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Classification example: What's the fish?

» Factory for fish processing

> 2 classes sy 5:
t > salmon
> sea bass
» Features X: length, width,

lightness etc. from a camera

"salmon” "sea bass"

Classification example:
http://robotics.fel.cvut.cz/cras/darpa-subt/
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Fish classification in feature space
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Fish classification in feature space

v v

32 salmon sea bass 2 saimon seabass

21 - B

12 18

17 17

15 . R 15

y Lot “ s

» Linear, quadratic, k-nearest neighbor classifier

salmon seabass Count

14 salmon seabass

~Length

Lightness

» Feature frequency per class shown using histograms
» Classification errors due to histogram overlap



Fish — classification using probability

likelihood x prior

posterior = -
evidence

» Notation for classification problem
» Classes sj € S (e.g., salmon, sea bass)
» Features x; € X or feature vectors (X;) (also called attributes)

Bayesian classification is a special case of statistical decision theory:
e Attribute vector X = (x1, x2,...): pixels 1, 2, ....
e State set S = decision set D = {0,1,...9}.
e State = actual class, Decision = recognized class

e Loss function:
0, d=s
/(s’d)_{l, d#s

*(R) = inS P(s|%) = inS " P(s|X
0*(X) = arg mdln; (s,d) P(s|X) argmdm#zd (s1X¥)
0if d=s

Obviously »~_ P(s|X) = 1, then:

P(d|%) + > P(s|x) =1

s#d

Inserting into above:

0*(X) = arg mdin[l — P(d|X)] = arg max P(d|x)
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Fish — classification using probability

likelihood x prior
evidence

posterior =

v

Notation for classification problem
» Classes sj € S (e.g., salmon, sea bass)
» Features x; € X or feature vectors (X;) (also called attributes)

v

Optimal classification of X:(?)

§*(X) = arg max P(s;|X)
J

» We thus choose the most probable class for a given feature vector.

v

Both likelihood and prior are taken into account — recall Bayes rule:

’D(X|SJ) (s1)

Bayesian classification is a special case of statistical decision theory:
e Attribute vector X = (x1, x2,...): pixels 1, 2, ....
e State set S = decision set D = {0,1,...9}.
e State = actual class, Decision = recognized class

e Loss function:

0, d=s
=11 851

0*(X) = arg mlnz s,d) P(s|X) = argmmZP(s|x

s Olfd s Gl

Obviously »~_ P(s|X) = 1, then:

P(d|%) + > P(s|x) =1
s#d

Inserting into above:

0*(X) = arg mdin[l — P(d|X)] = arg max P(d|x)



Bayes classification in practice

» Usually we are not given P(s|X)

Why hard? Way too many various X. Think about simple binary 10 x 10
image - X contains 0, 1, position matters. What is the total number of
unique images? Think binary, 1 x 8 binary image?

What is the difference between set and multiset?

Reminder about math notation. In literature, vectors are mostly denoted
by bold lower case x. In lectures, we use X to match notation used on
blackboard. It is difficult to write bold with a chalk.
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Usually we are not given P(s|X)

It has to be estimated from already classified examples — training data

For discrete X, training examples (X1, s1), (X2, s2), - . . (X1, 5/)
» so-called i.i.d (independent, identically distributed) multiset

» every (X},s) is drawn independently from P(X,s)

Without knowing anything about the distribution, a non-parametric

estimate:

P(s|X) ~

# examples where X; = X and s; = s

# examples where X; = X

Why hard? Way too many various X. Think about simple binary 10 x 10
image - X contains 0, 1, position matters. What is the total number of
unique images? Think binary, 1 x 8 binary image?

What is the difference between set and multiset?
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by bold lower case x. In lectures, we use X to match notation used on
blackboard. It is difficult to write bold with a chalk.
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. . . . Why hard? Way too many various X. Think about simple binary 10 x 10
Bayes classification in practice image - X contains 0, 1, position matters. What is the total number of
unique images? Think binary, 1 x 8 binary image?

