Reinforcement learning

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
April 8, 2019

Goal-directed system

A SIMPLE GOAL-DIRECTED SYSTEM
${ }^{1}$ Figure from http://www.cybsoc.org/gcyb.htm

Reinforcement Learning

- Feedback in form of Rewards
- Learn to act so as to maximize expected rewards.

Examples

Autonomous Flipper Control with Safety Constraints

Martin Pecka, Vojtěch Šalanský, Karel Zimmermann, Tomáš Svoboda

experiments utilizing
 Constrained Relative Entropy Policy Search

Video: Learning safe policies ${ }^{3}$

[^0]
From off-line (MDPs) to on-line (RL)

Markov decision process - MDPs. Off-line search, we know:

- A set of states $s \in \mathcal{S}$ (map)
- A set of actions per state. $a \in \mathcal{A}$
- A transition model $T\left(s, a, s^{\prime}\right)$ or $p\left(s^{\prime} \mid s, a\right)$ (robot)
- A reward function $r\left(s, a, s^{\prime}\right)$ (map, robot)

Looking for the optimal policy $\pi(s)$. We can plan/search before the robot enters the environment.

From off-line (MDPs) to on-line (RL)

Markov decision process - MDPs. Off-line search, we know:

- A set of states $s \in \mathcal{S}$ (map)
- A set of actions per state. $a \in \mathcal{A}$
- A transition model $T\left(s, a, s^{\prime}\right)$ or $p\left(s^{\prime} \mid s, a\right)$ (robot)
- A reward function $r\left(s, a, s^{\prime}\right)$ (map, robot)

Looking for the optimal policy $\pi(s)$. We can plan/search before the robot enters the environment.

On-line problem:

- Transition p and reward r functions not known.
- Agent/robot must act and learn from experience.

(Transition) Model-based learning

The main idea: Do something and:

- Learn an approximate model from experiences.
- Solve as if the model were correct.

(Transition) Model-based learning

The main idea: Do something and:

- Learn an approximate model from experiences.
- Solve as if the model were correct.

Learning MDP model:

- In s try a, observe s^{\prime}, count s, a, s^{\prime}.
- Normalize to get and estimate of $p\left(s, a, s^{\prime}\right)$.
- Discover (by observation) each $r\left(s, a, s^{\prime}\right)$ when experience.

(Transition) Model-based learning

The main idea: Do something and:

- Learn an approximate model from experiences.
- Solve as if the model were correct.

Learning MDP model:

- In s try a, observe s^{\prime}, count s, a, s^{\prime}.
- Normalize to get and estimate of $p\left(s, a, s^{\prime}\right)$.
- Discover (by observation) each $r\left(s, a, s^{\prime}\right)$ when experience.

Solve the learned MDP.

Reward function R

- $r\left(s, a, s^{\prime}\right)$ - reward for going from s to s^{\prime}.
- In Grid world we assumed $r\left(s, a, s^{\prime}\right)$ to be the same everywhere.
- In a real world it is different (going up, down, ...)

In ai-gym evn.step(action) returns $s^{\prime}, r\left(s\right.$, action, $\left.s^{\prime}\right)$.

Model-based learning: Grid example

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)

Episode 1
B, east, C, -1
C, east, D, -1
D, exit, $x,+10$

Episode 3
E, north, C, -1
C, east, D, -1
D, exit, $\quad x,+10$

Episode 2
B, east, C, -1
C, east, D, -1
D, exit, $x,+10$

Episode 4
E, north, C, -1
C, east, A, -1
A, exit, $\quad x,-10$

Model based vs model-free: Expected age $\mathrm{E}[A]$

Random variable age A.

$$
\mathrm{E}[A]=\sum_{a} P(A=a) a
$$

Model based vs model-free: Expected age $\mathrm{E}[A]$

Random variable age A.

$$
\mathrm{E}[A]=\sum_{a} P(A=a) a
$$

We do not know $P(A=a)$, collecting N samples $\left[a_{1}, a_{2}, \ldots a_{N}\right]$.

Model based vs model-free: Expected age $\mathrm{E}[A]$

Random variable age A.

$$
\mathrm{E}[A]=\sum_{a} P(A=a) a
$$

We do not know $P(A=a)$, collecting N samples $\left[a_{1}, a_{2}, \ldots a_{N}\right]$.

