
Classifiers, Learning

Tomáš Svoboda and Matěj Hoffmann
thanks to Daniel Novák and Filip Železný, Onďrej Drbohlav

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

May 20, 2019

1 / 35

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

K -Nearest neighbors classification

For a query ~x :

I Find K nearest ~x from the tranining (labeled) data.

I Classify to the class with the most exemplars in the set above.

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

2 / 35

K− Nearest Neighbor and Bayes
Assume data:

I N points ~x in total.
I Nj points in sj class. Hence,

∑
j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

P(sj) =
Nj

N

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

3 / 35

K− Nearest Neighbor and Bayes
Assume data:

I N points ~x in total.
I Nj points in sj class. Hence,

∑
j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

P(sj) =
Nj

N

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

3 / 35

K− Nearest Neighbor and Bayes
Assume data:

I N points ~x in total.
I Nj points in sj class. Hence,

∑
j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

P(sj) =
Nj

N

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

3 / 35

K− Nearest Neighbor and Bayes
Assume data:

I N points ~x in total.
I Nj points in sj class. Hence,

∑
j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere. P(sj |~x) =?

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

P(sj) =
Nj

N

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

3 / 35

NN classification example

x1

x2

(a)
x1

x2

(b) 1

1Figs from [1]
4 / 35

NN classification example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

5 / 35

Metrics for NN classification

D(a,b) ≥ 0
D(a,b) = 0 iff a = b
D(a,b) = D(b, a)
D(a,b) + D(b, c) ≥ D(a, c)

1 2 3 4 5

2.58

x8 x' x'(s=3)

D(x,x(s))

D(x',x8)

s

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations?

6 / 35

Metrics for NN classification

D(a,b) ≥ 0
D(a,b) = 0 iff a = b
D(a,b) = D(b, a)
D(a,b) + D(b, c) ≥ D(a, c)

1 2 3 4 5

2.58

x8 x' x'(s=3)

D(x,x(s))

D(x',x8)

s

FIGURE 4.20. The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) represents the
same shape but shifted three pixels to the right. The Euclidean distance D(x′, x′(s = 3))

is much larger than D(x′, x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley &
Sons, Inc.

Invariance to geometrical transformations?

6 / 35

Etalon based classification

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

Represent ~x by etalon , ~es per each class s ∈ S

7 / 35

Separate etalons

s∗ = arg min
s∈S

(||~x − ~es ||2 + os)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

8 / 35

What etalons?

If N (~x |~µ,Σ); all classes same covari-
ance matrices, then

~es
def
= ~µs =

1

|X s |
∑

i∈X s

~x si

and separating hyperplanes halve dis-
tances between pairs.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

9 / 35

Etalon based classification, ~es = ~µs

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

10 / 35

Digit recognition - etalons ~es = ~µs

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]

11 / 35

Better etalons – Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]

12 / 35

Better etalons – Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]

12 / 35

Better etalons?

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2
perceptron

Figures from [5]

13 / 35

Better etalons?

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2
perceptron

Figures from [5]

13 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Etalon classifier – Linear classifier

s∗ = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

gs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

gs(x) = w>s x + ws0

14 / 35

Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query ~x .
What to learn?

I Generative model : Learn P(~x , s). Decide by computing P(s|~x).

I Discriminative model : Learn P(s|~x)

I Discriminant function : Learn g(~x) which maps ~x directly into class
labels.

15 / 35

Linear discriminant function - two class case

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2]

16 / 35

Linear discriminant function - two class case

g(x) = w>x + w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0 =1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.

Figure from [2]

16 / 35

Separating hyperplane

w>x1 + w0 = w>x2 + w0

w>(x1 − x2) = 0

g(x) gives an algebraic mea-
sure of the distance from x to
the hyperplane.

x = xp + r
w

‖w‖

as g(xp) = 0,
and g(x) = w>x + w0, then:

g(x) = r‖w‖

x

g(x) = 0w

x1

x2

x3

w0 /||w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]

17 / 35

Separating hyperplane

w>x1 + w0 = w>x2 + w0

w>(x1 − x2) = 0

g(x) gives an algebraic mea-
sure of the distance from x to
the hyperplane.

x = xp + r
w

‖w‖

as g(xp) = 0,
and g(x) = w>x + w0, then:

g(x) = r‖w‖

x

g(x) = 0w

x1

x2

x3

w0 /||w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]

17 / 35

Separating hyperplane

w>x1 + w0 = w>x2 + w0

w>(x1 − x2) = 0

g(x) gives an algebraic mea-
sure of the distance from x to
the hyperplane.

x = xp + r
w

‖w‖

as g(xp) = 0,
and g(x) = w>x + w0, then:

g(x) = r‖w‖

x

g(x) = 0w

x1

x2

x3

w0 /||w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c⃝ 2001 by John Wiley & Sons, Inc.

Figure from [2]

17 / 35

Multiclass case

each class has its own discriminant function

gs(x) = w>s x + ws0

and the classification s∗ is along the max.

18 / 35

Two classes set-up

|S | = 2, i.e. two states (typically also classes)

g(x) =





s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]

for all x′

w′
>
x′ > 0

drop the dashes to avoid notation clutter.

19 / 35

Two classes set-up

|S | = 2, i.e. two states (typically also classes)

g(x) =





s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]

for all x′

w′
>
x′ > 0

drop the dashes to avoid notation clutter.