> i X . . .
Usually we are not given P(s|X) What is the difference between set and multiset?
> It has to be estimated from already classified examples — training data Reminder about math notation. In literature, vectors are mostly denoted
» For discrete X, training examples (>_<'17 51)7 ()"(’2,52), ces (;17 5/) by bold lower case x. In lectures, we use X to match notation used on
» so-called i.i.d (independent, identically distributed) multiset blackboard. It is difficult to write bold with a chalk.
» every (X},s) is drawn independently from P(X,s)
» Without knowing anything about the distribution, a non-parametric
estimate:
. # examples where X; = X and s; = s
P(s|X) ~ el
# examples where X; = X
» Hard in practice:

» To reliably estimate P(s|X), the number of examples grows
exponentially with the number of elements of X.
> e.g. with the number of pixels in images
> curse of dimensionality
» denominator often 0



Naive Bayes classification

>

v

For efficient classification we must thus rely on additional
assumptions.

In the exceptional case of statistical independence between
components of X for each class s it holds

P(X|s) = P(x[1]|s) - P(x[2]]s) - . .-

Use simple Bayes law and maximize:

P(xls)P(s) _ P(s)

P ="5m = P

P(x[1]]s) - P(x[2][s) - ... =

No combinatorial curse in estimating P(s) and P(x[i]|s) separately
for each i and s.

No need to estimate P(X). (Why?)
P(s) may be provided apriori.
naive = when used despite statistical dependence

6
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Why naive at all? Consider N— dimensional space, 8 — bit values.
Instead of problem 8" we have 8 x N problem.

Think about statistical independence. Examplel: person’s weight and
height. Are they independent? Example2: pixel values in images.



Example: Digit recognition

01234567689

> Input: 8-bit image 13 x 13, pixel intensities 0 — 255.
» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...

7/22

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number
of wrong decisions.

Dimension of X is 13 x 13 = 169. There are 255'%° possible images.
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Example: Digit recognition

0123456789

> Input: 8-bit image 13 x 13, pixel intensities 0 — 255.
» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...

Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).

» Classify s* = argmax, P(s|X).

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number
of wrong decisions.

Dimension of X is 13 x 13 = 169. There are 255'%° possible images.
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Conditional probabilities

» Apriori digit probabilities P(s)

> Likelihoods for pixels.
P(XUN = /,'|Sk)

9/22



Conditional probabilities

P(Q?0,0 = 25|8k)P(J}775 = 25|Sk)

S L P (sk S JoPoo = 23ls. S Joptans = 2ls.
1 | 01 1 | 0.0009 1 | 0.0009
2 |01 2 0.05 2 0.05
3 | 0.1 3 | 0.00006 3 | 0.00006
4 | 0.1 4 | 0.0005 4 | 0.0005
5 0.1 5 0.07 5 0.004
6 | 0.1 6 | 0.0007 6 0.07
7 | 01 7 0.1 \ 7 0.1
8 | 0.1 8 | 0.0006 8 0.006
9 | 0.1 9 0 9 0.08
0 01 0 0 > 0 0.005

10/22



Generalization and overfiting

» Data: training, validation, testing. Wanted classifier performs well on
what data?
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Generalization and overfiting

» Data: training, validation, testing. Wanted classifier performs well on
what data?

» Overfitting: too close to training, poor on testing

11/22



Overfiting

see the overfit.m demo
Think about the problem of classifying numerals. Some
P(xyy =1]s)=0. What about an example:

P(Xo)() =100 | 5= 7) = 0.05
P(X070:10]. |S:7) = 0
P(X070 =102 | s = 7) = 0.06

A new (not in training) query image with xpo = 101. How would you
classify?



Unseen events

01234567889

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.
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Laplace smoothing ( “additive smoothing”) @ @ @

Py (X) =
P(x) = _count(x)
total samples
Problem: count(x) =0 Ppap(X) =
originally:

o P(red)=2/3
o P(blue) =1/3

after Laplace smoothing — adding one red ball and blue ball to the actual
observations:

° PLAp(red) = (2—|— 1)/(2+ 1+1+ 1) = 3/5
o Piap(blue) = (1+1)/(2+1+1+1)=2/5

this slide: courtesy of P. Abeel, http://ai.berkeley.edu. 21st lecture of CS
188.

14 /22
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Laplace smoothing ( “additive smoothing”)

P(x) =

Problem: count(x) =0

count(x)

~ total samples

Pretend you see the sample one more time.

PLap(x) =

c(x)+1

2 le(x) +1]

14 /22
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Laplace smoothing ( “additive smoothing”)

count(x)

P(x) =

~ total samples

Problem: count(x) =0
Pretend you see the sample one more time.

o cx)+1
AP t) = S et + 1
PLap(x) = j\s)i &T

where N is the number of observations; | X| is the number of possible
values X can take.