Model based

$$
\begin{aligned}
\hat{P}(a) & =\frac{\operatorname{num}(a)}{N} \\
\mathrm{E}[A] & \approx \sum_{a} \hat{P}(a) a
\end{aligned}
$$

Model based vs model-free: Expected age E $[A]$

Random variable age A.

$$
\mathrm{E}[A]=\sum_{a} P(A=a) a
$$

We do not know $P(A=a)$, collecting N samples $\left[a_{1}, a_{2}, \ldots a_{N}\right]$.
Model based
Model free

$$
\begin{aligned}
\hat{P}(a)=\frac{\text { num }(a)}{N} & \mathrm{E}[A] \approx \frac{1}{N} \sum_{i} a_{i} \\
\mathrm{E}[A] & \approx \sum_{a} \hat{P}(a) a
\end{aligned}
$$

Model-free learning

Passive learning

- Input: a fixed policy $\pi(s)$
- We want to know how good it is.
- r, p not known.
- Execute policy...
- and learn on the way.
- Goal: learn the state values $v^{\pi}(s)$

Direct evaluation from episodes

Direct evaluation from episodes

$(1,1)_{-.04} \rightsquigarrow(1,2)_{. .04} \rightsquigarrow(1,3)_{. .04} \rightsquigarrow(1,2)_{-.04} \rightsquigarrow(1,3)_{-.04} \rightsquigarrow(2,3)_{. .04} \rightsquigarrow(3,3)_{. .04} \rightsquigarrow(4,3)_{+1}$
 $\left.(1,1)_{-.04 \rightsquigarrow(2,1}\right)_{.04} \rightsquigarrow(3,1)_{. .04} \rightsquigarrow(3,2)_{-.04} \rightsquigarrow(4,2)_{-1}$.

Direct evaluation: Grid example

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)

Episode 1
B, east, C, -1
C, east, D, -1
D, exit, $x,+10$

Episode 3
E, north, C, -1
C, east, D, -1
D, exit, $\quad x,+10$

Episode 2
B, east, $\mathrm{C},-1$
C, east, D, -1
D, exit, $x,+10$

Episode 4
E, north, C, -1
C, east, A, -1
A, exit, $\quad x,-10$

Direct evaluation algorithm

$$
\begin{aligned}
& (1,1)_{.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3) . .04 \rightsquigarrow(2,3)} . .04 \rightsquigarrow(3,3)_{.04 \rightsquigarrow(4,3)_{+1}} \\
& (1,1)_{-.04 \rightsquigarrow(1,2)}^{. .04 \rightsquigarrow(1,3)_{.04} \rightsquigarrow(2,3)_{-.04} \rightsquigarrow(3,3)_{.04} \rightsquigarrow(3,2)_{.04} \rightsquigarrow(3,3)_{.04} \rightsquigarrow(4,3)_{+1}} \\
& (1,1)_{-.04 \rightsquigarrow(2,1)}^{)_{.04} \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2)_{.04} \rightsquigarrow(4,2)_{-1} .}
\end{aligned}
$$

Input: a policy π to be evaluated
Initialize:
$V(s) \in \mathbb{R}$, arbitrarily, for all $s \in \mathcal{S}$
Returns $(s) \leftarrow$ an empty list, for all $s \in \mathcal{S}$
Loop forever (for each episode):
Generate an episode following π : $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, \ldots, S_{T-1}, A_{T-1}, R_{T}$ $G \leftarrow 0$
Loop for each step of episode, $t=T-1, T-2, \ldots, 0$:
$G \leftarrow \gamma G+R_{t+1}$
Unless S_{t} appears in $S_{0}, S_{1}, \ldots, S_{t-1}$:
Append G to Returns $\left(S_{t}\right)$ $V\left(S_{t}\right) \leftarrow \operatorname{average}\left(\operatorname{Returns}\left(S_{t}\right)\right)$

Direct evaluation: analysis

The good:

- Simple, easy to understand and implement.
- Does not need p, r and eventually it computes the true v^{π}.

Direct evaluation: analysis

The good:

- Simple, easy to understand and implement.
- Does not need p, r and eventually it computes the true v^{π}.

The bad:
$\left.\left.(1,1)_{.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3) . .04 \rightsquigarrow(1,2)}\right)_{.04 \rightsquigarrow(1,3)}\right)_{.04 \rightsquigarrow(2,3)_{.04} \rightsquigarrow(3,3)} . .04 \rightsquigarrow(4,3)_{+1}$

$(1,1)_{.04} \rightsquigarrow(2,1)_{. .04 \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2) . .04 \rightsquigarrow(4,2)_{-1} .}$

Direct evaluation: analysis

The good:

- Simple, easy to understand and implement.
- Does not need p, r and eventually it computes the true v^{π}.