19 / 35

Two classes set-up

|S | = 2, i.e. two states (typically also classes)

g(x) =





s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]

for all x′

w′
>
x′ > 0

drop the dashes to avoid notation clutter.

19 / 35

Solution (graphically)

y1

y2

separating plane

solution
region

y1

y2

"separating" plane

solution
region

aa

FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by
John Wiley & Sons, Inc.

Different
notation in the book: substitute a← w and y1, y2 ← x1, x2

Figure from [2]

20 / 35

Learning w, gradient descent

A criterion to be minimized J(w)

Initialize w, threshold θ, learning rate α
k ← 0
repeat

k ← k + 1
w← w − α(k)∇J(w)

until |α(k)∇J(w)| < θ
return w

21 / 35

Learning w - Perceptron criterion

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})
(Perceptron) Criterion to be minimized:

J(w) =
∑

x∈X
−w>x

where X is a set of missclassified x.

∇J(w) =
∑

x∈X
−x

22 / 35

Learning w - Perceptron criterion

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})
(Perceptron) Criterion to be minimized:

J(w) =
∑

x∈X
−w>x

where X is a set of missclassified x.

∇J(w) =
∑

x∈X
−x

22 / 35

Learning w - Perceptron criterion

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})
(Perceptron) Criterion to be minimized:

J(w) =
∑

x∈X
−w>x

where X is a set of missclassified x.

∇J(w) =
∑

x∈X
−x

22 / 35

(Batch) Perceptron algorithm

Initialize w, threshold θ, learning rate α
k ← 0
repeat

k ← k + 1
w← w + α(k)

∑
x∈X (k) x

until |α(k)
∑

x∈X (k) x| < θ
return w

23 / 35

Fixed-increment single-sample Perceptron

n patterns/samples, we are looping over all patterns repeatedly

Initialize w
k ← 0
repeat

k ← (k + 1) mod n
if xk missclassified, then w← w + xk

until all x correctly classified
return w

24 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

w
2

0 2 4 6 8 10
iter

0
1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

2

w
2

0 2 4 6 8 10
iter

0
1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

25 / 35

Perceptron iterations/loops

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

25 / 35

Etalons: means vs. found by perceptron

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

Etalons and separating hyperplanes found by perceptron

Figures from [5]

26 / 35

Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]

27 / 35

What if not lin separable?

1.0 0.5 0.0 0.5 1.0 1.5 2.0

Dimension lifting

x = [x , x2]>

28 / 35

Dimension lifting, x = [x , x2]>

1.0 0.5 0.0 0.5 1.0 1.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.00.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

29 / 35

Performance comparison, parameters fixed

#times classified as

T
ru

e
 l
a
b
e
ls

Matching table for test set

94 0 0 1 0 0 0 0 5 0

 0 99 0 0 0 0 0 0 0 1

 0 0 92 0 0 0 0 4 4 0

 0 0 0 96 0 0 0 0 3 1

 0 0 0 0 99 0 0 0 1 0

 0 2 0 0 0 93 3 0 2 0

 0 0 0 0 0 1 89 0 10 0

 0 0 2 0 0 0 0 98 0 0

 3 0 0 1 0 0 51 0 35 10

 0 0 0 4 0 0 1 0 9 86

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
0

10

20

30

40

50

60

70

80

90

#times classified as

T
ru

e
 l
a

b
e

ls

Matching table for test set

100 0 0 0 0 0 0 0 0 0

 0 100 0 0 0 0 0 0 0 0

 0 0 100 0 0 0 0 0 0 0

 1 0 0 99 0 0 0 0 0 0

 0 0 0 0 100 0 0 0 0 0

 0 0 0 0 0 100 0 0 0 0

 0 0 0 0 0 0 100 0 0 0

 1 0 0 0 0 0 1 98 0 0

 0 0 0 0 0 0 0 0 97 3

 0 0 0 0 0 0 0 0 5 95

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
0

10

20

30

40

50

60

70

80

90

100

30 / 35

LSQ approach to linear classification

Xw = b

30 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

0 1 2 3 4

0

1

2

3

4

R1
R2

x1

x2

Four training points and the decision boundary at

⎛
⎝

1
x1

x2

⎞
⎠ = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =

[
11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =

[
w0

w

]

and with

31 / 35

Accuracy vs precision

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 32 / 35

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy vs precision

https://en.wikipedia.org/wiki/Accuracy_and_precision

33 / 35

https://en.wikipedia.org/wiki/Accuracy_and_precision

References I

Further reading: Chapter 18 of [4], or chapter 4 of [1], or chapter 5 of [2].
Many Matlab figures created with the help of [3]. You may also play with
demo functions from [5].

[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer Science+Bussiness Media, New York, NY, 2006.

PDF freely downloadable.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification.

John Wiley & Sons, 2nd edition, 2001.

[3] Votjěch Franc and Václav Hlaváč.

Statistical pattern recognition toolbox.

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

34 / 35

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

References II

[4] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[5] Tomáš Svoboda, Jan Kybic, and Hlaváč Václav.

Image Processing, Analysis and Machine Vision — A MATLAB Companion.

Thomson, Toronto, Canada, 1st edition, September 2007.

http://visionbook.felk.cvut.cz/.

35 / 35

http://aima.cs.berkeley.edu/
http://visionbook.felk.cvut.cz/

	Direct learning
	Accuracy and precision
	References