14 /22
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Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

o c(x)+k
Paet) = $ (e + 4
Piap(x) = m

For conditional, smooth each condition independently

c(x,s) + k

Pt = o+ aix

15 /22

hyperparameter would be tuned along with your classifier
For k = 100 and blue and red, you would get:

o Pap(red) = (2 +100)/(3 + 100 * 2) = 102/203
o Pap(blue) = (1 + 100)/(3 + 100 « 2) = 101/203

In this case, smoothing (" prior") would dominate over the observations -
shifting estimate from empirical to uniform.

In the digit recognition from pixels example: 255 intensity values;

13 x 13 = 169 pixels: Applying Laplace smoothing with k =1 to P(x)
(prior probability of a particular pixel will take an intensity value /):
P(xuv = 1) = (c(x) + 1)/(N + 255)

Conditional: relevant for the Naive Bayes case.



just try
Product of many small numbers . ..
e prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.
e prod(rand(1,100)) == 0 and prod(rand(1,10000)) == 0 in Matlab.

Hitting the limit of number representation.
What is the way out?

P(RIs)P(s)  P(s) P(X) not needed — does not depend on the class.
X|s)P(s s .

P(s|xX) = = P(x[1 . P(x[2 . Laws of logarithms...

(59) = o = g PUetlls) - P(x(2]s)

P(X) not needed, ... ...

16 /22
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Training and testing

Data labeled instances.
» Training set
» Held-out (validation) set
» Testing set.

Features : Attribute-value pairs.
Learning cycle:

» Learn parameters (e.g. probabilities) on training set.

» Tune hyperparameters on held-out (validation) set.

» Evaluate performance on testing set.

PUNADD

o

LN

17/22



How to evaluate a classifier? Confusion table
Matching table for test set

o
(o)
g
(@]

O
O
o O

[{e]
N
o O =

[{e]
»

True labels

eSO W O O O O O O o
B O O O O D O O o
MO O DD O O O O

0
0]
0]
0]
1
4
3

5 6 7 8 9
#times classified as

Figure from [5]
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A result for a one particular classifer and its setting (parameters), one
particular testing set



Precision and Recall, and ...
Consider digit detection (is there a digit?) or
SPAM/HAM classification.

Recall
» How many relevant items are selected?
» Are we missing some items?
» Also called: True positive rate (TPR),
sensitivity, hit rate ...
Precision
» How many selected items are relevant?
» Also called: Positive predictive value
False positive rate (FPR)

» Probability of false alarm

By Walber - Own work, CC BY-SA 4.0,

relevant elements

true negatives

false negatives

Recall = ——

Precision =

https://commons.wikimedia.org/w/index.php?curid=36926283

19 /22

pr_ TP TP

P~ TP+FN
Precision = L
- TP+FP
FP FP
FPR= — = ———
N~ FP+TN

Think about TPR vs FPR graph, what is the best classifier?


https://commons.wikimedia.org/w/index.php?curid=36926283

ROC — Receiver operating characteristics curve

1

0.9

TPR - True positive rate
© o o o o o o o
= N w N (4] [¢] ~ [ee]

o

ROC curve

0.1

0.2

0.3 0.4 0.5
FPR - False positive rate

0.6

0.7

0.8
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How do you slide along the curve?

What is the meaning of the diagonal?

What would be the shape of the curve for the ideal /worst classifier?
How would you compare various curve and select the best classifier?

Think/read about other ways to evaluate/visualise classification results.
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[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer Science+Bussiness Media, New York, NY, 2006.

PDF freely downloadable.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley & Sons, 2nd edition, 2001.

21/22


http://ai.berkeley.edu
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

References |l

[3] Votjéch Franc and Viaclav Hlavat.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

[4] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[5] Tom&s Svoboda, Jan Kybic, and Hlavag Vaclav.
Image Processing, Analysis and Machine Vision — A MATLAB Companion.
Thomson, Toronto, Canada, 1% edition, September 2007.
http://visionbook.felk.cvut.cz/.

22/22


http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
http://aima.cs.berkeley.edu/
http://visionbook.felk.cvut.cz/

	Introduction
	Making classification robust

	Evaluation
	References