The bad:
$\left.\left.(1,1)_{.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3) . .04 \rightsquigarrow(1,2)}\right)_{.04 \rightsquigarrow(1,3)}\right)_{.04 \rightsquigarrow(2,3)_{.04} \rightsquigarrow(3,3)} . .04 \rightsquigarrow(4,3)_{+1}$

$\left.(1,1)_{-.04} \rightsquigarrow(2,1)_{. .04} \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2)\right)_{.04} \rightsquigarrow(4,2)_{-1}$.

- Each state value learned in isolation.
- State values are not independent
- $v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right]$

Policy evaluation?

In each round, replace V with a one-step-look-ahead

$$
V_{0}^{\pi}(s)=0
$$

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
$$

Policy evaluation?

In each round, replace V with a one-step-look-ahead
$V_{0}^{\pi}(s)=0$
$V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]$
Problem: both $p\left(s^{\prime} \mid s, \pi(s)\right)$ and $r\left(s, \pi(s), s^{\prime}\right)$ unknown!

Use samples for evaluating policy?

MDP (p, r known) : Update V estimate by a weighted average:
$V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]$
What about try and average? Trials at time t

$$
\begin{aligned}
\text { trial }^{1} & =R_{t+1}^{1}+\gamma V\left(S_{t+1}^{1}\right) \\
\text { trial }^{2} & =R_{t+1}^{2}+\gamma V\left(S_{t+1}^{2}\right) \\
\vdots & =\vdots \\
\text { trial }^{n} & =R_{t+1}^{n}+\gamma V\left(S_{t+1}^{n}\right) \\
V & \left(S_{t}\right) \leftarrow \frac{1}{n} \sum_{i} \text { trial }^{i}
\end{aligned}
$$

Temporal-difference value learning

$(1,1)_{.04} \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(2,3)_{.04} \rightsquigarrow(3,3)_{.04} \rightsquigarrow(4,3)_{+1}$ $(1,1)_{-.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(2,3)_{-.04} \rightsquigarrow(3,3)_{-.04 \rightsquigarrow}(3,2)_{-.04} \rightsquigarrow(3,3)_{-.04 \rightsquigarrow}(4,3)_{+1}}$ $\left.(1,1)_{.04} \rightsquigarrow(2,1)_{. .04 \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2)}^{)_{.04} \rightsquigarrow(4,2)}\right)_{-1}$.
$\gamma=1$

Temporal-difference value learning

$$
\begin{aligned}
& (1,1)_{-.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{-.04} \rightsquigarrow(2,3)_{-.04} \rightsquigarrow(3,3)_{-.04 \rightsquigarrow}(3,2)_{-.04} \rightsquigarrow(3,3)_{-.04} \rightsquigarrow(4,3)_{+1}} \\
& \left.(1,1)_{.04} \rightsquigarrow(2,1)_{. .04 \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2)}^{)_{.04} \rightsquigarrow(4,2)}\right)_{-1} \text {. } \\
& \gamma=1
\end{aligned}
$$

From first trial (episode): $V(2,3)=0.92, V(1,3)=0.84, \ldots$

Temporal-difference value learning

$$
\begin{aligned}
& (1,1)_{\left.\left..04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{. .04 \rightsquigarrow(1, ~}\right)_{.04} \rightsquigarrow(1,3)_{. .04 \rightsquigarrow(2,3)}\right)_{.04} \rightsquigarrow(3,3)_{.04} \rightsquigarrow(4,3)_{+1}} \\
& (1,1)_{-04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(2,3)_{-.04} \rightsquigarrow(3,3)_{-.04 \rightsquigarrow}(3,2)_{-.04} \rightsquigarrow(3,3)_{-.04 \rightsquigarrow}(4,3)_{+1}} \\
& (1,1)_{.04} \rightsquigarrow(2,1)_{. .04 \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2) . .04 \rightsquigarrow(4,2)}^{-1} \text {. } \\
& \gamma=1
\end{aligned}
$$

