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Unreliable actions in observable grid world

I Walls block movement – agent/robot
stays in place.

I Actions do not always go as planned.
I Agent receives rewards each time step:

I Small “living” reward/penalty.
I Big rewards/penalties at the end.

I Goal: maximize sum of (discounted)
rewards

Uncertain movement in a 
grid world

• If there is a wall - agent bounces 
and stays in place

• Rewards each time step:

• Small “living” reward each 
step (can be negative)

• Big rewards at the end

• Goal: maximize sum of 
(discounted) rewards
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MDPs recap

Markov decision processes (MDPs):

I Set of states S
I Set of actions A
I Transitions p(s ′|s, a) or T (s, a, s ′)

I Rewards r(s, a, s ′); and discount γ

MDP quantities:

I Policy π(s) : S → A
I Utility – sum of (discounted) rewards.

I Values – expected future utility from a
state (max-node), v(s)

I Q-Values – expected future utility from
a q-state (chance-node), q(s, a)
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s ′

a

s, a, s ′
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Q-values – like values but given that I have commited to do action a

from state s.



MDPs recap

Markov decision processes (MDPs):

I Set of states S
I Set of actions A
I Transitions p(s ′|s, a) or T (s, a, s ′)

I Rewards r(s, a, s ′); and discount γ

MDP quantities:

I Policy π(s) : S → A
I Utility – sum of (discounted) rewards.

I Values – expected future utility from a
state (max-node), v(s)

I Q-Values – expected future utility from
a q-state (chance-node), q(s, a)

s

s, a

s ′

a

s, a, s ′

3 / 23

Q-values – like values but given that I have commited to do action a

from state s.



Optimal quantities

I The optimal policy: π∗(s) – optimal
action from state s

I Expected utility/return of a policy.

Uπ(St) = Eπ

[ ∞∑
k=0

γkRt+k+1

]

Best policy π∗ maximizes above.

I The value of a state s: v∗(s) – expected
utility starting in s and acting optimally.

I The value of a q-state (s, a): q∗(s, a) -
expected utility having taken a from
state s and acting optimally thereafter.

s

s, a

s ′

aπ∗(s)

s, a, s ′ is a transition

q-state

aπ∗(s ′)
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Remember: Discounted return Gt

Returns are successive steps related to each other

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + · · · )
= Rt+1 + γGt+1

Gt
.

=
∑T

k=t+1 γ
k−t−1Rk including the possibility that T =∞ or γ = 1,

but not both.
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V ∗ and Q∗

The value of a q-state (s, a):

q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]

The value of a state s:

v∗(s) = max
a

q∗(s, a)

s
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a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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Maze: v ∗ vs. q∗0
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q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]
v∗(s) = max

a
q∗(s, a)
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This is the R = −0.04 for nonterminal states maze (AIMA Fig. 17.3).

, γ = 1
Note that the Value of a state takes into account a number of things:

• the policy – which action will chosen in s

• the fact that the goal may be far away and

– there will be a number of living penalties incured before reaching it
– the final reward will be discounted

• the transition probabilities

Q-values - useful for choosing the best action – getting the policy.



Maze: v ∗ vs. q∗
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A = {←,→}
P(action − succeeds − as − planned) = 0.8,
P(reverse − direction − of −movement − than − commanded) = 0.2



Value iteration

I Bellman equations characterize the optimal
values

v∗(s) = max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
I Value iteration computes them:

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s ′)

]

s

s, a

s ′

a

p(s ′|s, a)

q∗(s, a)

v∗(s ′)

v∗(s)

Value iteration is a fixed point solution method.
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Bellman equations:

1. Take correct first action (1 ply of Expectimax)

2. Keep being optimal (recursion v∗(s ′))

Recall that we may simplify equations by marginalizing rewards if all
r(s, a, s ′) are the same.

r(s) =
∑
s′

p(s ′|a, s)r(s, a, s ′)
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Convergence

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s ′)

]
I Thinking about special cases: deterministic world, γ = 0, γ = 1.
I For all s, Vk(s) and Vk+1(s) can be seen as expectimax search trees

of depth k and k + 1

Vk(s)
<latexit sha1_base64="mRDrMEb3HQBaQNYSPs0XDj7o148=">AAACKXicZVDLSgNBEJz1GeMr0aOXwSjoJezGgx6DXjwqmBjIhtA726tDZmaXmVklLPkJr/oHfo039eqPOIkRH2loKKq6oaqiTHBjff/Nm5tfWFxaLq2UV9fWNzYr1a22SXPNsMVSkepOBAYFV9iy3ArsZBpBRgKvo8HZWL++Q214qq7sMMOehBvFE87AOqqz1+4PDszhXr9S8+v+ZOgsCKagRqZz0a96q2GcslyiskyAMd3Az2yvAG05Ezgqh7nBDNgAbrDroAKJpldMDI/ovmNimqTarbJ0wv7+KEAaM5SRu5Rgb81/bUz+aBoV3rNUSlBxESYguRjGmEAu7KgITfKN/3qyyUmv4CrLLSr2ZSnJBbUpHfdEY66RWTF0AJjmLhVlt6CBWddmOcxAcxW78NTFLrv6gv9lzYJ2ox4c1f3LRq15Oi2yRHbILjkgATkmTXJOLkiLMCLIA3kkT96z9+K9eu9fp3Pe9Geb/Bnv4xO5VqXl</latexit>

Vk+1(s)
<latexit sha1_base64="ohs+7mNyl9kZ+/sxf5f9s2SIGso="></latexit>
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We will show it on the blackboard during the lecture



From Values to Policy
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Policy extraction - computing actions from Values
s

s, a

s ′

a

s, a, s ′

I Assume we have v∗(s)

I What is the optimal
action?

