI - Problem solving by search 35

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of breadth-first search

Complete??

February 27, 2017, BE5B33KUI - Problem solving by search 36

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

February 27, 2017, BE5B33KUI - Problem solving by search 37

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??

February 27, 2017, BE5B33KUI - Problem solving by search 38

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??

February 27, 2017, BE5B33KUI - Problem solving by search 39

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.

February 27, 2017, BE5B33KUI - Problem solving by search 40

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
frontier = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ǫ

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)

February 27, 2017, BE5B33KUI - Problem solving by search 41

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 42

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 43

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 44

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 45

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 46

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 47

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 48

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 49

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 50

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 51

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 52

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 53

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of depth-first search

Complete??

February 27, 2017, BE5B33KUI - Problem solving by search 54

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??

February 27, 2017, BE5B33KUI - Problem solving by search 55

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

February 27, 2017, BE5B33KUI - Problem solving by search 56

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

February 27, 2017, BE5B33KUI - Problem solving by search 57

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

February 27, 2017, BE5B33KUI - Problem solving by search 58

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff

cutoff-occurred?← false

if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

February 27, 2017, BE5B33KUI - Problem solving by search 59

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

February 27, 2017, BE5B33KUI - Problem solving by search 60

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Iterative deepening search l = 0

Limit = 0 A A

February 27, 2017, BE5B33KUI - Problem solving by search 61

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

February 27, 2017, BE5B33KUI - Problem solving by search 62

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

February 27, 2017, BE5B33KUI - Problem solving by search 63

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

February 27, 2017, BE5B33KUI - Problem solving by search 64

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of iterative deepening search

Complete??

February 27, 2017, BE5B33KUI - Problem solving by search 65

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of iterative deepening search

Complete?? Yes

Time??

February 27, 2017, BE5B33KUI - Problem solving by search 66

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??

February 27, 2017, BE5B33KUI - Problem solving by search 67

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??

February 27, 2017, BE5B33KUI - Problem solving by search 68

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

February 27, 2017, BE5B33KUI - Problem solving by search 69

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 b⌈C

∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗

February 27, 2017, BE5B33KUI - Problem solving by search 70

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC

February 27, 2017, BE5B33KUI - Problem solving by search 71

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Graph search

function Graph-Search(problem, fringe) returns a solution, or failure

closed← an empty set

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)

end

February 27, 2017, BE5B33KUI - Problem solving by search 72

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

February 27, 2017, BE5B33KUI - Problem solving by search 73

https://cw.fel.cvut.cz/wiki/courses/be5b33kui/start