From first trial (episode): $V(2,3)=0.92, V(1,3)=0.84, \ldots$
In second episode, going from $S_{t}=(1,3)$ to $S_{t+1}=(2,3)$ with reward $R_{t+1}=-0.04$, hence:

$$
V(1,3)=R_{t+1}+V(2,3)=-0.04+0.92=0.88
$$

Temporal-difference value learning

$$
\begin{aligned}
& (1,1)_{.04 \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04} \rightsquigarrow(1,2)_{.04} \rightsquigarrow(1,3)_{.04 \rightsquigarrow}(2,3)_{.04} \rightsquigarrow(3,3)_{.04} \rightsquigarrow(4,3)_{+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.(1,1)_{.04} \rightsquigarrow(2,1)_{.04} \rightsquigarrow(3,1)_{.04} \rightsquigarrow(3,2)\right)_{.04} \rightsquigarrow(4,2)_{-1} \text {. } \\
& \gamma=1
\end{aligned}
$$

From first trial (episode): $V(2,3)=0.92, V(1,3)=0.84, \ldots$
In second episode, going from $S_{t}=(1,3)$ to $S_{t+1}=(2,3)$ with reward $R_{t+1}=-0.04$, hence:

$$
V(1,3)=R_{t+1}+V(2,3)=-0.04+0.92=0.88
$$

- First estimate 0.84 is a bit lower than 0.88. $V\left(S_{t}\right)$ is different than $R_{t+1}+\gamma V\left(S_{t+1}\right)$
- Update: $V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(\left[R_{t+1}+\gamma V\left(S_{t+1}\right)\right]-V\left(S_{t}\right)\right)$
- α is the learning rate.
- $V\left(S_{t}\right) \leftarrow(1-\alpha) V\left(S_{t}\right)+\alpha$ (new sample)

Exponential moving average

$$
\bar{x}_{n}=(1-\alpha) \bar{x}_{n-1}+\alpha x_{n}
$$

Example: TD Value learning

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)
$$

- Values represent initial $V(s)$
- Assume: $\gamma=1, \alpha=0.5, \pi(s)=\rightarrow$

Example: TD Value learning

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)
$$

- Values represent initial $V(s)$
- Assume: $\gamma=1, \alpha=0.5, \pi(s)=\rightarrow$
- $(B, \rightarrow, C),-2, \rightarrow V(B)$?

Example: TD Value learning

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)
$$

- Values represent initial $V(s)$
- Assume: $\gamma=1, \alpha=0.5, \pi(s)=\rightarrow$
- $(B, \rightarrow, C),-2, \rightarrow V(B)$?
- $(C, \rightarrow, D),-2, \rightarrow V(C)$?

Temporal difference value learning: algorithm

Input: the policy π to be evaluated
Algorithm parameter: step size $\alpha \in(0,1]$
Initialize $V(s)$, for all $s \in \mathcal{S}^{+}$, arbitrarily except that $V($ terminal $)=0$
Loop for each episode:
Initialize S
Loop for each step of episode:
$A \leftarrow$ action given by π for S
Take action A, observe R, S^{\prime}
$V(S) \leftarrow V(S)+\alpha\left[R+\gamma V\left(S^{\prime}\right)-V(S)\right]$
$S \leftarrow S^{\prime}$
until S is terminal

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning through mimicking Bellman updates

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning through mimicking Bellman updates The Bad: How to turn values into a (new) policy?

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning through mimicking Bellman updates The Bad: How to turn values into a (new) policy?

- $\pi(s)=\arg \max \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$

Active reinforcement learning

Reminder: V, Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):

- Start: $V_{0}(s)=0$
- In each step update V by looking one step ahead:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Q values more useful (think about updating π)

- Start: $Q_{0}(s, a)=0$
- In each step update Q by looking one step ahead:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$
Learn Q values as the robot/agent goes (temporal difference)

- Drive the robot and fetch rewards $\left(s, a, s^{\prime}, R\right)$

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$

Learn Q values as the robot/agent goes (temporal difference)

- Drive the robot and fetch rewards $\left(s, a, s^{\prime}, R\right)$
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$

Learn Q values as the robot/agent goes (temporal difference)

- Drive the robot and fetch rewards $\left(s, a, s^{\prime}, R\right)$
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate at time t trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$

Learn Q values as the robot/agent goes (temporal difference)

- Drive the robot and fetch rewards $\left(s, a, s^{\prime}, R\right)$
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate at time t trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
- α update

$$
\begin{aligned}
& Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\text { trial }-Q\left(S_{t}, A_{t}\right)\right) \\
& Q\left(S_{t}, A_{t}\right) \leftarrow(1-\alpha) Q\left(S_{t}, A_{t}\right)+\alpha \text { trial }
\end{aligned}
$$

Q-learning

MDP update: $Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]$
Learn Q values as the robot/agent goes (temporal difference)

- Drive the robot and fetch rewards (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate at time t trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
- α update

$$
\begin{aligned}
& Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\text { trial }-Q\left(S_{t}, A_{t}\right)\right) \\
& Q\left(S_{t}, A_{t}\right) \leftarrow(1-\alpha) Q\left(S_{t}, A_{t}\right)+\alpha \text { trial }
\end{aligned}
$$

In each step Q approximates the optimal q^{*} function.