I We need a one-step
expectimax:
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π∗(s) = arg max
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
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Policy extraction - computing actions from q-Values

I Assume we have
q∗(s, a)

I What is the
optimal action?

I Just take the
(arg) max:

π∗(s) = arg max
a∈A(s)

q∗(s, a)
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Actions are easier to extract from q-values.

12 / 23



Policy extraction - computing actions from q-Values

I Assume we have
q∗(s, a)

I What is the
optimal action?

I Just take the
(arg) max:

π∗(s) = arg max
a∈A(s)

q∗(s, a)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.72

0.68

0.72

0.62

0.58

0.62

0.66

-0.74

0.21

0.37

0.39

0.78

0.81

0.74

0.77

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.66

-0.69

0.42

0.64

0.88

0.92

0.68

0.81

0.59

0.40

0.55

0.61

0.83

0.87

0.83

0.78

0.71

0.63

0.66

0.67

Actions are easier to extract from q-values.

12 / 23



What is wrong with the Value iteration?

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γVk(s ′)

]
I What is complexity of one iteration - over all S states?

I Does the “max” change often?

I When the does the policy converge?

I Can we compute the policy directly?

13 / 23

Complexity: O(S2 ∗ A) per iteration
For every state (LHS), there can be up to ]S also on RHS – if every
other state was reachable from the current state.
In addition, all actions from every state need to be considered.
Max(A) does not change often.
Policy often converges long before the values.

Run “AIMA Fig. 17.2 / 17.3 demo” with R = −0.04
mdp agents.py, value iteration with eps = 0.03, discount = 0.999999

• verbosity=SHOW.UTILS

• verbosity=SHOW.QVALS - max does not change often...
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Policy evaluation

I Assume π(s) given.

I How to evaluate (compare)?

14 / 23

Remember last week’s quizz?



Fixed policy, do what π says

s

s, a

s ′

aπ(s)

s, π(s)

s, a, s ′s, π(s), s ′

q-state

aπ(s ′)

I Expectimax trees “max” over all actions
. . .

I Fixed π for each state → no “max”
operator!
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State values under a fixed policy

s

s, π(s)

s ′

π(s)

s, π(s), s ′

π(s ′)

vπ(s)

vπ(s ′)

I Expectimax trees “max” over all actions
. . .

I Fixed π for each state → no “max”
operator!

vπ(s) =
∑

s′ p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]
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Recall that vπ(s) quantity contains all the future – expected discounted

sum of rewards – executing policy from the state s onwards.
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How to compute vπ(s)?

vπ(s) =
∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]

0

0

1

1

2

2

3

3

4

4

0 0>>>None None

17 / 23

• by iteration

• solving set of equations



Policy iteration

I Start with a random policy.

I Step 1: Evaluate it.

I Step 2: Improve it.

I Repeat steps until policy converges.
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Policy iteration

I Policy π evaluation. Solve equations or iterate until convergence.

V πi
k+1(s)←

∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γV πi

k (s ′)
]

I Policy improvement. Look-ahead and keep optimality. Policy
extraction from fixed values.

πi+1(s) = arg max
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γV πi

k (s ′)
]

19 / 23

A few demo runs of mdp agents.py.

Note that the value is taken from “old policy” on RHS.



Policy iteration algorithm

function policy-iteration(env) returns: policy π
input: env - MDP problem
π(s)← random a ∈ A(s) in all states
V (s)← 0 in all states
repeat . iterate values until no change in policy

V ← policy-evaluation(π,V , env)
unchanged ← True
for each state s in S do

if max
a∈A(s)

∑
s′ P(s ′|a, s)V (s ′) >

∑
s′ P(s ′|s, π(s))V (s ′) then

π(s)← arg max
a∈A(s)

∑
s′ P(s ′|a, s)V (s ′)

unchanged ← False
end if

end for
until unchanged

end function
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Policy vs. Value iteration

I Value iteration.
I Iteration updates values and policy. Although policy implicitly –

extracted from values
I No track of policy.

I Policy iteration.
I Update utilities is fast – only one action per state.
I New policy from values (slower)
I New policy is better or done.

I Both methods belong to Dynamic programming realm.

21 / 23

Complexity (of one iteration step):
Value iteration: O(S2 ∗ A)
For every state (LHS), there can be up to ]S also on RHS – if every
other state was reachable from the current state.
In addition, all actions from every state need to be considered.
Max(A) does not change often.
Policy often converges long before the values.
Policy evaluation: O(S3) (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For ]S states, we have ]S equations, which can be solved exactly in time
O(S3) using standard linear algebra methods.
For small state spaces - ok.

For large state spaces - may be prohibitive → modified policy iteration

with only a certain number of simplified Bellman update.
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