Q-learning: algorithm

step size $0<\alpha \leq 1$
initialize $Q(s, a)$ for all $s \in \mathcal{S}, a \in \mathcal{S}(s)$
repeat episodes:
initialize S
for for each step of episode: do choose A from S take action A, observe R, S^{\prime}

$$
\begin{aligned}
& Q(S, A) \leftarrow A(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right] \\
& S \leftarrow S^{\prime}
\end{aligned}
$$

end for until S is terminal
until Time is up,...

From Q-learning to Q-learning agent

- Drive the robot and fetch rewards. (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate: trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
$-\alpha$ update: $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$

From Q-learning to Q-learning agent

- Drive the robot and fetch rewards. (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate: trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
$-\alpha$ update: $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$
Technicalities for the Q-learning agent

From Q-learning to Q-learning agent

- Drive the robot and fetch rewards. (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate: trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
$-\alpha$ update: $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$
Technicalities for the Q-learning agent
- How to represent Q-function?

From Q-learning to Q-learning agent

- Drive the robot and fetch rewards. (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate: trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
$-\alpha$ update: $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$
Technicalities for the Q-learning agent
- How to represent Q-function?
- What is the value for terminal? $Q(s$, Exit $)$ or $Q(s$, None $)$

From Q-learning to Q-learning agent

- Drive the robot and fetch rewards. (s, a, s^{\prime}, R)
- We know old estimates $Q(s, a)$ (and $Q\left(s^{\prime}, a^{\prime}\right)$), if not, initialize.
- A new trial/sample estimate: trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
$-\alpha$ update: $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$
Technicalities for the Q-learning agent
- How to represent Q-function?
- What is the value for terminal? $Q(s$, Exit $)$ or $Q(s$, None $)$
- How to drive? Where to drive next? Does it change over the course?

Exploration vs Exploitation

- Drive the known road or try a new one?

Exploration vs Exploitation

- Drive the known road or try a new one?
- Go to the university menza or try a nearby restaurant?

Exploration vs Exploitation

- Drive the known road or try a new one?
- Go to the university menza or try a nearby restaurant?
- Use the SW (operating system) I know or try new one?

Exploration vs Exploitation

- Drive the known road or try a new one?
- Go to the university menza or try a nearby restaurant?
- Use the SW (operating system) I know or try new one?
- Go to bussiness or study a demanding program?

Exploration vs Exploitation

- Drive the known road or try a new one?
- Go to the university menza or try a nearby restaurant?
- Use the SW (operating system) I know or try new one?
- Go to bussiness or study a demanding program?

How to explore?

Random (ϵ-greedy):

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.
- With probability $1-\epsilon$, use the policy.

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.
- With probability $1-\epsilon$, use the policy.

Problems with randomness?

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.
- With probability $1-\epsilon$, use the policy.

Problems with randomness?

- Keeps exploring forever.

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.
- With probability $1-\epsilon$, use the policy.

Problems with randomness?

- Keeps exploring forever.
- Should we keep ϵ fixed (over learning)?

How to explore?

Random (ϵ-greedy):

- Flip a coin every step.
- With probability ϵ, act randomly.
- With probability $1-\epsilon$, use the policy.

Problems with randomness?

- Keeps exploring forever.
- Should we keep ϵ fixed (over learning)?
- ϵ same everywhere?

References

Further reading: Chapter 21 of [2]. More detailed discussion in [3], chapters 5 and 6.
[1] Dan Klein and Pieter Abbeel.
UC Berkeley CS188 Intro to AI - course materials.
http://ai.berkeley.edu/.
Used with permission of Pieter Abbeel.
[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/bookdraft2018jan1.pdf.

[^0]: ${ }^{3}$ M. Pecka, V. Salansky, K. Zimmermann, T. Svoboda. Autonomous flipper control with safety constraints. In Intelligent Robots and Systems (IROS), 2016

